Answer:
48√2
Step-by-step explanation:
3√(512)
= 3√(256×2)
= 3√(256)×√(2)
→ we know that 16² = 256 then √(256) = 16
Then
3√(512)
= 3 × 16 ×√(2)
= 48√(2)
2. Mr. McGrath is ordering pizza for the girls soccer team. A large cheese pizza costs $10, plus 80¢ for each
additional topping (including extra cheese!).
Complete the table below.
Answer:
i think iys 6 lol
Step-by-step explanation:
its wright
Evaluate the expression
Answer:
Is -15
Step-by-step explanation:
Find the surface area of the
rectangular prism.
2 cm
6 cm
3 cm
[?] sq cm
Enter
Answer:
72 sq cm
Step-by-step explanation:
Surface area of the cuboid is 2*(lb+bh+lh)=2*(12+18+6)=2*36=72
Answer:
36 sq cm
Step-by-step explanation:
This prism is formed by rectangles, and to find the area of a rectangle you have to multiply its sides. So, to find the surface area, you find the area of each rectangle and after add it all:
3×2 = 6 sq cm, and your have two of this rectangles
6×2 = 12 sq cm, and you also have two of this
3×6 = 18 sq cm, and also have two of this
6 + 12 + 18 = 36 sq cm
Frank can type a report in 2 hours and James takes 7 hours. How long will it take the
two of them typing together?
Answer: x = 1 hour and 33 minutes
Step-by-step explanation:
Let x = time (hours) it takes typing together
then
x(1/2 + 1/7) = 1
multiplying both sides by 14:
x(7 + 2) = 14
x(9) = 14
x = 14/9
x = 1.56 hours
or
x = 1 hour and 33 minutes
Hope tjis help you!:)
Answer: 14/9 hr
Step-by-step explanation:
If you divide Frank's ability to write 1 report by 2 hours, he could write half a report in an hour. James could write one seventh of the report in a hour after dividing his ability to write 1 report in 7 hours. Find the least common denominator between 2 and 7, which is 14 convert 1/2 to that, which would be 7/14 and 2/14. Add That together and you'd get the amount of report they can write in an hour. If you multiply this by a number equalvilent to flipping 9/14, you'd get 1. This number is 14/9 hours.
Please help me solve this fast!
Answer:
base = 18.89
legs = 16.89
Step-by-step explanation:
x + x + 68 = 180
2x + 68 = 180
2x = 112
x = 56
The altitude = 14
Tan(56) = opposite / adjacent
adjacent = base
opposite = altitude
Tan(56) = opposite / base Multiply both sides by the base
base * Tan(56) = opposite Divide by Tan(56)
base = opposite / Tan(56)
base = 14/tan(56)
base = 9.443
The base is actually twice this length because the altitude lands on the midpoint of the opposite side and is perpendicular to the third side (base).
base = 18.886
Legs are the hypotenuse formed by 1/2 the base and the attitude.
Sin(56) = opposite / hypotenuse
Sin(56) = altitude / hypotenuse
hypotenuse = altitude / Sin(56)
hypotenuse = 14 / sin(56)
hypotenuse = 16.887
Rounded
base = 18.89
legs = 16.89
X
( = [?]
DK
x Х
А AK
140°
B
HC
Angles are not drawn to scale
Answer:
40 degrees
Step-by-step explanation:
Supplementary angles are a pair of angles that add up to 180 degrees
Since ABD and DBC are supplementary, you can make the equation:
180=140+x
Simplify and you get x=40
[tex]\bf \large \implies \: \: x \: + \: 140 \degree \: = \: 180 \degree[/tex]
[tex]\bf \large \implies \: \: x \: = \: 180 \degree - \: 140 \degree[/tex]
[tex]\bf \large \implies \: \: x \: = \: 40 \degree[/tex]
CAN SOMEBODY HELP ME PLS GIVE THE CORRECT ANSWER IM FAILING BUT ITs PYTHAGOREAN THEOREM
Answer:
c=65
Step-by-step explanation:
Answer:
c=65
Step-by-step explanation:
c=a2+b2=63
632+162=65
please help me its hard
Answer:
1
Step-by-step explanation:
16-9=5t+2t
7=7t
1=t
Answer:
t = 1
Step-by-step explanation:
16 - 2t = 5t + 9
=> 16 - 2t - 9 = 5t
=> 16 - 9 = 5t + 2t
=> 7 = 7t
=> 7/7 = t
=> 1/1 = t
=> 1 = t
13. A pair of shoes sell for $27 per pair. There is a sale tomorrow on shoes offering two pairs for $45.
How much will 3 pairs of shoes cost today?
Answer:
$72
Step-by-step explanation:
The sale offers 2 pair of shoes for $45, but the price is same for 1 pair of shoes.
The cost of 3 pair of shoes
= The sale price of 2 pair of shoes + Regular price of 1 pair of shoes
= $45 + $27
= $72
So, 3 pairs of shoes will cost $72 today.
A candidate for one of Ohio's two U.S. Senate seats wishes to compare her support among registered voters in the northern half of the state with her support among registered voters in the southern half of the state. A random sample of 2000 registered voters in the northern half of the state is selected, of which 1062 support the candidate. Additionally, a random sample of 2000 registered voters in the southern half of the state is selected, of which 900 support the candidate. A 95% confidence interval for the difference in proportion of registered voters that support this candidate between the northern and southern halves of the state is:
Answer:
The 95% confidence interval for the difference in proportion of registered voters that support this candidate between the northern and southern halves of the state is (0.05, 0.112).
Step-by-step explanation:
Before building the confidence interval, the central limit theorem and subtraction of normal variables is explained.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Northern half:
1062 out of 2000, so:
[tex]p_N = \frac{1062}{2000} = 0.531[/tex]
[tex]s_N = \sqrt{\frac{0.531*0.469}{2000}} = 0.0112[/tex]
Southern half:
900 out of 2000, so:
[tex]p_S = \frac{900}{2000} = 0.45[/tex]
[tex]s_S = \sqrt{\frac{0.45*0.55}{2000}} = 0.0111[/tex]
Distribution of the difference:
[tex]p = p_N - p_S = 0.531 - 0.45 = 0.081[/tex]
[tex]s = \sqrt{s_N^2 + s_S^2} = \sqrt{0.0112^2 + 0.0111^2} = 0.0158[/tex]
Confidence interval:
The confidence interval is:
[tex]p \pm zs[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower bound of the interval is:
[tex]p - zs = 0.081 - 1.96*0.0158 = 0.05[/tex]
The upper bound of the interval is:
[tex]p + zs = 0.081 + 1.96*0.0158 = 0.112[/tex]
The 95% confidence interval for the difference in proportion of registered voters that support this candidate between the northern and southern halves of the state is (0.05, 0.112).
The frequency table represents the job status of a number of high school students. A 4-column table with 3 rows titled job status. The first column has no label with entries currently employed, not currently employed, total. The second column is labeled looking for job with entries 12, 38, 50. The third column is labeled not looking for a job with entries 28, 72, 100. The fourth column is labeled total with entries 40, 110, 150. Which shows the conditional relative frequency table by column? A 4-column table with 3 rows titled job status. The first column has no label with entries currently employed, not currently employed, total. The second column is labeled looking for a job with entries 0.3, nearly equal to 0.33, 1.0. The third column is labeled not looking for job with entries 0.7, nearly equal to 0.65, 1.0. the fourth column is labeled total with entries nearly equal to 0.27, nearly equal to 0.73, 1.0. A 4-column table with 3 rows titled job status. The first column is blank with entries currently employed, not currently employed, total. The second column is labeled Looking for a job with entries 0.12, 0.38, 050. The third column is labeled not looking for a job with entries 0.28, 0.72, 1.00. The fourth column is labeled total with entries 0.4, 1.1, 1.5. A 4-column table with 3 rows titled job status. The first column has no label with entries currently employed, not currently employed, total. The second column is labeled looking for a job with entries 0.24, 0.76, 1.0. The third column is labeled not looking for a job with entries 0.28, 0.72, 1.0. The fourth column is labeled total with entries nearly equal to 0.27, nearly equal to 0.73, 1.0. A 4-column table with 3 rows titled job status. The first column has no label with entries currently employed, not currently employed, total. The second column is labeled looking for job with entries 0.08, nearly equal to 0.25, nearly equal to 0.33. The third column is labeled not looking for a job with entries nearly equal to 0.19, 0.48, nearly equal to 0.67. The f
Answer:
[tex]\begin{array}{cccc}{} & {Looking\ for\ job} & {Not\ looking} & {Total} & {Employed} & {0.24} & {0.28} & {0.27} & {Not\ Employed} & {0.76} & {0.72} & {0.73}& {Total} & {1} & {1} & {1} \ \end{array}[/tex]
Step-by-step explanation:
The question is not properly formatted (see attachment for the frequency table and the options)
Required
The conditional relative frequency table by column
We have:
[tex]\begin{array}{cccc}{} & {Looking\ for\ job} & {Not\ looking} & {Total} & {Employed} & {12} & {28} & {40} & {Not\ Employed} & {38} & {72} & {110}& {Total} & {50} & {100} & {150} \ \end{array}[/tex]
To get the conditional frequency by column, we simply divide each cell by the corresponding total value (on the last row)
So, we have:
[tex]\begin{array}{cccc}{} & {Looking\ for\ job} & {Not\ looking} & {Total} & {Employed} & {12/50} & {28/100} & {40/150} & {Not\ Employed} & {38/50} & {72/100} & {110/150}& {Total} & {50/50} & {100/100} & {150/150} \ \end{array}[/tex]
[tex]\begin{array}{cccc}{} & {Looking\ for\ job} & {Not\ looking} & {Total} & {Employed} & {0.24} & {0.28} & {0.27} & {Not\ Employed} & {0.76} & {0.72} & {0.73}& {Total} & {1} & {1} & {1} \ \end{array}[/tex]
Solve the equation :
-3 • ( 2 - x ) + 4 = 2 • ( 1 - 2x) + 3
thanks :)
Isolate the variable by dividing each side by factors that don't contain the variable.
x = 1
-6+3x+4=2-4x+3
-8+7x+1=0
7x=7
x=1
Answer:
x=1
Step-by-step explanation:
SEE IMAGE for Solution
please help (picture) 25 points
Answer:
1) perimeter = sum of all the sides = 3y+9+2y+4+y+3+2y+4 = 8y+20
2) P = 4(5x-2) = 20x-8
which of the following functions are an example of exponential decay???
Answer:
C. II only
Step-by-step explanation:
iyzgkxhldlufulduo
please help me is for my homework
Answer:
50%
Step-by-step explanation:
so 1 half is colored in so 1/2 is also 50%
Answer:
it's 50% because it's half the circle
Taehyung was sitting on the ground flying a kite. He had 22 feet of line let out to fly his kite, and the kite was 14 feet in front of him. How high was the kite?
30^∘ Another boy is standing on the roof of a 10 second string be x mIn Δ ABC sin 30^∘ = AC/AB 1/2 = AC/100 AC =
Answer: hope this helps ♡
The kite was 16.9 feet high.
Step-by-step explanation:
Pythagorean theorem
b = [tex]\sqrt{c^{2} - a^{2} }[/tex]
b = [tex]\sqrt{22^{2} - 14^{2} }[/tex]
b = [tex]\sqrt{484 - 196}[/tex]
b = [tex]\sqrt{288}[/tex]
b = 16.9
Explain how to combine the terms 5x an 3x
Answer:
below
Step-by-step explanation:
In short, we will add both coefficients together to combine like terms.
3x + 5x → x(3 + 5) → 8x
If you have a value like 2x and 2, you cannot combine them because they do not have the same variable.
Best of Luck!
pls helppppppp it’s due in 20 minutes
Answer:
hope this helps you
havea great dayy
Answer:
39
Step-by-step explanation:
3(6m-17)
3(30-17)
3(13)
39
PLEASE HELP WILL MARK BRAINLIEST
Answer:
I believe its negative nonlinear association
Step-by-step explanation:
The line is going down so its definitely negative
And the line is not straight so its not linear
Therefore, its negative nonlinear association
[tex]\frac{\sqrt{x} +1}{x-\sqrt{x} +1}[/tex] Với x≥0. Tìm GTLN
Answer:
Step-by-step explanation:
[tex]\frac{\sqrt{x}+1 }{x-\sqrt{x}+1 }=\frac{\sqrt{x}+1}{(x+1)-\sqrt{x}}\\\\=\frac{(\sqrt{x}+1)([x+1]+\sqrt{x})}{([x+1]-\sqrt{x})+([x+1)+\sqrt{x}])}\\\\=\frac{\sqrt{x}*x+\sqrt{x}*1+\sqrt{x}*\sqrt{x}+1*x+1*1+1*\sqrt{x}}{(x+1)^{2}-(\sqrt{x})^{2}}\\\\\\=\frac{x\sqrt{x}+\sqrt{x}+x+1+x+\sqrt{x}}{x^{2}+2x+1-x}\\\\=\frac{x\sqrt{x}+2\sqrt{x}+2x+1}{x^{2}+x+1}\\\\[/tex]
please
[tex] \sin(120) \\ \tan( \frac{3\pi}{4} ) [/tex]
help me I need help
Answer:
[tex] \sin(120) \\ = \sin(90 + 30) \\ = \cos(30) \\ = \frac{ \sqrt{3} }{2} \\ \\ \tan( \frac{3\pi}{4} ) \\ = \tan(135) \\ = \tan(90 + 45) \\ = - \cot(45) \\ = - 1[/tex]
[tex]\\ \rm\longmapsto sin120[/tex]
[tex]\\ \rm\longmapsto sin(90+30)[/tex]
[tex]\\ \rm\longmapsto cos30[/tex]
[tex]\\ \rm\longmapsto \dfrac{\sqrt{3}}{2}[/tex]
Now
[tex]\\ \rm\longmapsto tan\left(\dfrac{2\pi}{4}\right)[/tex]
[tex]\\ \rm\longmapsto tan135[/tex]
[tex]\\ \rm\longmapsto -1[/tex]
Find the value of a. Round
the nearest tenth.
Answer:
a = 24.0
Step-by-step explanation:
We can use the law of sines to solve
sin 150 sin 12
---------- = ----------
a 10
Using cross products
10 sin 150 = a sin 12
10 sin 150 / sin 12 = a
a=24.04867
To the nearest tenth
a = 24.0
3000 dollars is invested in a bank account at an interest rate of 7 percent per year, compounded continuously. Meanwhile, 20000 dollars is invested in a bank account at an interest rate of 5 percent compounded annually.
To the nearest year, when will the two accounts have the same balance?
9514 1404 393
Answer:
after 89 years
Step-by-step explanation:
For principal p, interest rate r, and number of years t, the two account balances are ...
a = p·e^(rt) . . . . continuous compounding
a = p(1+r)^t . . . . annual compounding
Using the given values, we have
3000·e^(0.07t) . . . . . compounded continuously
20000·1.05^t . . . . . . compounded annually
We want to find t so these are equal.
3000·e^(0.07t) = 20000·1.05^t
0.15e^(0.07t) = 1.05^t . . . . divide by 20,000
ln(0.15) +0.07t = t·ln(1.05) . . . . take natural logarithms
ln(0.15) = t·(ln(1.05) -0.07) . . . . subtract 0.07t
t = ln(0.15)/(ln(1.05) -0.07) ≈ -1.8971/-0.02121 . . . . . divide by the coefficient of t
t ≈ 89.4 ≈ 89
The two accounts will have the same balance after 89 years.
The cost of plastering in 4 walls of a room whose length is three times its height as wellas twice its breadth at Rs 5per m^2 is Rs 720. What will be the cost of the carpenting the floor of the room at Rs 250per m^2
Answer:
please mark me brainlist I really need it
Step-by-step explanation:
Say the height of the room is X metres. So the length is 3X, and the breadth is length/2, or 3X/2.
The area of the 4 walls is then 3x^2 + 3X^2 + 3X^2/2 +3X^2/2 = 9X^2
If the cost of plastering is R5/sq m, then 9X^2 * 5 = 720
Solving this gives X = 4 m - a rather high ceiling
The floor area is then (3*4) * (3*4/2) = 72 sq m
Carpeting is then 250*72 = R18000
PLS HELP ME ON THIS QUESTION I WILL MARK YOU AS BRAINLIEST!!
Answer:
so the simplest way to find the volume of water is by dividing into different....objects
so when dividing you create a rectangular box that has length of 12 width of 14.5 and height of 5 and another rectangular box with length of 7 (19-12) width of 4 and height of 5
now calculate the volume of each box and add them up
v = length x width x height
box 1 = 12 x 14.5 x 5 = 870 ft^3
box 2 = 7x4x5 = 140
now smash them up together = 870+140=1010ft^3
hope that answers your question
Please help me, asap
Answer:
10
Step-by-step explanation:
(10*2) ÷ (1+1)
Parentheses first
20 ÷2
Then divide
10
Answer:
The answer to the equation is 10.
Step-by-step explanation:
Use PEMDAS/Order of operations.
Parentheses go first.
(10*2) divided by (1+1)
remove the parentheses after working on the equation in them
20 divided by 2
20/2=10
the answer is 10
If you have any questions tell me them in the comments, I will come answer them. Have a good day.
$60 is shared between Ali, Ben and Carol in the ratio of 5 :3 : Z How much does Ben get?
Answer:
the answer is 100:60:40 hope it helps
40) what is the area of a rectangular porch measuring 8 ft x 12/f
45) Create a stem and leaf plot to represent this set of data.
30, 62, 32, 63, 43, 77, 48, 78, 49, 82, 51, 84, 60,
please make sure to answer both questions
Find the exact value of the indicated trigonometric function for the acute angle a:
Given: sin a=5/13, Find: cos a and tan a
Answer:
cos a = 12/13
tan a = 5/12
You use these properties to solve the question,
sin²a+cos²a=1
tana=sina/cosa
Round each to the nearest cent.
$879.190
and
$532.626
Answer:
$879.190 = $879.19
$532.626 = $532.627
Step-by-step explanation:
You round up for the tenths place if the hundredths place is above five, but you round down for the tenths place if the hundredths place is below five. For example, 0 is below five for $879.190, so I round to 9.