Find the measure of a.
A. 60
B. 57
C. 40
D. 80

Find The Measure Of A.A. 60B. 57C. 40D. 80

Answers

Answer 1

Answer:

Option (C)

Step-by-step explanation:

Since angle 'a' is the inscribed angle of the given triangle

Therefore, angle measure of the intercepted arc will be equal to the double of the inscribed angle.

x = 2a ⇒ a = [tex]\frac{x}{2}[/tex]

By the tangent-chord theorem,

"Angle between a chord and tangent measure the half of the angle measure of intercepted minor arc"

[tex]\frac{x}{2}[/tex] = 40°

Therefore, a = [tex]\frac{x}{2}[/tex] = 40°

Option (C) will be the answer.


Related Questions

Please answer this correctly without making mistakes I need to finish this today as soon as possible

Answers

Answer:

14 miles

Step-by-step explanation:

Since we know that the distance of the paths from Cedarburg to Allenville is 22 and 13/16 miles, and we know the distance from Cedarburg to Lakeside is 8 and 13/16 miles.

We know that the total distance is made up of the distance from C to L and L to A.

So 22 and 13/16 = 8 and 13/16 + L to A

We can subtract 22 and 13/16 by 8 and 13/16 to get 14 miles.

Hope this helps.

Can someone explain to me what a “derivative” means? How do you find the derivative of f(x)=x^3+1?

Answers

The derivative is the rate of change of a function, basically represents the slope at different points. To find the derivative of the given function you can use the power rule, which means, if n is a real number, d/dx(x^n)= nx^(n-1). This is a simplification of the chain rule based on the fact that d/dx(x)=1. Anyway, this means that d/dx(x^3 + 1)= 3x^2. Here n is 3 and so it is 3*x^(3-1)= 3x^2. The derivative of x^3+1 is 3x^2.

If you are wondering what happened to the 1, for any constant C, d/dx(C)=0.

Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 5, x1 = 2n xn f(xn) f '(xn) f(xn)/f '(xn) xn − f(xn)/f '(xn)1 2

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]\mathsf{f(x) = x^2 -5 } \\ \\ \mathsf{x_1 = 2}[/tex]

The derivative of the first function of (x) is:

[tex]\mathsf{f'(x) =2x }[/tex]

According to Newton's Raphson method for function formula:

[tex]{\mathrm{x_{n+1} = x_n - \dfrac{f(x_n)}{f'(x_n)}}[/tex]

where;

[tex]\mathbf{x_1 =2}[/tex]

The first iteration is as follows:

[tex]\mathtt{f(x_1) = (2)^2 - 5} \\ \\ \mathbf{f(x_1) = -1}[/tex]

[tex]\mathtt{f'(x_1) = 2(2)} \\ \\ \mathbf{ = 4}[/tex]

[tex]\mathtt{\dfrac{f(x_1)}{f'(x_1)}} = \dfrac{-1}{4}}[/tex]

[tex]\mathbf{\dfrac{f(x_1)}{f'(x_1)} =-0.25}[/tex]

[tex]\mathtt{x_1 - \dfrac{f(x_1)}{f'(x_1)}} = \mathtt{2 - (-0.25)}}[/tex]

[tex]\mathbf{x_1 - \dfrac{f(x_1)}{f'(x_1)} = 2.25}[/tex]

Therefore;

[tex]\mathbf{x_2 = 2.25}[/tex]

For the second iteration;

[tex]\mathtt f(x_2) = (2.25)^2 -5}[/tex]

[tex]\mathtt f(x_2) = 5.0625-5}[/tex]

[tex]\mathbf{ f(x_2) =0.0625}[/tex]

[tex]\mathtt{f'(x_2)= 2(2.25)}[/tex]

[tex]\mathbf{f'(x_2)= 4.5}[/tex]

[tex]\mathtt{ \dfrac{f(x_2)}{f'(x_2)}} = \dfrac{0.0625}{4.5}}[/tex]

[tex]\mathbf{ \dfrac{f(x_2)}{f'(x_2)} = 0.01389}[/tex]

[tex]\mathtt{x_2 - \dfrac{f(x_2)}{f'(x_2)}} = \mathtt{2.25 -0.01389}}[/tex]

[tex]\mathbf{x_2 - \dfrac{f(x_2)}{f'(x_2)} = 2.2361}}[/tex]

Therefore, [tex]\mathbf{x_3 = 2.2361}[/tex]

When x€Q, what is the solution of 3x-2/2=x-1/2 ?​

Answers

Answer:

x = [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

[tex]\frac{3x-2}{2}[/tex] = [tex]\frac{x-1}{2}[/tex]

Cross-multiply:

2(3x-2) = 2(x-1)

Simplify:

6x - 4 = 2x - 2

Subtract 2x from both sides:

4x - 4 = -2

Add 4 to both sides:

4x = 2

Divide both sides by 4:

x = [tex]\frac{1}{2}[/tex]

Let A = {June, Janet, Jill, Justin, Jeffrey, Jelly}, B = {Janet, Jelly, Justin}, and C = {Irina, Irena, Arena, Arina, Jelly}. Find the given set. A ∪ C a. {June, Janet, Jill, Justin, Jeffrey, Jelly, Irina, Irena, Arena, Arina} b. {June, Justin, Irina, Irena, Arena, Arina, Jelly} c. {June, Janet, Jill, Justin, June, Jelly} {Jelly} d. ∅

Answers

Answer:

{June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Step-by-step explanation:

A ∪ C

This means union so we join the sets together

A = {June, Janet, Jill, Justin, Jeffrey, Jelly} + C = {Irina, Irena, Arena, Arina, Jelly}

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, Jelly}

We get rid of repeats

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. [Start 4 By 4 Matrix 1st Row 1st Column 4 2nd Column 5 3rd Column 7 4st Column 5 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 3 4st Column 8 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Yes, it is invertible

Step-by-step explanation:

We need to find in the matrix determinant is different from zero, since iif it is, that the matrix is invertible.

Let's use co-factor expansion to find the determinant of this 4x4 matrix, using the column that has more zeroes in it as the co-factor, so we reduce the number of determinant calculations for the obtained sub-matrices.We pick the first column for that since it has three zeros!

Then the determinant of this matrix becomes:

[tex]4\,*Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] +0+0+0[/tex]

And the determinant of these 3x3 matrix is very simple because most of the cross multiplications render zero:

[tex]Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] =1 \,(3\,*\,1-0)+4\,(0-0)+6\,(0-0)=3[/tex]

Therefore, the Det of the initial matrix is : 4 * 3 = 12

and then the matrix is invertible

Find the smallest positive integer that satisfies both of the following equations: = 3 (mod4) and = 5 (mod6)

Answers

Answer:

x=3mod4

Means that when x is divided by 4 it gives an unknown integer and a remainder of 3.

x/4 = Z + 3/4

Z= (x-3)/4

Where Z is the integer

x=5 mod6

x/6 = Y + 5/6

Y = (x-5)/6

Where Y is the integer

Z-Y must be an integer on equal to zero

(x-3)/4 - (x-5)/6

3(x-3)/12 - 2(x-5)/12

(3x-9-2x+10)/12

(x+1)/12

If it is equal to 0

x=-1. But x should be positive

If it is equal to 1

x=11

Hence the smallest possible number is 11

The amount of money spent on textbooks per year for students is approximately normal.
A. To estimate the population mean, 19 students are randomly selected the sample mean was $390 and the standard deviation was $120. Find a 95% confidence for the population meam.
B. If the confidence level in part a changed from 95% 1 to 1999%, would the margin of error for the confidence interval:
1. decrease.
2. stay the same.
3. increase not.
C. If the sample size in part a changed from 19% 10 to 22, would the margin of errot for the confidence interval:
1. decrease.
2. stay the same.
3. increase
D. To estimate the proportion of students who purchase their textbookslused, 500 students were sampled. 210 of these students purchased used textbooks. Find a 99% confidence interval for the proportion of students who purchase used text books.

Answers

Answer:

(A) A 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval would increase.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval would decrease.

(D) A 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

Step-by-step explanation:

We are given that 19 students are randomly selected the sample mean was $390 and the standard deviation was $120.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = $390

            s = sample standard deviation = $120

            n = sample of students = 19

            [tex]\mu[/tex] = population mean

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.101 < [tex]t_1_8[/tex] < 2.101) = 0.95  {As the critical value of t at 18 degrees of

                                               freedom are -2.101 & 2.101 with P = 2.5%}  

P(-2.101 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.101) = 0.95

P( [tex]-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                        = [ [tex]\$390-2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] , [tex]\$390+2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] ]

                        = [$332.16, $447.84]

(A)  Therefore, a 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would increase because of an increase in the z value.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex]  would decrease because as denominator increases; the whole fraction decreases.

(D) We are given that to estimate the proportion of students who purchase their textbooks used, 500 students were sampled. 210 of these students purchased used textbooks.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion students who purchase their used textbooks = [tex]\frac{210}{500}[/tex] = 0.42    

            n = sample of students = 500

            p = population proportion

Here for constructing a 99% confidence interval we have used a One-sample z-test statistics for proportions

So, 99% confidence interval for the population proportion, p is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5%

                                               level of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

= [ [tex]0.42 -2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] , [tex]0.42 +2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] ]

= [0.363, 0.477]

Therefore, a 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

line and passes through C -2,0 in the 1, -3) Quetion of the line in standard form

Answers

Answer:

[tex]\huge\boxed{x+y=-2}[/tex]

Step-by-step explanation:

The standard form of an equation of a line:

[tex]Ax+By=C[/tex]

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

where

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points (-2, 0) and (1, -3).

Substitute:

[tex]x_1=-2;\ y_1=0;\ x_2=1;\ y_2=-3[/tex]

[tex]m=\dfrac{-3-0}{1-(-2)}=\dfrac{-3}{1+2}=\dfrac{-3}{3}=-1\\\\y-0=-1(x-(-2))\\\\y=-(x+2)[/tex]

[tex]y=-x-2[/tex]         add x to both sides

[tex]x+y=-2[/tex]

Karmen returned a bicycle to Earl's Bike Shop. The sales receipt showed a total paid price of $211.86, including the 7% sales tax. What was the cost of the bicycle without the sales tax? Any help would be very appreciated! Thank you very much!

Answers

Answer:

$198

Step-by-step explanation:

198x.07=13.86

198+13.86=211.86

pls answer my question please

Answers

Bold = changed words

1. We play tennis every Sunday.

2. I own two dogs and a cat. I love animals.

3. My suitcase weighs four kilos (kilograms).

4. When Mary came in, I talked to my mother on the phone. OR: I talked to Mother on the phone when Mary came in.

5. We passed the hotel two minutes ago. OR: We passed by the hotel two minutes ago.

which of the following are possible values of r?
[tex] {r}^{2 } = \frac{3}{16} [/tex]

Answers

Answer:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

Step-by-step explanation:

when you solve for r in the given equation, you need to apply the square root property, which gives positive and negative answers (both should therefore be considered):

[tex]r^2=\frac{3}{16} \\r=+/-\sqrt{\frac{3}{16}} \\r=+/-\frac{\sqrt{3} }{4}[/tex]

then you need to include these two possible solutions:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

The ratio of the number of Anne's pencils to the number of jason's pencils is 4:3 Anne has 100 pencils how many pencils does jason have

Answers

Answer:

75

Step-by-step explanation:

4:3

4x25=100

3x25=75

Solve for y: 1/3y+4=16

Answers

Hey there! I'm happy to help!

We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.

1/3y+4=16

We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.

1/3y=12

We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.

y=36

Now you know how to solve basic equations! Have a wonderful day! :D

1/3y=16-4
1/3y=12
y=12/1/3
y= 36.3

49, 34, and 48 students are selected from the Sophomore, Junior, and Senior classes with 496, 348, and 481 students respectively. Group of answer choices

Answers

Answer:

Stratified Random sampling.

Step-by-step explanation:

As per the scenario, It is stratified random sampling as it divides students into strata which represent Sophomores, Juniors, and Seniors.

Simple random samples of the given sizes of the proportional to the size of the stratum which is to be taken from every stratum that is to be about 10 percent of students from every class that is selected here.

Hence, according to the given situation, the correct answer is a random stratified sampling.

graph 3x-y-2=0 using the x- and y-intercepts

Answers

Step-by-step explanation:

I used an app called DESMOS It Is usually super helpful!!!

Answer:

Explanation:

Look at picture

A bag contains 6 red marbles, 3 blue marbles and 1 green marble. What is the probability that a randomly selected marble is not blue?

Answers

Answer:

3/10

Step-by-step explanation:

6+3+1=10

since there are 3 blue marbles, we put the 3 into the place of the numerator

and since there is 10 marbles in total it goes into the denominator

The probability that a randomly selected marble is not blue will be 0.70.

What is probability?

Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.

A bag contains 6 red marbles, 3 blue marbles and 1 green marble.

The total number of the event will be

Total event = 6 + 3 + 1

Total event = 10

Then the probability that a randomly selected marble is not blue will be

Favorable event = 7 {red, green}

Then the probability will be

P = 7 / 10

P = 0.70

More about the probability link is given below.

https://brainly.com/question/795909

#SPJ2

Find X so that m is parallel to n. Identify the postulate or theorem you used. Please help with these 3 problems, I don’t understand it at all

Answers

the corresponding angles should be equal

so, [tex] 5x+15=90 \implies 5x=75\implies x=15^{\circ}[/tex]

Need a little help thanks :D

Answers

Answer:

  71°

Step-by-step explanation:

Consider triangle BDH. x is the external angle that is remote to internal angles B and D, so is equal to their sum:

  x° = 41° +30°

  x° = 71°

what is the end point of a ray​

Answers

Answer:

point A is the rays endpoint

Step-by-step explanation:

Answer:

The "endpoint" of a ray is the origin point of the ray, or the point at which the ray starts.

Step-by-step explanation:

A ray starts at a given point, the endpoint, and then goes in a certain direction forever ad infinitum.  The origin point of a ray is called "the endpoint".

Cheers.

Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.

Answers

[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]

The sum exists if [tex]|r|<1[/tex]

[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists

[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]

[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]

x
Find the value
of x. Show
3
10
your work.

Answers

Step-by-step explanation:

Hello, there!!!

Let ABC be a Right angled triangle,

where, AB = 3

BC= 10

and AC= x

now,

As the triangle is a Right angled triangle, taking angle C asrefrence angle. we get,

h= AC = x

p= AB = 3

b= BC= 10

now, by Pythagoras relation we get,

[tex]h = \sqrt{ {p}^{2} + {b}^{2} } [/tex]

[tex]or ,\: h = \sqrt{ {3}^{2} + {10}^{2} } [/tex]

by simplifying it we get,

h = 10.44030

Therefore, the answer is x= 10.

Hope it helps...

A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4

Answers

The wording in this question is off... I am assuming you’re asking for the number of white discs and red discs if the probability of picking a red disc is 1/4.
If the probability of picking a red disc is 1/4, there are 10 red discs and 30 white discs.

1-What is the sum of the series? ​∑j=152j​ Enter your answer in the box.

2-What is the sum of the series? ∑k=14(2k2−4) Enter your answer in the box.

3-What is the sum of the series? ∑k=36(2k−10)

4-Which answer represents the series in sigma notation? 1+12+14+18+116+132+164 ∑j=1712(j+1) ∑j=172j−1 ∑j=1712j+1 ∑j=17(12)j−1

5-Which answer represents the series in sigma notation? −3+(−1)+1+3+5 ∑j=155j−1 ∑j=15(3j−6) ∑j=15(2j−5) ∑j=15−3(13)j−1

Answers

Answer:

Please see the Step-by-step explanation for the answers

Step-by-step explanation:

1)

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] 2j

The sum of series from j=1 to j=5 is:

∑ = 2(1) + 2(2) + 2(3) + 2(4) + 2(5)

  =  2 + 4 + 6 + 8 + 10

∑ = 30

2)

This question is not given clearly so i assume the following series that will give you an idea how to solve this:

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²

The sum of series from k=1 to j=4 is:

∑ = 2(1)² + 2(2)² + 2(3)² + 2(4)²

  = 2(1) + 2(4) + 2(9) + 2(16)

  =  2 + 8 + 18 + 32

∑ = 60

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²

∑ = (2*1)² + (2*2)² + (2*3)² + (2*4)²

  = (2)² + (4)² + (6)² + (8)²

  = 4 + 16 + 36 + 64

∑ = 120

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²- 4

∑ = (2*1)²-4 + (2*2)²-4 + (2*3)²-4 + (2*4)²-4

  = (2)²-4 + (4)²-4 + (6)²-4 + (8)²-4

  = (4-4) + (16-4) + (36-4) + (64-4)

  = 0 + 12 + 32 + 60

∑ = 104

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²- 4

∑ = 2(1)²-4 + 2(2)²-4 + 2(3)²-4 + 2(4)²-4

  = 2(1)-4 + 2(4)-4 + 2(9)-4 + 2(16)-4

  = (2-4) + (8-4) + (18-4) + (32-4)

  = -2 + 4 + 14 + 28

∑ = 44

3)

∑[tex]\left \ {{6} \atop {k=3}} \right.[/tex] (2k-10)

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)  

  = (6-10) + (8-10) + (10-10) + (12-10)

  = -4 + -2 + 0 + 2  

∑ = -4

4)

1+1/2+1/4+1/8+1/16+1/32+1/64

This is a geometric sequence where first term is 1 and the common ratio is 1/2 So

a = 1

This can be derived as

1/2/1 = 1/2 * 1 = 1/2

1/4/1/2 = 1/4 * 2/1 = 1/2

1/8/1/4 = 1/8 * 4/1  = 1/2

1/16/1/8 = 1/16 * 8/1  = 1/2

1/32/1/16 = 1/32 * 16/1  = 1/2

1/64/1/32 = 1/64 * 32/1  = 1/2

Hence the common ratio is r = 1/2

So n-th term is:

[tex]ar^{n-1}[/tex] = [tex]1(\frac{1}{2})^{n-1}[/tex]

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{7} \atop {j=1}} \right.[/tex] [tex](\frac{1}{2})^{j-1}[/tex]

5)

−3+(−1)+1+3+5

This is an arithmetic sequence where the first term is -3 and the common difference is 2. So  

a = 1

This can be derived as

-1 - (-3) = -1 + 3 = 2

1 - (-1) = 1 + 1 = 2

3 - 1 = 2

5 - 3 = 2

Hence the common difference d = 2

The nth term is:

a + (n - 1) d

= -3 + (n−1)2

= -3 + 2(n−1)

= -3 + 2n - 2

= 2n - 5

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] (2j−5)

For (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

We have different series in the question.

It is required to find the sum of all series.

What is a series?

In mathematics, a series can be defined as a group of data that followed certain rules of arithmetic.

1) We have:

[tex]\rm \sum j=2j[/tex]   where j = 1 to j = 5

After expanding the series, we get:

= 2(1)+2(2)+2(3)+2(4)+2(5)

=2(1+2+3+4+5)

= 2(15)

=30

2) We have:

[tex]\rm \sum k=(2k^2-4)[/tex]  where k = 1 to k = 4

After expanding the series, we get:

[tex]\rm = (2(1)^2-4)+(2(2)^2-4)+(2(3)^2-4)+(2(4)^2-4)+(2(5)^2-4)\\[/tex]

[tex]\rm = 2[1^2+2^2+3^2+4^2+5^2]-4\times5\\\\\rm=2[55]-20\\\\\rm = 90[/tex]

3) We have:

[tex]\rm \sum k= (2k-10)[/tex]  where k = 3 to k = 6

After expanding the series, we get:

[tex]= (2(3)-10)+(2(4)-10)+(2(5)-10)+(2(6)-10)\\\\=2[3+4+5+6] - 10\times4\\\\=2[18] - 40\\\\= -4[/tex]

4) The series given below:

[tex]1, \frac{1}{2} ,\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}[/tex]

It is a geometric progression:

[tex]\rm n^t^h[/tex] for the geometric progression is given by:

[tex]\rm a_n = ar^{n-1}[/tex]

[tex]\rm a_n = 1(\frac{1}{2})^{n-1}\\\\\rm a_n = (\frac{1}{2})^{n-1}\\[/tex]

In sigma notation we can write:

[tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7

5) The given series:

−3+(−1)+1+3+5, it is arithmetic series.

[tex]\rm n^t^h[/tex] for the arithmetic progression is given by:

[tex]\rm a_n = a+(n-1)d[/tex]

[tex]\rm a_n = -3+(n-1)(2)\\\\\rm a_n = 2n-5[/tex]

In sigma notation we can write:

[tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5

Thus, for (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

Learn more about the series here:

https://brainly.com/question/10813422

A rectangular parcel of land has an area of 6,000 ft2. A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel. What are the dimensions of the land, correct to the nearest foot? ft (smaller value) by ft (larger value)

Answers

Answer:

50ft by 120ft

Step-by-step explanation:

Area of a rectangle = L × W

6000ft² = L × W

L = 6000/W

When a diagonal line divides a rectangle into 2 right angled triangles, the diagonal line = Hypotenuse of either of the triangle and it is the longest side.

The formula for a right angle triangle =

a² + b² = c²( c = hypotenuse)

We are told in the question that:

A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel

Let us assume the side that the hypotenuse is longer than = Width

Hence, the Diagonal = (W + 10)²

Therefore

L² + W² = (W + 10)²

Since L = 6000/W

W² + (6000/W)² = (W + 10)²

W² + (6000/W)² = (W + 10) (W + 10)

W² + (6000/W)² = W² + 10W + 10W + 100

W² + (6000/W)² = W² + 20W + 100

W² - W² + (6000/W)² = 20W+ 100

6000²/W² = 20W + 100

6000² = W²( 20W + 100)

6000² = 20W³ + 100W²

20W³ + 100W² - 6000² = 0

20W³ + 100W² - 36000000 = 0

20(W³ + 5W² - 1800000) = 0

Factorising the quadratic equation,

20(W − 120)(W² + 125W + 15000) = 0

W - 120 = 0

W = 120

Therefore,

W(Width) = 120feet

Since the Width = 120 feet

We can find the length

6000ft² = L × W

L = 6000/W

L = 6000/120

L = 50 feet

The dimensions of the land, correct to the nearest foot is 50ft by 120ft

a) which function has the graph with the greatest slope?

b) which functions have graphs with y intercepts greater than 3?

c)which function has the graph with a y intercept closest to 0

Answers

Answer:

a). Function (4)

b). Function (2)

c). Function (3)

Step-by-step explanation:

Characteristics of the functions given,

Function (1),

Form the given graph,

Slope = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

          = [tex]-\frac{4}{1}[/tex]

          = -4

Y- intercept of the given function = 2

Function (2),

From he given table,

Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

         = [tex]\frac{5-3}{0+1}[/tex]

         = 2

y-intercept = 5 [Value of y for x = 0]

Function (3),

y = -x - 1

By comparing this equation with y = mx + b

Where 'm' = slope

and b = y-intercept

Slope = (-1)

y-intercept = (-1)

Function (4),

Slope = 5

y-intercept = (-4)

(a). Greatest slope of the function → Function (4)

(b). y-intercept greater than 3 → Function (2)

(c). Function with y-intercept closest to 0 → Function (3)

In a study of 24 criminals convicted of antitrust offenses, the average age was 60 years, with a standard deviation of 7.4 years. Construct a 95% confidence interval on the true mean age. (Give your answers correct to one decimal place.)___ to____ years

Answers

Answer: 56.9 years to 63.1 years.

Step-by-step explanation:

Confidence interval for population mean (when population standard deviation is unknown):

[tex]\overline{x}\pm t_{\alpha/2}{\dfrac{s}{\sqrt{n}}}[/tex]

, where [tex]\overline{x}[/tex]= sample mean, n= sample size, s= sample standard deviation, [tex]t_{\alpha/2}[/tex]= Two tailed t-value for [tex]\alpha[/tex].

Given: n= 24

degree of freedom = n- 1= 23

[tex]\overline{x}[/tex]= 60 years

s= 7.4 years

[tex]\alpha=0.05[/tex]

Two tailed t-critical value for significance level of [tex]\alpha=0.05[/tex] and degree of freedom 23:

[tex]t_{\alpha/2}=2.0687[/tex]

A 95% confidence interval on the true mean age:

[tex]60\pm (2.0686){\dfrac{7.4}{\sqrt{24}}}\\\\\approx60\pm3.1\\\\=(60-3.1,\ 60+3.1)\\\\=(56.9,\ 63.1)[/tex]

Hence, a 95% confidence interval on the true mean age. : 56.9 years to 63.1 years.

[tex]\sqrt{x+1+5=x}[/tex] Please help [tex]\sqrt{5x-x=0}[/tex] I actually can't do this, also thirty points

Answers

Answer:

It is undefined.

Step-by-step explanation:

Let's take a look at the first equation- if we simplify and move the terms, it becomes sqrt of 6 = 0, which results in an undefined value of x. The second equation works with x=0 but not the first so the value of x is undefined.

Find the SURFACE AREA of the composite figure below
ASAP

Answers

Answer:

248.26 cm²

Step-by-step explanation:

Surface area of the composite figure = (surface area of cuboid + surface area of hemisphere) - 2(base area of hemisphere)

Surface area of cuboid = [tex] 2(lw + lh + hw) [/tex]

Where,

l = 10 cm

w = 5 cm

h = 4 cm

Plug in the values into the formula:

[tex] SA = 2(10*5 + 10*4 + 4*5) [/tex]

[tex] SA = 2(50 + 40 + 20) [/tex]

[tex] SA = 2(110) = 220 cm^2 [/tex]

Surface area of hemisphere = 3πr²

Where,

π = 3.14

r = 3 cm

SA of hemisphere = 3*3.14*3² = 3*3.14*9 = 84.78 cm²

Base area of hemisphere = πr²

BA = 3.14*3² = 3.14*9 = 28.26 cm²

Surface area of the composite shape = (220 + 84.78) - 2(28.26)

= 304.78 - 56.52

SA = 248.26 cm²


There are 937 entries for a talent show.
What is the value of the 3?

Answers

Answer:

the value of the 3 is 30

Step-by-step explanation:

the second digit to the left of a decimal is always tens column

Other Questions
Given the set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25 a. Find the mode. b. Find the median. c. Find the mean, to the nearest tenth. d. Find the midrange. e. Find the standard deviation, to the nearest hundredth. f. Determine the quartiles. What is The mutation caused by the addition of a nucleotide to an already existing gene sequence called? A. deletion B.duplication C.insertion D. Inversion ?? What is the best estimate of the sum of $14.30, $143.08, and $19.74 The CPI was 172 in 2007, and the CPI was 46.5 in 1982. If your parents put aside $1,000 for you in 1982, then how much would you have needed in 2007 in order to buy what you could have bought with the $1,000 in 1982 Assume the annual retention rate for a cell phone subscriber is 70 percent and the customer generates $300 per year in profit. Assuming an annual discount rate of 8 percent, compute the value of a customer. What causes magma in the lower mantle of Earth to rise up toward the crust? Standard rate per direct labor-hour $ 2 Standard direct labor-hours for each unit produced 3 Units manufactured 1,000 Actual direct labor-hours worked during the month 3,300 Total actual variable manufacturing overhead $ 6,600 Knowledge Check 01 Assume that direct labor-hours is used as the overhead allocation base. What is the variable overhead efficiency variance What is the solution to the linear equation?2/5 + p = 4/5 + 3/5p As described in class, what does the sender send to the receiver when using hashing for integrity and authentication? (Do not include information previously shared / agreed upon by the sender and receiver.) explain any four basic values of Indian constitution as mentioned in the Preamble to Indian constitution. A 0.100-kg metal rod carrying a current of 15.0 A glides on two horizontal rails 0.550 m apart and 2.0 m long, (a) If the coefficient of kinetic friction between the rod and rails is 0.120, what vertical magnetic field is required to keep the rod moving at a constant speed? (b) If the friction between the rod and rail is reduced zero, the rod will accelerate. If the rod starts from rest at the one end of the rails, what is the speed of the rod at the other end of the rails for this frictionless situation? Use the same field value you calculated in part (a). The first step in a mathematical induction proof is to divide by n. (True or False). 1. Check the divisibility of the following numbers by 2, 3, 9 and 11 a) 76543 b) 987654362. Which of the following numbers are divisible by 4 or 8? a) 67894 b) 9685048WILL MARK THEM AS BRAINLIST 16+6-6x-4=-7x+3+7how to solve for x Reduce 102/126 to its lowest terms In the following net ionic equation, identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base.HF-(aq) + H2O(l) rightarrow F-(aq) + H3O(aq) B-L_____ B-L_____The formula of the reactant that acts as a proton donor is_____.The formula of the reactant that acts as a proton acceptor is_______. The debt-to-equity ratio for your small business was 1.40 at the end of last year and 1.25 at the end of this year. Your debt-to-equity ratio is:_________ Each day that a library book is kept past its due date a 30 dollar fee is charged at midnight which ordered pair is a viable solution if x represents the number of days that a library book is late and y represents the total fee An investment adviser with no place of business in the State is exempt from registration if it renders advice solely to employee benefit plans with assets of at least: I NEED HELP!!! What was the CIAs response to a potential military coup against Diem? A. They would launch a counter-attack against any forces attempting a coup B. They would not interfere in a coup C. They would initiate the coup D. They would protect Diem at all costs