Answer:
√65
Step-by-step explanation:
you have to use the pythagoras theorem to find x which is the hypotenuse
x²=7²+4²
x²=49+16
√x²=√65
x=√65
I hope this helps
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
If there is a 65% chance you will make a free throw, what percent of the
time you will miss? *
Given:
There is a 65% chance you will make a free throw.
To find:
The percent of the time you will miss.
Solution:
If p is the percent of success and q is the percent of failure, then
[tex]p+q=100\%[/tex]
[tex]q=100\%-p[/tex] ...(i)
It is given that there is a 65% chance you will make a free throw. It means the percent of success is 65%. We need to find the percent of the time you will miss. It means we have to find the percent of failure.
Substituting p=65% in (i), we get
[tex]q=100\%-65\%[/tex]
[tex]q=35\%[/tex]
Therefore, there is a 35% chance you will miss the free throw.
Please I need a step by step explanation ASAP.
Calculate the perimeter and area of the shape below:
Answer:
38.6 cm
Step-by-step explanation:
add all of the sides up to get your perimeter
Determine the number positive real zeros of the polynomial below. (Type answer in as a whole number)f(x)=x^5+3x^2-4x+2
Answer:
The number of positive real zeros is 2 or 0
Step-by-step explanation:
Given
[tex]f(x)=x^5+3x^2-4x+2[/tex]
Required
Number of positive real zeros
Using Descartes rule of signs;
We write out the signs in front of each term;
Sign = + + - +
Count the number of times the sign alternate; i.e. from positive to negative and from negative to positive
From positive to negative, we have: 1 (i.e. + - )
From negative to positive, we have: 1 (i.e. - +)
Add up the count
[tex]count = 1+1[/tex]
[tex]count = 2[/tex]
Hence, the number of positive real zeros is 2 or 0
A solid oblique pyramid has a square base with edges measuring x cm. The height of the pyramid is (x + 2) cm.
A solid oblique pyramid has a square base with edges measuring x centimeters. The height is (x + 2) centimeters.
Which expression represents the volume of the pyramid?
StartFraction x cubed + 2 x squared Over 3 EndFraction cm3
StartFraction x squared + 2 x squared Over 2 EndFraction cm3
StartFraction x cubed Over 3 EndFraction cm3
StartFraction x cubed + 2 x squared Over 2 EndFraction cm3
Answer:
Hello,
Answer A StartFraction x cubed + 2 x squared Over 3 EndFraction cm3
Step-by-step explanation:
[tex]V=x^2*\dfrac{x+2}{3} \\\\\boxed{V=\dfrac{x^3+2x^2}{3} }\\[/tex]
the third of the sum of the cube of x and double of the square of x ( cm³)
The Volume of pyramid with a square base of side x cm and height of (x + 2) cm is (x³ + 2x²) / 3
What is volume?
Volume is the amount of space occupied by a three dimensional shape or object.
Area of the square base = x * x = x² cm²
Volume of pyramid = (1/3) * area of base * height = (1/3) * x² * (x + 2)
Volume of pyramid = (x³ + 2x²) / 3
The Volume of pyramid with a square base of side x cm and height of (x + 2) cm is (x³ + 2x²) / 3
Find out more on volume at: https://brainly.com/question/12410983
For a standard normal distribution, find:
P(z > -1.6)
Express the probability as a decimal rounded to 4 decimal places.
Answer:
P(z > -1.76) = 1 - P(z < -1.76) = 1 - 0.0392 = 0.960
f(x) = 2x2 + 4x - 5
g(x) = 6x3 – 2x2 + 3
Find (f + g)(x).
Answer:
4x-5=4x-5
(f+g) (x)=6x³+3Step-by-step explanation:
Assume that in the absence of immigration and emigration, the growth of a country's population P(t) satisfies dP/dt = kP for some constant k > 0.
a. Determine a differential equation governing the growing population P(t) of the country when individuals are allowed to immigrate into the country at a constant rate r > 0.
b. What is the differential equation for the population P(t) of the country when individuals are allowed to emigrate at a constant rate r > 0?
Answer:
[tex](a)\ \frac{dP}{dt} = kP + r[/tex]
[tex](b)\ \frac{dP}{dt} = kP - r[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = kP[/tex]
Solving (a): Differential equation for immigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt + r \cdot dt[/tex] --- i.e. the population will increase with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP + r[/tex]
Solving (b): Differential equation for emigration where [tex]r > 0[/tex]
We have:
[tex]\frac{dP}{dt} = kP[/tex]
Make dP the subject
[tex]dP =kP \cdot dt[/tex]
From the question, we understand that: [tex]r > 0[/tex]. This means that
[tex]dP =kP \cdot dt - r \cdot dt[/tex] --- i.e. the population will decrease with time
Divide both sides by dt
[tex]\frac{dP}{dt} = kP - r[/tex]
What is the common difference in this sequence: 3, 11, 19, 27,35?
1
ОА.1/8
O B. 3
O C. 8
O D. 12
Answer:
8
Step-by-step explanation:
To determine the common difference, take the second term and subtract the first term
11-3 = 8
Check with the other terms in the sequence
19-11= 8
27-19 = 8
35-27=8
The common difference is 8
Answer:
C. 8
Step-by-step explanation:
There is a common difference between them and that’s 8.
3 + 8 = 11
11 + 8 = 19
19 + 8 = 27
27 + 8 = 35
Which of the following rational functions is graphed below?
Answer:
D. F(x) = [tex]\frac{1}{(x+4)}^{2}[/tex]
Select the correct answer.
Simplify the following expression. Classify the resulting polynomial.
3x(x − 3) + (2x + 6)(-x − 3)
quadratic monomial
quadratic binomial
quadratic trinomial
linear binomial
Answer:
quadratic trinomial
Step-by-step explanation:
3x(x − 3) + (2x + 6)(-x − 3)
Distribute
3x^2 -9x + (2x + 6)(-x − 3)
FOIL
3x^2 -9x + -2x^2 -6x -6x -18
Combine like terms
x^2-21x-18
This has 3 terms so it is a trinomial
The highest power of x is 2 so it is quadratic
9514 1404 393
Answer:
x² -21x -18quadratic trinomialStep-by-step explanation:
Eliminating parentheses, we get ...
= (3x)(x) -(3x)(3) +(2x)(-x -3) +6(-x -3)
= 3x² -9x +(2x)(-x) +(2x)(-3) +(6)(-x) +(6)(-3)
= 3x² -9x -2x² -6x -6x -18
= x²(3 -2) +x(-9-6-6) -18
= x² -21x -18
The highest power is 2, so this is a quadratic.
There are 3 terms, so this is a trinomial.
Rubin grew 9 tomatoes with 6 seed packs. How many seed packs does Rubin need to have a total of 21 tomatoes in his garden?
Answer: 14 seed packs
Step-by-step explanation:
You'd divide the 9 tomatoes by the 6 seed packs that were necessary to grow them, resulting in 1.5 tomatoes per seed pack. Divide 21 by this 1.5 to find the number of seed packs needed to grow 21 tomatoes, which would be 14.
al calls every 3 days, lee every 4 days, and pat every 6 day. Once every ? days, all three will call on the same day
Answer:
12
Step-by-step explanation:
Find the LCM (Least Common Multiple) of the three numbers.
We could multiply 3 x 4 x 6 to get 72, but there is a smaller multiple, 12.
6 x 2 = 12
4 x 3 = 12
3 x 4 = 12
Hope this helps!
Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by
The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is
[tex]\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt[/tex]
In this case, we have
x(t) = exp(t ) + exp(-t ) ==> dx/dt = exp(t ) - exp(-t )
y(t) = 5 - 2t ==> dy/dt = -2
and [a, b] = [0, 2]. The length of the curve is then
[tex]\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt[/tex]
[tex]=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}[/tex]
The exact length of the curve when the parametric equations are x = f(t) and y = g(t) is given below.
[tex]e^2 -\dfrac{1}{e^2 }[/tex]
What is integration?It is the reverse of differentiation.
The parametric equations are given below.
[tex]\rm x=e^t+e^{-t}, \ \ 0\leq t\leq 2\\\\y=5-2t, \ \ \ \ \ 0\leq t\leq 2[/tex]
Then the arc length of the curve will be given as
[tex]\int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}[/tex]
Then we have
[tex]\rm \dfrac{dx}{dt} = e^t-e^{-t}\\\\ \dfrac{dy}{dt} = -2[/tex]
Then
[tex]\rightarrow \int _0^2 \sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dx})^2}\ \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t-e^{-t})^2 + (-2)^2} \ dt\\\\\rightarrow \int _0^2 \sqrt{(e^t+e^{-t})^2} \ dt\\\\\rightarrow \int _0^2 (e^t+e^{-t}) \ dt\\\\\rightarrow (e^2-e^{-2}) \\\\\rightarrow e^2 - \dfrac{1}{e^2}[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211
HELP PLZ<3
An international company has 28,300 employees in one country. If this represents 34.1% of the company's employees, how many employees does it have in
total?
Round your answer to the nearest whole number.
Answer:
82991 employees
Step-by-step explanation:
One way to solve this would be to solve for 1% of the company's employees and use that value to solve for 100% (100%=the whole part, or the total). We know that
28300 = 34.1%
If we divide a number by itself, it turns into 1. Dividing both sides by 34.1, we get
829.912 = 1%
Then, we know that anything multiplied by 1 is equal to itself. We want to figure out 100%, or the whole part, so we can multiply both sides by 100 to get
100% = 82991
Mikita is painting a spherical model of a human cell for a science fair. She uses 452.16 square inches of paint to evenly cover the outside of the cell with one coat of paint. What is the diameter of the cell model? (Use 3.14 for the value of π.)
6 in.
12 in.
24 in.
36 in.
Answer:
12
Step-by-step explanation:
Basically you have to divide 3.14 by 452.16 (the formula for area of circle is pi times r squared) and that will get you 144. The square root of 144 is 12 :)
WILL MAKE BRAINLIEST
Answer:
x=3
Step-by-step explanation:
The ratios need to be the same
AB CB
---------- = ----------
AD ED
3 x
----- = ---------
3+9 12
3 x
----- = ---------
12 12
X must equal 3
How many subsets will the sets have? {sheep that have eight legs }
Answer:
256
Step-by-step explanation:
How to find subsets = 2 raise the power n.
N=number of elements in a set.
=2raise the power 8 which is 256.
Determine if the triangles are similar. If they are, state the theorem.
9514 1404 393
Answer:
ΔGHF ~ ΔMLF by AA theorem
Step-by-step explanation:
Answer this please~!!!!
Answer:
12
Step-by-step explanation:
113.04=3.14 x 3^2 x h/3
Use the information below to complete the problem: p(x) = (1)/(x + 1)
and q(x) = (1)/(x - 1)
Perform the operation and show that it results in another rational expression.
p(x) - q(x)
Given:
The functions are:
[tex]p(x)=\dfrac{1}{x+1}[/tex]
[tex]q(x)=\dfrac{1}{x-1}[/tex]
To find:
The rational expression for [tex]p(x)-q(x)[/tex].
Solution:
We have,
[tex]p(x)=\dfrac{1}{x+1}[/tex]
[tex]q(x)=\dfrac{1}{x-1}[/tex]
Now,
[tex]p(x)-q(x)=\dfrac{1}{x+1}-\dfrac{1}{x-1}[/tex]
[tex]p(x)-q(x)=\dfrac{(x-1)-(x+1)}{(x+1)(x-1)}[/tex]
[tex]p(x)-q(x)=\dfrac{x-1-x-1}{x^2-1^2}[/tex] [tex][\because a^2-b^2=(a-b)(a+b)][/tex]
[tex]p(x)-q(x)=\dfrac{-2}{x^2-1}[/tex]
Therefore, the required rational expression for [tex]p(x)-q(x)[/tex] is [tex]\dfrac{-2}{x^2-1}[/tex].
compound interest on a sum of money for 2 years compounded annually is Rs 8034 simple interest on the same sum for the same period and at the same rate is Rs 7800 find the sum and the rate of interest
Here, we want to find the interest rate and principal
The interest rate, r = 6% and the principal, P = Rs 65,000
Compound interest:
A = P(1 + r/n)^t
Simple interest :
I = P * r * t
Simple interest for 2 years = Rs 7800
Simple interest for 1 year = Rs 7800 / 2
= Rs 3900
Compound interest for 2 years = Rs 8034
Compound interest for the second year = Rs 8034 - Rs 3900
= Rs 4134
Interest on Rs 3900 = Rs 4134 - Rs 3900
= Rs 234
Therefore,
Interest rate, r = 234/3900 × 100
= 0.06 × 100
r = 6%
Recall,
Simple interest :
I = P * r * t
Then,
P = I / r * t
= 3900 / 6% * 1
= 3900 / 0.06
= 65,000
P = Rs 65,000
https://brainly.in/question/1489411
Find x on this triangle
Answer:
3 sqrt(3) =x
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj / hyp
cos 30 = x/6
6 cos 30 = x
6 ( sqrt(3)/2) = x
3 sqrt(3) =x
In the picture the exponent says 5/3
Answer:
the answer is B
Step-by-step explanation:
[tex] {{ (- 2)}^{3}}^{5 \div 3} = { ( - 2)}^{5} = - 32[/tex]
write -8 form of 2 on up and complete other steps
If you make $11.25/hour, how many hours will you need to work to earn $416.25? Please explain how you figured this out.
Answer:
37 hours.
Step-by-step explanation:
Since you need $416.25 start with that. Then divide by $11.25 to see how many hours you need to work. 416.25 divided by 11.25 is 37.
Is 1 2/6 a rational number?
Answer:
Yes, it is rational number.
Step-by-step explanation:
A rational number is any integer, fraction, terminating decimal, or repeating decimal.
Hope it is helpful.....Help please:))
2. When shipping ice cream, melting is understandably a big concern. You will notice that ice cream is not generally packaged in a cube-shaped container. A standard container of ice cream contains 1 L, or 1000 cm3 of ice cream,
a. What would be the optimal dimensions (radius and height) to minimize surface area?
b. What would the surface area be?
C. Suggest at least two reasons why this is different from the ice cream packaging that you see in the stores.
Answer:
a) Because this asks about the radius and height, I assume that we are talking about a cylinder shape.
Remember that for a cylinder of radius R and height H the volume is:
V = pi*R^2*H
And the surface will be:
S = 2*pi*R*H + pi*R^2
where pi = 3.14
Here we know that the volume is 1000cm^3, then:
1000cm^3 = pi*R^2*H
We can rewrite this as:
(1000cm^3)/pi = R^2*H
Now we can isolate H to get:
H = (1000cm^3)/(pi*R^2)
Replacing that in the surface equation, we get:
S = 2*pi*R*H + pi*R^2
S = 2*pi*R*(1000cm^3)/(pi*R^2) + pi*R^2
S = 2*(1000cm^3)/R + pi*R^2
So we want to minimize this.
Then we need to find the zeros of S'
S' = dS/dR = -(2000cm^3)/R^2 + 2*pi*R = 0
So we want to find R such that:
2*pi*R = (2000cm^3)/R^2
2*pi*R^3 = 2000cm^3
R^3 = (2000cm^3/2*3.14)
R = ∛(2000cm^3/2*3.14) = 6.83 cm
The radius that minimizes the surface is R = 6.83 cm
With the equation:
H = (1000cm^3)/(pi*R^2)
We can find the height:
H = (1000cm^3)/(3.14*(6.83 cm)^2) = 6.83 cm
(so the height is equal to the radius)
b) The surface equation is:
S = 2*pi*R*H + pi*R^2
replacing the values of H and R we get:
S = 2*3.14*(6.83 cm)*(6.83 cm) + 3.14*(6.83 cm)^2 = 439.43 cm^2
c) Because if we pack cylinders, there is a lot of space between the cylinders, so when you store it, there will be a lot of space that is not used and that can't be used for other things.
Similarly for transport problems, for that dead space, you would need more trucks to transport your ice cream packages.
Ophelia is making homemade spaghetti sauce by combining 48 oz of tomato paste with 6 cups of water.how many ounces of tomatoes paste are needed for every cup of water show your work.
Answer:
8 ounces of tomato paste for each cup of water.
Step-by-step explanation:
Just divide 48 / 6 to get 8 oz of tomato paste per cup of water.
Hope this helps!
Work Shown:
48 oz of tomato paste = 6 cups of water
48/6 oz of tomato paste = 6/6 cups of water
8 oz of tomato paste = 1 cup of water
In short, we divide both values by 6 so that the "6 cups" becomes "1 cup". We can say the unit rate is 8 oz of tomato paste per cup of water.
wrote the terms below.
–8, –4, 0, 4, 8, 12
What do these terms represent?
an arithmetic series
an arithmetic sequence
a geometric series
a geometric sequence
Answer:
an arithmetic sequence
Step-by-step explanation:
an arithmetic series is wrong also heres an example i found of an arithmetic sequence
The terms in the given sequence represents an arithmetic sequence.
What is Arithmetic Sequence?Arithmetic sequence is a sequence of numbers where the numbers are arranged ion a definite order such that the difference of two consecutive numbers is a constant. This constant of difference is called common difference which is commonly denoted by the letter 'd'.
Given sequence of numbers is,
-8, -4, 0, 4, 8, 12, ......
We have to find which sequence does it represent.
This is not a series since they are not represented as the sum.
If the sequence is a geometric sequence, then the ratio of consecutive numbers will be same.
If it is arithmetic sequence, then the difference of consecutive numbers will be same.
Here, ratio is not same.
Difference are same.
-4 - -8 = 4, 0 - -4 = 4, 4 - 0 = 4, 8 - 4 = 4, ........
Common difference is 4.
Hence it is an arithmetic sequence.
Learn more about arithmetic Sequence here :
https://brainly.com/question/15412619
#SPJ3
Given the exchange rate as K1: HK$1.353, calculate Hong Kong dollar equivalent of K70
Answer:
The Hong Kong dollar equivalent of K70 is HK $ 94.71.
Step-by-step explanation:
Given the exchange rate as K1: HK $ 1,353, to calculate Hong Kong dollar equivalent of K70 the following calculation must be performed:
1,353 x 70 = X
94.71 = X
Therefore, the Hong Kong dollar equivalent of K70 is HK $ 94.71.