Find the missing side or angle.
Round to the nearest tenth.

Find The Missing Side Or Angle.Round To The Nearest Tenth.

Answers

Answer 1

Answer:

65.8

Step-by-step explanation:

Use the sin formula

100/sin (28) = x/ sin (18)

(sin (18) (100))/ sin (28) = x

x = 65.8223

x = 65.8

Answer 2

Answer:

65.8

Step-by-step explanation:

Accellus Correct


Related Questions

For a closed rectangular box, with a square base x by x cm and height h cm, find the dimensions giving the minimum surface area, given that the volume is 18 cm3.

Answers

Answer:

∛18 * ∛18 * 18/(∛18)²

Step-by-step explanation:

Let the surface area of the box be expressed as S = 2(LB+BH+LH) where

L is the length of the box = x

B is the breadth of the box = x

H is the height of the box = h

Substituting this variables into the formula, we will have;

S = 2(x(x)+xh+xh)

S = 2x²+2xh+2xh

S = 2x² + 4xh and the Volume V = x²h

If V = x²h; h = V/x²

Substituting h = V/x² into the surface area will give;

S = 2x² + 4x(V/x²)

Since the volume V = 18cm³

S = 2x² + 4x(18/x²)

S =  2x² + 72/x

Differentiating the function with respect to x to get the minimal point, we will have;

dS/dx = 4x - 72/x²

at dS/dx = 0

4x - 72/x² = 0

- 72/x² = -4x

72 = 4x³

x³ = 72/4

x³  = 18

[tex]x = \sqrt[3]{18}[/tex]

Critical point is at [tex]x = \sqrt[3]{18}[/tex]

If x²h = 18

(∛18)²h =18

h = 18/(∛18)²

Hence the dimension is  ∛18 * ∛18 * 18/(∛18)²

The Venn diagram shows 3 type numbers odd even in prime

Answers

what are the numbers

If 5x + 2 =12x- 5, then x = ?

Answers

Answer:

x = 1

Step-by-step explanation:

First, move all the variables to one side by subtracting 5x on both sides:

5x + 2 = 12x - 5

2 = 7x - 5

Add 5 to both sides:

7 = 7x

1 = x

Answer:

x=1

Step-by-step explanation:

5x + 2 =12x- 5

Subtract 5x from each side

5x-5x + 2 =12x-5x- 5

2 = 7x-5

Add 5 to each side

2+5 = 7x-5+5

7 = 7x

Divide each side by 7

7/7 = 7x/7

1 =x

2,17,82,257,626,1297 next one please ?​

Answers

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule [tex]n^4+1[/tex]. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the n-th term in this sequence by [tex]a_n[/tex], and denote the given sequence by [tex]\{a_n\}_{n\ge1}[/tex].

Let [tex]b_n[/tex] denote the n-th term in the sequence of forward differences of [tex]\{a_n\}[/tex], defined by

[tex]b_n=a_{n+1}-a_n[/tex]

for n ≥ 1. That is, [tex]\{b_n\}[/tex] is the sequence with

[tex]b_1=a_2-a_1=17-2=15[/tex]

[tex]b_2=a_3-a_2=82-17=65[/tex]

[tex]b_3=a_4-a_3=175[/tex]

[tex]b_4=a_5-a_4=369[/tex]

[tex]b_5=a_6-a_5=671[/tex]

and so on.

Next, let [tex]c_n[/tex] denote the n-th term of the differences of [tex]\{b_n\}[/tex], i.e. for n ≥ 1,

[tex]c_n=b_{n+1}-b_n[/tex]

so that

[tex]c_1=b_2-b_1=65-15=50[/tex]

[tex]c_2=110[/tex]

[tex]c_3=194[/tex]

[tex]c_4=302[/tex]

etc.

Again: let [tex]d_n[/tex] denote the n-th difference of [tex]\{c_n\}[/tex]:

[tex]d_n=c_{n+1}-c_n[/tex]

[tex]d_1=c_2-c_1=60[/tex]

[tex]d_2=84[/tex]

[tex]d_3=108[/tex]

etc.

One more time: let [tex]e_n[/tex] denote the n-th difference of [tex]\{d_n\}[/tex]:

[tex]e_n=d_{n+1}-d_n[/tex]

[tex]e_1=d_2-d_1=24[/tex]

[tex]e_2=24[/tex]

etc.

The fact that these last differences are constant is a good sign that [tex]e_n=24[/tex] for all n ≥ 1. Assuming this, we would see that [tex]\{d_n\}[/tex] is an arithmetic sequence given recursively by

[tex]\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}[/tex]

and we can easily find the explicit rule:

[tex]d_2=d_1+24[/tex]

[tex]d_3=d_2+24=d_1+24\cdot2[/tex]

[tex]d_4=d_3+24=d_1+24\cdot3[/tex]

and so on, up to

[tex]d_n=d_1+24(n-1)[/tex]

[tex]d_n=24n+36[/tex]

Use the same strategy to find a closed form for [tex]\{c_n\}[/tex], then for [tex]\{b_n\}[/tex], and finally [tex]\{a_n\}[/tex].

[tex]\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}[/tex]

[tex]c_2=c_1+24\cdot1+36[/tex]

[tex]c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2[/tex]

[tex]c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3[/tex]

and so on, up to

[tex]c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)[/tex]

Recall the formula for the sum of consecutive integers:

[tex]1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2[/tex]

[tex]\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)[/tex]

[tex]\implies c_n=12n^2+24n+14[/tex]

[tex]\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}[/tex]

[tex]b_2=b_1+12\cdot1^2+24\cdot1+14[/tex]

[tex]b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2[/tex]

[tex]b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3[/tex]

and so on, up to

[tex]b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)[/tex]

Recall the formula for the sum of squares of consecutive integers:

[tex]1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6[/tex]

[tex]\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)[/tex]

[tex]\implies b_n=4n^3+6n^2+4n+1[/tex]

[tex]\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}[/tex]

[tex]a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1[/tex]

[tex]a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2[/tex]

[tex]a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3[/tex]

[tex]\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1[/tex]

[tex]\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4[/tex]

[tex]\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)[/tex]

[tex]\implies a_n=n^4+1[/tex]

If (x - 2) and (x + 1) are factors of
x + px? + qx + 1, what is the sum of p and q?

Answers

Answer:

p + q = -3

Step-by-step explanation:

First we need to take the original equation, and factor it to a form that's easier to get two binomial factors from (i.e., let's get a quadratic):

x^3 + px^2 + qx + 1

= x (x^2 + px + q) + 1

Now that we have factored out the x, we have a quadratic trinomial which we know can be broken down into two linear binomials.  The problem gives us two linear binomials, so let's take a look.

(x - 2) (x + 1) = (x^2 + px + q)

x^2 - 2x + x -2 = x^2 + px + q

Now let's solve.

x^2 - x - 2 = x^2 + px + q

-x - 2 = px + q

From here, we can easily see that p = -1 (the coefficient of x) and q = -2.

Hence, p + q = -1 + -2 = -3.

Cheers.

Factor.
x2 – 5x - 36

(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)

Answers

Answer:

The answer is option A

Step-by-step explanation:

x² - 5x - 36

To factor the expression rewrite -5x as a difference

That's

x² + 4x - 9x - 36

Factor out x from the expression

x( x + 4) - 9x - 36

Factor out -9 from the expression

x( x + 4) - 9( x+ 4)

Factor out x + 4 from the expression

The final answer is

( x - 9)( x + 4)

Hope this helps you

Answer:

[tex] \boxed{(x - 9) \: (x + 4) }[/tex]

Option A is the correct option.-

Step-by-step explanation:

( See the attached picture )

Hope I helped!

Best regards!

A recent national survey found that high school students watched an average (mean) of 7.1 movies per month with a population standard deviation of 1.0. The distribution of number of movies watched per month follows the normal distribution. A random sample of 33 college students revealed that the mean number of movies watched last month was 6.2. At the 0.05 significance level, can we conclude that college students watch fewer movies a month than high school students? State the null hypothesis and the alternate hypothesis.

Answers

Answer:

H0: μc ≤ μs    Ha :μc > μs    

Step-by-step explanation:

The null and alternate hypotheses can be stated as

H0: μc ≤ μs    Ha :μc > μs    one tailed test

Where

μc =  Mean of college students watching movies in a month

μs  =  Mean of school students watching movies in a month

For one tailed test of α =0.05   the value of Z= ± 1.645

The critical region will be Z >  ± 1.645

It is of importance to note that by rejecting the null hypothesis and accepting the alternate hypothesis we are automatically rejecting all values of mean that are greater than 7.1

Given the trinomial, what is the value of the coefficient B in the factored form?
2x2 + 4xy − 48y2 = 2(x + By)(x − 4y)

Answers

Answer:

B = 6

Step-by-step explanation:

2x^2 + 4xy − 48y^2

Factor out 2

2(x^2 + 2xy − 24y^2)

What 2 numbers multiply to -24 and add to 2

-4 *6 = -24

-4+6 = 2

2 ( x+6y)( x-4y)

Answer:

[tex]\huge\boxed{B=6}[/tex]

Step-by-step explanation:

They are two way to solution.

METHOD 1:

Factor the polynomial on the left side of the equation:

[tex]2x^2+4xy-48y^2=2(x^2+2xy-24y^2)=2(x^2+6xy-4xy-24y^2)\\\\=2\bigg(x(x+6y)-4y(x+6y)\bigg)=2(x+6y)(x-4y)[/tex]

Therefore:

[tex]2x^2+4xy-48y^2=2(x+By)(x-4y)\\\Downarrow\\2(x+6y)(x-4y)=2(x+By)(x-4y)\to\boxed{\bold{B=6}}[/tex]

METHOD 2:

Multiply everything on the right side of the equation using the distributive property and FOIL:

[tex]2(x+By)(x-4y)=\bigg((2)(x)+(2)(By)\bigg)(x-4y)\\\\=(2x+2By)(x-4y)=(2x)(x)+(2x)(-4y)+(2By)(x)+(2By)(-4y)\\\\=2x^2-8xy+2Bxy-8By^2=2x^2+(2B-8)xy-8By^2[/tex]

Compare polynomials:

[tex]2x^2+4xy-48y^2=2x^2+(2B-8)xy-8By^2[/tex]

From here we have two equations:

[tex]2B-8=4\ \text{and}\ -8B=-48[/tex]

[tex]1)\\2B-8=4[/tex]        add 8 to both sides

[tex]2B=12[/tex]         divide both sides by 2

[tex]B=6[/tex]

[tex]2)\\-8B=-48[/tex]          divide both sides by (-8)

[tex]B=6[/tex]

The results are the same. Therefore B = 6.

Which of the following is an example of closure? (1 point)
The equation 5 - 5 = 0 is an example of the natural numbers being closed under subtraction
The equation 1.5 +1.6 = 3.1 is an example of the rational numbers being closed under addition
The equation 4 - 6 = -2 is an example of the whole numbers being closed under subtraction
The equation 1+0= 1 is an example of the natural numbers being closed under addition

Answers

Answer:

The equation 1+0=1

Step-by-step explanation:

Other options are not eligible because

1 option -Natural numbers cannot be closed under subtraction

2 option-The equation is not having proper rational numbers, they are decimals

3 option-Whole numbers cannot be closed under subtraction

Thank you!

Given the following diagram, find the required measures. Given: l | | m m 1 = 120° m 3 = 40° m 2 = 20 60 120

Answers

Step-by-step explanation:

your required answer is 60°.

Hello,

Here, in the figure;

angle 1= 120°

To find : m. of angle 2.

now,

angle 1 + angle 2= 180° { being linear pair}

or, 120° +angle 2 = 180°

or, angle 2= 180°-120°

Therefore, the measure of angle 2 is 60°.

Hope it helps you.....

Which table represents the same linear relationship as the equation y=2x•6? (answers are in the image) Please include ALL work!

Answers

Answer:

Table in option C represents the linear relationship as the equation, [tex] y = 2x + 6 [/tex]

Step-by-step explanation:

The equation given seems to be wrong. The equation should be [tex] y = 2x + 6 [/tex], because, taking a look at the tables given, the table in option C is the only table that has values that conforms to the equation, [tex] y = 2x + 6 [/tex].

In table C, when x = 2 using the equation, [tex] y = 2x + 6 [/tex], thus,

[tex] y = 2(2) + 6 = 4 + 6 = 10 [/tex].

When x = 3,

[tex] y = 2(3) + 6 = 6 + 6 = 12. [/tex]

Theredore, the equation, [tex] y = 2x + 6 [/tex], represents the relationship between the X and y variables in the table in option C.

Please answer this correctly without making mistakes

Answers

Answer:

The answer is 68 6/11

Step-by-step explanation:

If you enter the number into a calculator it shows you the exact decimal, therefore you can identify the answer.

Answer:

It is 68 6/11

Step-by-step explanation:

First I made all of the improper fractions into whole numbers and fractions and just saw which one was in the middle .

PLZ HELPPPPPP. 25 POINTS.

A store sells books for $12 each. In the proportional relationship between x, the number of books purchased, and y, the cost per books in dollars" to "y, the total cost of the books in dollars, the constant of proportionality is 12. Which equation shows the relationship between x and y?

A. y=12/x

B. y=12x

C. y=12+x

D. y=12−x

Answers

Answer:

b

Step-by-step explanation:

because its right dummy

Prove that the statement (ab)^n=a^n * b^n is true using mathematical induction.

Answers

Answer:

see below

Step-by-step explanation:

      (ab)^n=a^n * b^n

We need to show that it is true for n=1

assuming that it is true for n = k;

(ab)^n=a^n * b^n

( ab) ^1 = a^1 * b^1

ab = a * b

ab = ab

Then we need to show that it is true for n = ( k+1)

or (ab)^(k+1)=a^( k+1) * b^( k+1)

Starting with

  (ab)^k=a^k * b^k    given

Multiply each side by ab

ab *  (ab)^k= ab *a^k * b^k

   ( ab) ^ ( k+1) = a^ ( k+1) b^ (k+1)

Therefore, the rule is true for every natural number n

Hello, n being an integer, we need to prove that one statement depending on n is true, let's note it S(n).

The mathematical induction involves two steps:

Step 1 - We need to prove S(1), meaning that the statement is true for n = 1

Step 2 - for k integer > 1, we assume S(k) and we need to prove that S(k+1) is true.

Imagine that you are a painter and you need to paint all the trees on one side of a road. You have several colours that you can use but you are asked to follow two rules:

Rule 1 - You need to paint the first tree in white.

Rule 2 - If one tree is white you have to paint the next one in white too.

What colour do you think all the trees will be painted?

Do you see why this is very important to prove the two steps as well ?

Let's do it in this example.

Step 1 - for n = 1, let's prove that S(1) is true, meaning  [tex](ab)^1=a\cdot b =a^1\cdot b^1[/tex]

So the statement is true for n = 1

Step 2 - Let's assume that this is true for k, and we have to prove that this is true for k+1

So we assume S(k), meaning that [tex](ab)^k=a^k\cdot b^k[/tex]

and what about S(k+1), meaning [tex](ab)^{k+1}=a^{k+1}\cdot b^{k+1}[/tex] ?

We will use the fact that this is true for k,

[tex](ab)^{k+1}=(ab)\cdot (ab)^k =(ab) \cdot a^k \cdot b^k[/tex]

We can write it because the statement at k is true and then we can conclude.

[tex](ab)^{k+1}=(ab)\cdot (ab)^k =(ab) \cdot a^k \cdot b^k=a^{k+1}\cdot b^{k+1}[/tex]

In conclusion, we have just proved that S(n) is true for any n integer greater or equal to 1, meaning [tex](ab)^{n}=a^{n}\cdot b^{n}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

A random sample of 35 undergraduate students who completed two years of college were asked to take a basic mathematics test. The mean and standard deviation of their scores were 75.1 and 12.8, respectively. In a random sample of 50 students who only completed high school, the mean and standard deviation of the test scores were 72.1 and 14.6, respectively In order to test the equal variance assumption for two populations, Can we assume population variances are equal at the 10% significance level? (sigma subscript 1 superscript 2 space equals space sigma subscript 2 superscript 2 )

Answers

Answer:

The 90 % confidence limits are (-2.09, 8.09).

Since the calculated values do not lie in the critical region we accept our null hypothesis.

Step-by-step explanation:

The null and alternative hypothesis are given by

H0: σ₁²= σ₂² against Ha: σ₁² ≠ σ₂²

Confidence interval for the population mean difference is given by

(x`1- x`2) ± t √S²(1/n1 + 1/n2)

Where S ²= (n1-1)S₁² + S²₂(n2-1)/n1+n2-2

Critical value of t with n1+n2-2= 50+ 35-2= 83 will be -1.633

Now calculating

S ²=34* (12.8)²+ (14.6)²*49/83= 192.96

Now putting the values in the t- test

(75.1 -72.1) ± 1.633 √ 192.96(1/35 +1/50)

=3 ±  5.09

=-2.09, 8.09  is the 90 % confidence interval for the difference

The 90 % confidence limits are (-2.09, 8.09).

Since the calculated values do not lie in the critical region we accept our null hypothesis.

Two brothers, Tom and Allen, each inherit $39000. Tom invests his inheritance in a savings account with an annual return of 2.9%, while Allen invests his inheritance in a CD paying 5.7% annually. How much more money than Tom does Allen have after 1 year?

Answers

Answer:

Tom:

initial money = $ 39000

% increased per annum = 2.9%

money gained per annum = 39000 * 2.9/100 = $1131

Allen:

initial money = $ 39000

% increased per annum = 5.7 %

money gained per annum = 39000 * 5.7/100 = $2223

Allen has $ (2223 - 1131) = $ 1192 more than Tom

Is the following relation a function? (1 point) x y −1 −2 2 3 3 1 6 −2 No Yes

Answers

Answer:

Yes because no same x-value resulted in different y-values.

Answer:

Yes

Step-by-step explanation:

A set of 9 numbers {3, 3, 4, 5, 5, 5, 6, 7, 7} has a mean of 5. Another number is added to the set, and the mean becomes 6. What number is added to the set?

Answers

Answer:

15

Step-by-step explanation:

3 + 3+ 4+ 5+ 5+ 5+ 6+ 7+ 7=45

You would then divide that my 9(the amount of numbers) to get three

(3 + 3+ 4+ 5+ 5+ 5+ 6+ 7+ 7)/9

=3

If you are adding a number the numbers would be

3 + 3+ 4+ 5+ 5+ 5+ 6+ 7+ 7+?/10

Its ten because now you would have 10 numbers.

You know it equals 6, so you ask yourself: What divided by 10 would give you 6 or this equation:

( 3 + 3+ 4+ 5+ 5+ 5+ 6+ 7+ 7+?)/10=6

(45+?)/10=6

multiply both sides of the equal sign by 10

10(45+?)/10=6*10

The 10 on the bottom of the left side cancels out.

(45+?)=60

Subtract 15 from both sides of the equal sign

45+?-45=60-45

?=15

Solve the following system of equations.
2x + y = 3
x = 2y-1
ANSWER: ______

plz help me ​

Answers

(1,1) is your answer.

Work is shown below.

Any questions? Feel free to ask.

Answer: (1,1)

Step-by-step explanation:

2. Find the value of the expression 21 – 2a if a = 3.
O A. 15
O B. 57
O C. 27
O D. 16

Answers

Answer:

A

Step-by-step explanation:

we just substitute the value of "a" given in the above expression we get

21-2(3)

21-6=15

Answer:

a. 15

Explanation:

Step 1 - Input the value of 'a' in the expression.

21 - 2a

21 - 2(3)

Step 2 - Multiply two and three

21 - 2(3)

21 - 6

Step 3 - Subtract six from twenty one

21 - 6

15

Therefore, the value of the expression 21 - 2a if a = 3 is a. 15.

WILL GIVE BRAINLYEST AND 30 POINTS Which of the followeing can be qritten as a fraction of integers? CHECK ALL THAT APPLY 25 square root of 14 -1.25 square root 16 pi 0.6

Answers

Answer:

25 CAN be written as a fraction.

=> 250/10 = 25

Square root of 14 is 3.74165738677

It is NOT POSSIBLE TO WRITE THIS FULL NUMBER AS A FRACTION,  but if we simplify the decimal like: 3.74, THEN WE CAN WRITE THIS AS A FRACTION

=> 374/100

-1.25 CAN be written as a fraction.

=> -5/4 = -1.25

Square root of 16 CAN also be written as a fraction.

=> sqr root of 16 = 4.

4 can be written as a fraction.

=> 4 = 8/2

Pi = 3.14.........

It is NOT POSSIBLE TO WRITE THE FULL 'PI' AS A FRACTION, but if we simplify 'pi' to just 3.14, THEN WE CAN WRITE IT AS A FRACTION

=> 314/100

.6 CAN be written as a fraction.

=> 6/10 = .6

a Find the amount compounded annually on Rs 25,000 for 2 years if the rates of
interest for two years ore 10 % and 12 % respectively,​

Answers

Answer:

Amount = Rs. 30250 when Rate = 10%

Amount = Rs. 31360 when Rate = 12%

Step-by-step explanation:

Given

[tex]Principal, P = Rs.\ 25,000[/tex]

[tex]Time, t = 2\ years[/tex]

[tex]Rate; R_1 = 10\%[/tex]

[tex]Rate; R_2 = 12\%[/tex]

Number of times (n) = Annually

[tex]n = 1[/tex]

Required

Determine the Amount for both Rates

Amount (A) is calculated by:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

When Rate = 10%, we have:

Substitute 25,000 for P; 2 for t; 1 for n and 10% for r

[tex]A = 25000 * (1 + \frac{10\%}{1})^{1 * 2}[/tex]

[tex]A = 25000 * (1 + \frac{10\%}{1})^{2}[/tex]

[tex]A = 25000 * (1 + 10\%)^{2}[/tex]

Convert 10% to decimal

[tex]A = 25000 * (1 + 0.10)^{2}[/tex]

[tex]A = 25000 * (1.10)^{2}[/tex]

[tex]A = 25000 * 1.21[/tex]

[tex]A = 30250[/tex]

Hence;

Amount = Rs. 30250 when Rate = 10%

When Rate = 12%, we have:

Substitute 25,000 for P; 2 for t; 1 for n and 10% for r

[tex]A = 25000 * (1 + \frac{12\%}{1})^{1 * 2}[/tex]

[tex]A = 25000 * (1 + \frac{12\%}{1})^{2}[/tex]

[tex]A = 25000 * (1 + 12\%)^{2}[/tex]

Convert 12% to decimal

[tex]A = 25000 * (1 + 0.12)^{2}[/tex]

[tex]A = 25000 * (1.12)^{2}[/tex]

[tex]A = 25000 * 1.2544[/tex]

[tex]A = 31360[/tex]

Hence;

Amount = Rs. 31360 when Rate = 12%

Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.

Answers

Answer:

0

Step-by-step explanation:

Hello, dividing by 0 is not defined. so

[tex]\dfrac{2x^2}{6x}[/tex]

is defined for x different from 0

This being said, we can simplify by 2x

[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]

and this last expression is defined for any real number x.

Thank you

If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots?

Answers

Answer: There are no real number roots (the two roots are complex or imaginary)

The discriminant D = b^2 - 4ac tells us the nature of the roots for any quadratic in the form ax^2+bx+c = 0

There are three cases

If D < 0, then there are no real number roots and the roots are complex numbers.If D = 0, then we have one real number root. The root is repeated twice so it's considered a double root. This root is rational if a,b,c are rational.If D > 0, then we get two different real number roots. Each root is rational if D is a perfect square and a,b,c are rational.

The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20. Determine the probability that Tim will takes less than 150 minutes to install a satellite dish.

Answers

Answer: 0.8749

Step-by-step explanation:

Given, The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20.

Let x be the time taken by Tim to install a satellite dish.

Then, the probability that Tim will takes less than 150 minutes to install a satellite dish.

[tex]P(x<150)=P(\dfrac{x-\text{Mean}}{\text{Standard deviation}}<\dfrac{150-127}{20})\\\\=P(z<1.15)\ \ \ [z=\dfrac{x-\text{Mean}}{\text{Standard deviation}}]\\\\=0.8749\ [\text{By z-table}][/tex]

hence, the required probability is 0.8749.

PLZZZZ helpppp will give good rating say thanks and say thank you on your account

Yak Travel Agency arranges trips for climbing Mount Everest. For each trip, they charge an initial fee in addition to $0.15 for each vertical meter climbed. For instance, the price for climbing all the way to the summit, which is 3500 meters above the base of the mountain, is $645. Let F represent the fee (in dollars) of a trip where they climbed ddd vertical meters. Complete the equation for the relationship between the fee and vertical distance.

Answers

X+3500•0.15=645
X=120

F= 0.15d + 120

Finding Side Lengths in a Right Triangle

What is the value of s?

15 units

С

5

B

15

S

D

Answers

Answer:

maybe it's 10.because c is 10,b is 10,and so as s.

hence s is 10 also.

In high school, a teacher gave two sections of a class the same arithmetic test. The results were as follows:

Section I: Mean 45, Standard
Deviation 6.5
Section II: Mean 45,
Standard deviation 3.1

What conclusions is correct?

Answers

Answer:

Section I test scores are more dispersed that that of section II.

Step-by-step explanation:

Consider the data collected from the arithmetic test given to two sections of a school.

Section I: Mean = 45, Standard  Deviation = 6.5

Section II: Mean = 45,  Standard deviation = 3.1

The mean of both the sections are same, i.e. 45.

So there is no comparison that can be made from the center of the distribution.

The standard  deviation for section I is 6.5 and the standard  deviation for section II is 3.1.

The standard deviation is a measure of dispersion, i.e. it tells us how dispersed the data is from the mean or how much variability is present in the data.

The standard  deviation for section I is higher than that of section II.

So, this implies that section I test scores are more dispersed that that of section II.

It takes a graphic designer 1.5h to make one page of a website. Using a new software, the designer could complete each page in 1.25h, but it takes 8h to learn the software. How many web pages would the designer have to make in order to save time using the new software? ​

Answers

Answer:

33 web pages (at least)

Step-by-step explanation:

We can set up an inequality to represent this, where x represents the number of web pages made.

1.5x > 1.25x + 8

1.5x represents the number of hours it will take normally, and 1.25x + 8 represents the time with the new software. 1.5x (amount of hours using old software) needs to be larger than the time it takes with the new software.

Solve for x:

1.5x > 1.25x + 8

0.25x > 8

x > 32

So, the designer would have to make at least 33 pages.

The number of web pages would the designer have to make in order to save time using the new software will be 33 web pages (at least).

What is inequality?

Inequality is the relationship between two expressions that are not equal, employing a sign such as ≠ “not equal to,” > “greater than,” or < “less than.”.

We can set up an inequality to represent this, where x represents the number of web pages made.

1.5x > 1.25x + 8

The time with the new software is represented by 1.25x + 8 and the normal time is represented by 1.5x. The number of hours spent using the old software must be 1.5 times greater than the time spent using the new product.

Solve for x:

1.5x > 1.25x + 8

0.25x > 8

x > 32

Therefore, the number of web pages would the designer have to make in order to save time using the new software will be 33 web pages (at least).

To know more about inequality follow

https://brainly.com/question/24372553

#SPJ2

Suppose that BC financial aid alots a textbook stipend by claiming that the average textbook at BC bookstore costs $ $ 93.29. You want to test this claim.Required:a. The null and alternative hypothesis in symbols would be: _______b. The null hypothesis in words would be: 1. The average price of textbooks in a sample is S 96.28 2. The proportion of all textbooks from the store that are less than 96.28 is equal to 50% 3. The average of price of all textbooks from the store is less than $96.28. 4. The average of price of all textbooks from the store is greater than $96.28. 'The average price of all textbooks from the store is S 96.28

Answers

Answer:

H₀: μ = 93.29 vs. Hₐ: μ ≠ 93.29.

Step-by-step explanation:

In this case we need to test whether the claim made by BC financial aid is true or not.

Claim: The average textbook at BC bookstore costs $93.29.

A null hypothesis is a sort of hypothesis used in statistics that intends that no statistical significance exists in a set of given observations.  

It is a hypothesis of no difference.

It is typically the hypothesis a scientist or experimenter will attempt to refute or discard. It is denoted by H₀.

Whereas, the alternate hypothesis is the contradicting statement to the null hypothesis.

The alternate hypothesis describes direction of the hypothesis test, i.e. if the test is left tailed, right tailed or two tailed.

It is also known as the research hypothesis and is denoted by Hₐ.

The hypothesis to test this claim can be defined as follows:

H₀: The average textbook at BC bookstore costs $93.29, i.e. μ = 93.29.

Hₐ: The average textbook at BC bookstore costs different than $93.29, i.e. μ ≠ 93.29.

Other Questions
The difference of two trinomials is x2 10x + 2. If one of the trinomials is 3x2 11x 4, then which expression could be the other trinomial? 2x2 x 2 2x2 + x + 6 4x2 + 21x + 6 4x2 21x 2 pls help will give you good rating Use the equation p=6k+12 to find the value of p when k=9. A formula to find the period, T, of cyclic phenomena based on the frequency, F is T= 1/FSolve the formula for F in terms of T You resurrected an old worksheet. It appears to contain most of the information that you need, but not all of it. Which step should you take next find the product of the first 3 positive integers and then the first 5 negative integers. 1. Find the area of a triangle (PLEASE ONLY in CM) 2. Seven squared equals seven times ......... Write each of the following in the simplest exponential form please help What is 1/3 of 675 is left You are an urban planner assessing the growth of a city. Ten years ago, the city's population was 250,823. Its current population is 325,823. By about what percentage has the city grown over the past ten years? Round to the nearest percent. A friend wants to borrow money from you. He stated that he will pay you $2500 every 6 months for 7 years with the first payments exactly 3 years and six months from today. The interest rate is 4.8 percent compounded semiannually. What is the value of the payments today? Question 1 of 18The Waves and the Wolves are evenly matched baseball teams. When theyplay, there is a 0.5 probability that the Waves will win. If they play 15 times,what is the probability that the Waves will win 8 of the games? Round youranswer to the nearest tenth of a percent.A. 9.2%B. 4.2%C. 15.3%O D. 19.6% Please solve the one w the underline please In humans, insulin is manufactured in the pancreas, insulin is a peptide hormone that causes the bodys cells to take up glucose. The blueprint for the polypeptide chain that is insulin is found in the of specialized pancreatic cells. which best describes a creative writing workshop por que la toria de lamarck sobre el alargamiento del cuello de las jirafas por el esfuerzo continuado no pasara a sus descendientes? Porfa es ciencia y ambiente estoy en el peru Brandon is paid 150% of his regular hourly rate for overtime hours. He is paid \$45.00 an hour for overtime hoursWhat is his regular hourly rate? i need help please asap 10 points! Find the value of z. A. 141 B. 110 C. 80 D. 100 What did modern democracies learn from the Romans?how to limit a ruler's power by establishing a constitutional monarchyto maintain a lasting government, allow only the rich and powerful to make and enforce laws for all the citizenshow to safeguard against tyranny by dividing the government's power among different partshow to protect the rights of citizens by allowing the leaders to have absolute power