Answer:
Step-by-step explanation:
Answer:
That's barely readable! Anyway the solution is:
7x + 7x +2 +5x +7 = 180 degrees
19x + 9 = 180 degrees
19x = 171 degrees
x = 9
So the angles are:
7x = 63 degrees
7x + 2 = 65
5x + 7 = 52
Double check:
Since ALL 3 triangle sides add up to 180:
63 + 65 + 52 = 180 degrees
Step-by-step explanation:
Can someone please help?
Find the value of x for the right triangle.
Answer:
5
Step-by-step explanation:
cos60° = x / 10
10cos60° = x
10cos60° = 5
Which of the following functions shows the reciprocal parent function, F(x) = 1, shifted left?
Answer:
G(x)=1/x+15
Step-by-step explanation:
.
a. A CD is discounted by 10%, and then from the already discounted price, a further 15% discount is given. If the price now is $12.93, find the original price.
b. What is the total discount percent as compared to the original price?
Answer:
a. $16.90
b. 23.5%
Step-by-step explanation:
a. After the two discounts, the original price is multiplied by ...
(1 -10%)(1 -15%) = 0.90×0.85 = 0.765
Then the original price is found from ...
$12.93 = 0.765 × original price
original price = $12.93 / 0.765 ≈ $16.90
__
b. The effective discount from the original price is ...
1 -0.765 = 0.235 = 23.5%
The time between surface finish problems in a galvanizing process is exponentially distributed with a mean of 41 hours. A single plant operates three galvanizing lines that are assumed to operate independently. Round your answers to four decimal places (e.g. 98.7654).
(a) What is the probability that none of the lines experiences a surface finish problem in 41 hours of operation?
(b) What is the probability that all three lines experience a surface finish problem between 24 and 41 hours of operation?
Answer:
a) The probability that none of the lines experiences a surface finish problem in 41 hours of operation is 0.0498.
b)The probability that all three lines experience a surface finish problem between 24 and 41 hours of operation is 0.0346.
Step-by-step explanation:
[tex]Mean = \frac{1}{\lambda} = 41\\P(X\leq x)= 1-e^{-\lambda x}[/tex]
[tex]P(X>x)= e^{-\lambda x}[/tex]
a)
[tex]P(x> 41, y>41, Z>41) = (P(X>41))^{3}\\\\P(X>41)=e^{^{-\frac{41}{41}}}=e^{-1}[/tex]
[tex]P(x> 41, y>41, Z>41) = \left (e^{-1} \right )^{3}\\\\P(x> 41, y>41, Z>41) = e^{-3} = 0.0498.[/tex]
b)
[tex]\lambda =\frac{24}{41}\\P(X=1)=e^{-\lambda }\cdot \lambda =\left ( e^{-0.585} \right )\left ( 0.585 \right )\\P(X=1)=0.326[/tex]
For 3 where, P(X=1, Y==1, Z=1)
[tex]= (0.326)^{3} \\\\= 0.0346[/tex]
What is division story problem where the dividend is a three-digit number and the divisor is a single digit.
Answer:
dddddddddv
Step-by-step explanation:
A robot that makes _/6 of a boat per day will make 5 boats in 6 days
What’s the equation of the line
Answer:
[tex]y = - \frac{1}{3}x + 5[/tex]
Step-by-step explanation:
Consider two points through which the line passes.
Let it be ( 0 , 5 ) and ( 6 , 3 )
Step 1 : Find slope
[tex]Slope, m = \frac{y_2 - y_ 1 }{x_2 - x_1}[/tex]
[tex]= \frac{3-5}{6-0} \\\\=\frac{-2}{6}\\\\= -\frac{1}{3}[/tex]
Step 2 : Find the equation of the line passing through the points.
[tex]( y - y_1) = m (x - x_1)\\\\(y - 5) = -\frac{1}{3} ( x - 0) \\\\y = -\frac{1}{3}x + 5[/tex]
Find the measure of ∠C in the image below. 60+55+m∠C=180
Answer:
angle C= 65 degree
Step-by-step explanation:
60+55+x= 180
115+x= 180
x= 180-115
x= 65
angle C= 65 degree
Please mark me as brainliest.
The cone and the cylinder below have equal surface area. O A. True O B. False
Answer:
the answer is false
Step-by-step explanation:
comment if you want explanation
Answer:
True
Step-by-step explanation:
When using the formulas to find the surface area, both have equal surface area
In preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $34 per doll. During the holiday selling season, FTC will sell the dolls for $42 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision.
(a) Create a what-if spreadsheet model using formulas that relate the values of production quantity, demand, sales, revenue from sales, amount of surplus, revenue from sales of surplus, total cost, and net profit. What is the profit corresponding to average demand (60,000 units)? $
(b) Modeling demand as a normal random variable with a mean of 60,000 and a standard deviation of 15,000, simulate the sales of The Dougie doll using a production quantity of 60,000 units. What is the estimate of the average profit associated with the production quantity of 60,000 dolls? $ How does this compare to the profit corresponding to the average demand (as computed in part a)? The input in the box below will not be graded, but may be reviewed and considered by your instructor
(c) Before making a final decision on the production quantity, management wants an analysis of a more aggressive 70,000-unit production quantity and a more conservative 50,000-unit production quantity. Run your simulation with these two production quantities. What is the mean profit associated with each? When ordering 50,000 units, the average profit is approximately $. When ordering 70,000 units, the average profit is approximately $.
(d) Besides mean profit, what other factors should FTC consider in determining a production quantity? Compare the four production quantities (40,000; 50,000; 60,000; and 70,000) using all these factors. What trade-offs occur? If required, round Probability of a Loss to three decimal places and Probability of a Shortage to two decimal places. What is your recommendation? The input in the box below will not be graded, but may be reviewed and considered by your instructor.
The angle of elevation of the top of the tower from a point on the ground is 30 degree, If the height of the tower is 40 space m e t e r s, then the distance between the tower and the point is
Answer:
[tex]40\sqrt3\ m[/tex]
Step-by-step explanation:
Given that,
The height of the tower, h = 40 m
The angle of elevation is 30°
We need to find the distance between the tower and the point. Let the distance is x. Using trigonometry,
[tex]\tan(30)=\dfrac{h}{x}\\\\\dfrac{1}{\sqrt3}=\dfrac{40}{x}\\\\x=40\sqrt3\ m[/tex]
So, the distance between the tower and the point is equal to [tex]40\sqrt3\ m[/tex].
Polly took ½ of an hour to get to the market while David took 2 hours. How much longer did David take to get there?
Answer:
4 times longer
Step-by-step explanation:
1/2 of a hour is 30 minutes
2 hours is 120 minutes
120 ÷ 30 = 4
4 times longer
Answer:
The answer is 4 hours.
Step-by-step explanation:
Think of it like this:
1/2 = 0.5 in decimal form.
2 ÷ 0.5 = 4
I hope this helps. Have a GREAT day!
You work at Happy Joe's family restaurant and want to see if customer meal satisfaction and gender are related to one another. You take a sample of customers and ask them if they were satisfied with their meal and note their gender. To determine if Satisfaction and Gender are dependent, what are the appropriate hypotheses
Answer:
[tex]H_o :[/tex] Satisfaction and Gender are independent of one another
[tex]H_a :[/tex] Satisfaction and Gender are dependent of one another
Step-by-step explanation:
Given
Parameters: Meal satisfaction and Gender
Test: If both parameters are dependent
Required
The appropriate hypotheses
To do this, we set the null hypothesis to independence of both parameters
i.e.
[tex]H_o :[/tex] Satisfaction and Gender are independent of one another
The alternate hypothesis will be the opposite, i.e. dependence of both parameters
i.e.
[tex]H_a :[/tex] Satisfaction and Gender are dependent of one another
If p and q are whole numbers such that p×q=37, find the value of p+q
Answer:
6x6
Step-by-step explanation:
in the diagram below, triangle PQR is similar to triangle STU. based on the diagram, select all the equations that are true.
Answer:
ACF
Step-by-step explanation:
angles must be equal since the triangles are similar
Two figures are known as similar figures if there the corresponding angles are equal and the corresponding sider is in ratio. The statement that are correct are x=35, y = 55, and z =90.
What are Similar Figures?Two figures are known as similar figures if there the corresponding angles are equal and the corresponding sider is in ratio. It is denoted by the symbol "~".
Given the ΔPQR is similar to ΔSTU, therefore, the statements that are correct about the two triangles are,
∠P = ∠S = x = 35°
∠Q = ∠T = y
∠R = ∠U = z = 55°
Since the sum of all the angles of a triangle is equal to 180°. For ΔPQR we can write,
∠P + ∠Q + ∠R = 180°
°35 + y + 55° = 180°
y = 180° - 55° - 35°
y = 90°
Hence, the statement that are correct are x=35, y = 55, and z =90.
Learn more about Similar Figures:
https://brainly.com/question/11315705
#SPJ2
Can someone help please ??
Answer:
x=40
Step-by-step explanation:
In the picture, it seems that angles BHC, CHD, and DHE form a line, 180 degrees. So to solve, set up an equation:
[tex](2x+5)+55+40=180[/tex]
Take off the parentheses and solve.
Subtract 5, 55 and 40 from both sides, or add them together, then subtract.
5+55+40=100
You get:
[tex]2x=80[/tex]
Divide both sides by 2
You get:
[tex][x=40][/tex]I hope this helps!
Rewrite in simplest terms: (9x+5)-(-2x+10)(9x+5)−(−2x+10)
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { 18 {x}^{2} - 69x - 55}}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] = (9x + 5) - ( - 2 x+ 10)(9x + 5) - ( - 2x + 10)[/tex]
[tex] = (9x + 5) + 2x (9x + 5) - 10(9x + 5) - ( - 2x + 10)[/tex]
[tex] = 9x + 5 + 18 {x}^{2} + 10 x- 90x - 50 + 2x - 10[/tex]
Collect the like terms.
[tex] = 18 {x}^{2} + (9x + 10x- 90x + 2x) + (5 - 50 - 10)[/tex]
[tex] = 18 {x}^{2} + (21x - 90x) +(5 - 60)[/tex]
[tex] = 18 {x}^{2} - 69x - 55[/tex]
[tex]\boxed{ Note:}[/tex][tex]\sf\pink{PEMDAS\: rule.}[/tex]
P = Parentheses
E = Exponents
M = Multiplication
D = Division
A = Addition
S = Subtraction
[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35♛}}}}}[/tex]
Using the table above. Which statement below is true?
9514 1404 393
Answer:
(d) 45% play basketball; 55% play soccer
Step-by-step explanation:
You just need a little number sense here. The total number who play sports is the number in the lower right of the table: 120.
The fraction who are males playing basketball is 42/120. Comparing that to 45/100, we see it cannot be 45%. (a) is false.
The fraction who are males is 72/120, more than half, so cannot be 40%. (b) is false.
Looking at males who play basketball, we have already determined the fraction 42/120 is well below 65%. (c) is false.
The fraction who play basketball is 54/120 = 45%. (d) is true.
At a sale, a sofa is being sold for 64% of the regular price. The sale price is $592. What is the regular price?
Answer:
925
Step-by-step explanation:
Formula =592 x 100/64 = 925
How many boxes could you stack safely on a pallet if the pallet is 5 feet deep, five feet across, every box is 1 x 1 and the maximum safe stacking height is 5 boxes? *
Answer:
25 boxes could be stacked safely on the pallet.
Step-by-step explanation:
To determine how many boxes could you stack safely on a pallet if the pallet is 5 feet deep, five feet across, every box is 1 x 1 and the maximum safe stacking height is 5 boxes, the following calculation should be performed:
Pallet = 5 x 5 = 25 square feet
Box = 1 x 1 = 1 square foot
25/1 = 25
Therefore, 25 boxes could be stacked safely on the pallet.
Which expression is equivalent to v2/3v2? 1/4 6v2 v2 v2/2
Answer:
Step-by-step explanation:
[tex]2^{1/2} - 2^{-1/3} = 2^{1/2 + 1/3} = 2^{3/6} = 2^{1/2} = \sqrt{2}[/tex]
Answer:
[tex]\sqrt[6]{2}[/tex]
Step-by-step explanation:
2 ^ 1/2 ÷ 2 ^ 1/3
We know that a^b ÷ a^ c = a^(b-c)
2 ^ (1/2 -1/3)
2^ (3/6 - 2/6)
2 ^ 1/6
[tex]\sqrt[6]{2}[/tex]
Formular for quadratic equation almighty formular
[tex]x = \frac{ - b \frac{ + }{} \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
Could you help me and answer a couple questions for me?
Answer:
I think no. D is the answer
We know that 1 1 − r = [infinity] n = 0 rn has interval of convergence (−1, 1). This means the series converges for |r| < 1. Therefore, the series f(x) = 1 2 + x = [infinity] n = 0 (−1)n xn 2n + 1 will converge when − x 2 < 1. Thus, what is the interval of convergence for f(x)? (Enter your answer using interval notation.)
Answer: hello your question is poorly written attached below is the complete question
answer :
I = ( -2, 2 )
Step-by-step explanation:
Determine the internal convergence for f(x)
given that f(x) converges at |-x/2 | < 1
I ( internal convergence for f(x) ) = ( -2, 2 )
Attached below is the detailed solution
the radius of the right circular cylinder shown below is growing at a rate of 2ft/min while it's height is shrinking at 3ft/min. At what rate is the volume of the cylinder changing, with respect to time, when the radius is 4ft and the volume is 32 ft cubed.
Answer:
The volume is decreasing at a rate of about 118.8 cubic feet per minute.
Step-by-step explanation:
Recall that the volume of a cylinder is given by:
[tex]\displaystyle V=\pi r^2h[/tex]
Take the derivative of the equation with respect to t. V, r, and h are all functions of t:
[tex]\displaystyle \frac{dV}{dt}=\pi\frac{d}{dt}\left[r^2h\right][/tex]
Use the product rule and implicitly differentiate. Hence:
[tex]\displaystyle \frac{dV}{dt}=\pi\left(2rh\frac{dr}{dt}+r^2\frac{dh}{dt}\right)[/tex]
We want to find the rate at which the volume of the cylinder is changing when the radius if 4 feet and the volume is 32 cubic feet given that the radius is growing at a rate of 2ft/min and the height is shrinking at a rate of 3ft/min.
In other words, we want to find dV/dt when r = 4, V = 32, dr/dt = 2, and dh/dt = -3.
Since V = 32 and r = 4, solve for the height:
[tex]\displaystyle \begin{aligned} V&=\pi r^2h \\32&=\pi(4)^2h\\32&=16\pi h \\h&=\frac{2}{\pi}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle\begin{aligned} \frac{dV}{dt}&=\pi\left(2rh\frac{dr}{dt}+r^2\frac{dh}{dt}\right)\\ \\ &=\pi\left(2(4)\left(\frac{2}{\pi}\right)\left(2\right)+(4)^2\left(-3\right)\right)\\\\&=\pi\left(\frac{32}{\pi}-48\right)\\&=32-48\pi\approx -118.80\frac{\text{ ft}^3}{\text{min}}\end{aligned}[/tex]
Therefore, the volume is decreasing at a rate of about 118.8 cubic feet per minute.
The sum of four consecutive odd integers is –72. Write an equation to model this situation, and find the values of the four integers.
9514 1404 393
Answer:
(x -3) +(x -1) +(x +1) +(x +3) = -72-21, -19, -17, -15Step-by-step explanation:
Let x represent the even integer between the middle two odd integers. Then the sum of the four odd integers is ...
(x -3) +(x -1) +(x +1) +(x +3) = -72
4x = -72
x = -18
The four integers are -21, -19, -17, -15.
_____
Additional comment
You could let x represent one of the integers. Often, people choose to let it represent the least of them. Then the equation becomes x +(x+2) +(x+4) +(x+6) = -72, so 4x = -84 and x = -21. This introduces a "subtract 12" step in the solution process that is unnecessary if x is chosen to be the average of the integers.
As the average, x is the sum divided by the number of them, so you know x=-72/4 = -18 immediately. Then you just have to find the nearest two odd integers below and above -18. You can do the whole problem mentally.
please help me now I need it please this is calculuse
Answer:
none of these
Step-by-step explanation:
It says I need too put 20 characters in too ask the question so ignore this part
Help!!! ASAP Please and thank you!
Answer:
1. 6 (2a-3b)
6×2a - 3b
=12a-18b
2. a(2ab+3)
a×2ab+3
=2a²b + 3a
3. (x-4)(3x)
=3x² - 12x
just kembangkan... answer my question plss..help me.
a & gb & e(2)=6(2a-3b)= 12a-18b=a(2ab+3)=2a^b+3a= (x-4) (3x)= 3x^-12x
RESUELVE USANDO LAS PROPIEDADES DE LA POTENCIA
PLISSSSSSSSS CON PROCEDIMIENTOOOOOOO
Answer:
Tenemos dos propiedades de la potencia en este caso:
Para un numero real A:
[tex]A^0 = 1[/tex]
[tex](A^n)^m = A^{n*m}[/tex]
En este caso nuestra ecuación es:
[tex][ [(\frac{0.1234}{-3.2098})^4]^3]^0[/tex]
usando la segunda propiedad, podemos reescribir como:
[tex][ [(\frac{0.1234}{-3.2098})^4]^3]^0 = (\frac{0.1234}{-3.2098})^{4*3*0} = (\frac{0.1234}{-3.2098})^0[/tex]
Y acá tenemos un numero real a la potencia 0, sabemos que esto es igual a 1, entonces:
[tex](\frac{0.1234}{-3.2098})^0 = 1[/tex]