Answer:
d .9
Step-by-step explanation:
n^2-3 = 2×39 (line joining midpoints is half of third line )
n^2 = 78+3
n^2 =81
n =9
helpppppppppppppppp//////////////////////////////////////////
Answer:
m(x)
Step-by-step explanation:
The transformation from the function ƒ(x) = 3x to the function ƒ(x) = 3x + 4 indicates:
Answer:
Moving 4 to the right on the x axis
What is -2y + -4y. Simplify the answer.
Step-by-step explanation:
Explanation is in the attachment
hope it is helpful to you
Answer:
[tex]-2y+\left(-4\right)y[/tex][tex]=-2y-4y[/tex][tex]=-6y[/tex][tex]-----------[/tex]
hope it helps...
have a great day!!
Self Practice 5.3
1. Find the sum of the following arithmetic progression.
(a) -20, -15, -10, ..., 100
Answer:
5
Step-by-step explanation:
Have a phd in mathematics! Congrats on your first question!!!! Send me a brainlist :)
One side of a rectangle is 2 yd longer than two times another side. The area of the rectangle is 84 yd2. Find the length of the shorter side.
Answer:
6 yds
Step-by-step explanation:
If we label the shorter side as x, the longer side can be represented as 2x + 2. Now, we can write an equation to model the situation. The area of a rectangle is the sides multiplied by each other:
84 = x(2x + 2)
84 = 2x^2 + 2x
Since all terms are divisible by two, we can divide both sides by it:
42 = x^2 + x
We can write the quadratic equation in standard form:
x^2 + x - 42 = 0
Now, we can factor. We are looking for numbers that multiply to -42 and add to 1. These numbers are 7 and -6. Factored the equation would be written as followed:
(x + 7)(x - 6) = 0
Using the zero-product property, we can obtain two equations and solve them:
x + 7 = 0
x = -7
x - 6 = 0
x = 6
Since the side of a rectangle can't be negative, the answer must be 6 yds.
A car is sold for $7560 at a loss of 10%. What is the original cost of the car?
Answer:
car(c.p)=$8400
Step-by-step explanation:
L%=(c.p-s.p)100%
c.p
10%=(c.p-7560)100%
c.p
10c.p=100c.p-756,000
(10-100)c.p= -756,000
-90c.p= -756,000
-90 -90
c.p=8400
Which equation is NOT true?
Answer:
[tex]{ \bf{15x + 30 = 180}}[/tex]
Problem: Construct a triangle with interior angle measures of 60° and 60°. Let one of the side lengths be 10. What are the lengths of the other sides?
Answer:
Step-by-step explanation:
Given a triangle with angles 60° and 60°. Let the third angle be represented by x, so that;
x + 60° + 60° = [tex]180^{o}[/tex] (sum of angle in a triangle)
x + 120 = [tex]180^{o}[/tex]
x = [tex]180^{o}[/tex] - 120
x = 60°
Thus, since the third angle of the triangle is 60°, then the triangle is an equilateral triangle. For an equilateral triangle, all sides are equal and all its angles are equal. So that the other sides of the triangle is 10 each.
<ABC ≅ <BAC ≅ < ACB ≅ 60°
AB = BC = AC = 10 cm
The required construction for the question is attached to this answer for more clarifications.
Answer:
It's an obtuse angle
Step-by-step explanation:
please help so I can watch Coop and Cami ask the world
Step-by-step explanation:
Simple interest=principal x rate x time÷100
amount borrowed=$500
I=$500x7x6÷100
I=$210
therefore you will pay
amount borrowed+interest
$500+$210
$710
hope this is helpful
What is the value of tan in the unit circle below?
What is the value of tan in the unit circle below?
Answer:-The value of tan in the unit circle below is
[tex] \frac{ \sqrt{3} }{2} [/tex]
Note:- Please attach the full question next time.
Il y a 5ans Thomas avait 5 fois l'âge de benoit aujourd'hui Thomas a 3 fois l âge de Benoît quel est l'âge de benoit
Répondre:
Benoit a 10 ans
Explication étape par étape :
Laisser :
Âge de Thomas = x
Benoit age = y
il y a 5 ans :
x - 5 = 5 (y - 5)
x - 5 = 5y - 25 - - (1)
Aujourd'hui :
x = 3y - - (2)
Mettez x = 3y dans (1)
3 ans - 5 = 5 ans - 25
Recueillir des termes similaires
3 ans - 5 ans = - 25 + 5
-2a = - 20
Diviser les deux côtés par - 2
y = 10
What is the other solution to the equation (Algebra ll) *URGENT*
Given:
The equation is:
[tex]3-2|0.5x+1.5|=2[/tex]
One solution of this equation is -2.
To find:
The another solution of the given equation.
Solution:
We have,
[tex]3-2|0.5x+1.5|=2[/tex]
It can be written as:
[tex]-2|0.5x+1.5|=2-3[/tex]
[tex]-2|0.5x+1.5|=-1[/tex]
Divide both sides by -2.
[tex]|0.5x+1.5|=0.5[/tex]
After removing the modulus, we get
[tex]0.5x+1.5=\pm 0.5[/tex]
Case I:
[tex]0.5x+1.5=0.5[/tex]
[tex]0.5x=0.5-1.5[/tex]
[tex]0.5x=-1[/tex]
Divide both sides by 0.5.
[tex]x=-2[/tex]
Case II:
[tex]0.5x+1.5=-0.5[/tex]
[tex]0.5x=-0.5-1.5[/tex]
[tex]0.5x=-2[/tex]
Divide both sides by 0.5.
[tex]x=-4[/tex]
One solution of the given equation is [tex]x=-2[/tex] and the another one is [tex]x=-4[/tex].
Therefore, the correct option is B.
Someone please help me out
Answer:
[tex] {x}^{3} + 5 {x}^{2} - x - 5 \\ {x}^{2} (x + 5) - 1(x + 5) \\ (x + 5)( {x}^{2} - 1)[/tex]
Does the data below describe a linear,
quadratic, or exponential function?
Answer:
Quadratic.
Step-by-step explanation:
Both linear and exponential equations are monotone increasing or monotone decreasing functions.
This means that, as the input increases, the output will only increase or only decrease, but never both.
Here for our data, we can see that first we have:
x = -8
y = 13
Then x increases to x = -6, and y decreases to y = 9
Then x increases to x = -4 and y increases to y = 13
Then this function is not monotone increasing nor monotone decreasing, so the data can not describe a linear nor an exponential function.
Then the correct option is quadratic.
The diagram shows a rectangle. If the perimeter of the rectangle is 66 cm, what is the area of the rectangle?
Answer:
Step-by-step explanation:
Perimeter of the rectangle = P
Base = b
Height = h
Area = A
P = 2b + 2h
P = 66
STEP 1:
2(2x + 1) + 2(x + 5) = 66
Distribute
4x + 2 + 2x + 10 = 66
STEP 2:
Combine like terms and isolate the variable
6x + 12 = 66
6x = 54
x = 9
STEP 3:
Plug in x
A = (2(9) + 1) * (9 + 5)
STEP 4:
Simplify
A = (18 + 1) * (14)
A = (19)(14)
A = 266
[tex]\displaystyle\bf P=2(2x+1+x+5)=66\\\\6x+12=66\\\\6x=54\\\\\boxed{x=9}\\\\2x+1=19\\\\x+5=14 \\\\S=ab=14\cdot19=266 cm^2[/tex]
express 26 divide 4 +root3 in form a +b root3 where a and b are integres
Answer:
8 - 4[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Given: [tex]\frac{26}{4 + \sqrt{3} }[/tex]
To express the given question in the form a + b[tex]\sqrt{3}[/tex], we first have to rationalize the denominator of the expression.
Rationalizing the denominator, we have;
[tex]\frac{26}{4 + \sqrt{3} }[/tex] * [tex]\frac{4 - \sqrt{3} }{4 - \sqrt{3} }[/tex] = [tex]\frac{104 -26\sqrt{3} }{16 -4\sqrt{3} + 4\sqrt{3}- 3 }[/tex]
= [tex]\frac{104 - 26\sqrt{3} }{16 - 3}[/tex]
= [tex]\frac{26(4 - \sqrt{3} }{13}[/tex]
= 2(4 - [tex]\sqrt{3}[/tex])
= 8 - 4[tex]\sqrt{3}[/tex]
The required form of the given question is therefore 8 - 4[tex]\sqrt{3}[/tex]
Find the measure of the indicated angle
Answer:
yes
Step-by-step explanation:
What is the measure of angle ABC?
Answer:
the answer is already in the question
D. 130°
D. 130
If two boxes of cereal and a jug of milk cost $8.50, and three boxes of cereal and two jugs of milk cost $14.00, how much does a box of cereal cost?
Answer:
$3
Step-by-step explanation:
Let c represent the cost of a box of cereal and let m represent the cost of a jug of milk.
Create a system of equations:
2c + m = 8.5
3c + 2m = 14
Solve by elimination by multiplying the top equation by -2:
-4c - 2m = -17
3c + 2m = 14
Add them together and solve for c:
-c = -3
c = 3
So, a box of cereal costs $3
A box of cereal cost $3 if two boxes and a jug of milk cost $8.50, and three boxes and two jugs of milk cost $14.00.
What is the equation?An equation is a statement that two expressions, which include variables and/or numbers, are equal. In essence, equations are questions, and efforts to systematically find solutions to these questions have been the driving forces behind the creation of mathematics.
It is given that, two boxes of cereal and a jug of milk cost $8.50, and three boxes of cereal and two jugs of milk cost $14.00
Let c stand for the price of a box of cereal and m for the price of a milk jug.
The obtained system of equations is as follows,
2c + m = 8.5
3c + 2m = 14
Multiply the top equation by -2 to reach the solution by elimination:
-4c - 2m = -17
3c + 2m = 14
Put them all together to find c:
-c = -3
c = 3
Thus, a box of cereal cost $3 if two boxes and a jug of milk cost $8.50, and three boxes and two jugs of milk cost $14.00.
Learn more about the equation here,
https://brainly.com/question/10413253
#SPJ2
Jayce travels 30 miles per hour in her car. How many miles does she travel in 4 hours?
Answer:
Step-by-step explanation:
Answer:
hello there
here is your answer:
120 miles
Step-by-step explanation:
because every 30 mile jayce drives is by 1 hour.
jayce travels for 4 hours so that 120 miles
also because you can mutiply 30*4=120
hope this helps have a good day bye
Traveling from City 1 to City 2, a pilot planned a southeast course along the path labeled d. Instead, a storm forced the pilot to travel 32 miles south, then 24 miles east to reach City 2. How many extra miles was the pilot forced to fly?
A. 13 mi.
B. 14 mi.
C. 16 mi.
D. 17 mi.
Answer:
C. 16 mi.
Step-by-step explanation:
This situation forms a right triangle: the distances 32 miles south and 24 miles east are the legs, and the original southeast course is the hypotenuse.
Use the pythagorean theorem, a² + b² = c² to solve for c, the length of the southeast course.
a² + b² = c²
32² + 24² = c²
1600 = c²
40 = c
So, the southeast course is 40 miles long.
Find how many miles the pilot traveled on the alternate route:
32 + 24
= 56
Find the difference in extra miles:
56 - 40
= 16
So, the pilot was forced to fly 16 extra miles.
The correct answer is C. 16 mi.
Answer:
16
Step-by-step explanation:
On Edge 2022
A bag contains 6 black tiles, 5 white tiles, and 4 blue tiles. Event A is defined as drawing a white tile from the bag on the first draw, and event B is defined as drawing a black tile on the second draw. If two tiles are drawn from the bag, one after the other without replacement, what is P(A and B) expressed in simplest form? A. 4/45 B. 1/7 C. 4/15 D. 5/14
Answer:
5/14
Step-by-step explanation:
There are 15 tiles in total
5 white| 6 black | 4 blue
event A results in the subject pulling a white tile and not replacing it
5-1= 4
so the first answer should be 4/15
event B results in the subject pulling another tile, a black one and not replacing it.
6-1= 5
given this answer, there is one less tile in the total, since we removed another tile.
So our answer would be-
5/14 or D
plz tell the answers in the correct order
Answer:
a) 120°
Step-by-step explanation:
i think this is the right answer
Solve the following pair of linear equations using substitution method
[tex] x-3y = 13[/tex]
[tex]x+2y=8[/tex]
Answer:
(10, - 1 )
Step-by-step explanation:
Given the 2 equations
x - 3y = 13 → (1)
x + 2y = 8 → (2)
Rearrange (1) making x the subject by adding 3y to both sides
x = 3y + 13 → (3)
Substitute x = 3y + 13 into (2)
3y + 13 + 2y = 8
5y + 13 = 8 ( subtract 13 from both sides )
5y = - 5 ( divide both sides by 5 )
y = - 1
Substitute y = - 1 into (3) for corresponding value of x
x = 3(- 1) + 13 = - 3 + 13 = 10
solution is (10, - 1 )
does the point (-4, 2) lie inside or outside or on the circle x^2 + y^2 = 25?
Given equation of the Circle is ,
[tex]\sf\implies x^2 + y^2 = 25 [/tex]
And we need to tell that whether the point (-4,2) lies inside or outside the circle. On converting the equation into Standard form and determinimg the centre of the circle as ,
[tex]\sf\implies (x-0)^2 +( y-0)^2 = 5 ^2[/tex]
Here we can say that ,
• Radius = 5 units
• Centre = (0,0)
Finding distance between the two points :-
[tex]\sf\implies Distance = \sqrt{ (0+4)^2+(2-0)^2} \\\\\sf\implies Distance = \sqrt{ 16 + 4 } \\\\\sf\implies Distance =\sqrt{20}\\\\\sf\implies\red{ Distance = 4.47 }[/tex]
Here we can see that the distance of point from centre is less than the radius.
Hence the point lies within the circle .
Answer:
these points lie INSIDE THE CIRCLE
Hope it helps
have a nice day
WILL GIVE BRAINLIEST AND 30 POINTS!
PLEASE SHOW WORK!
f(x)=x2+10 and g(x)=|x|
Find (f+g)(2).
Answer:
14
Step-by-step explanation:
[tex]f(x) = {x}^{2} + 10 \\ \therefore \: f(2) = {2}^{2} + 10 \\ \therefore \: f(2) = 4 + 10 \\ \therefore \: f(2) = 14 \\ \\ g(x) = |x| \\ \therefore \:g(2) = |2| \\ \therefore \:g(2) = 2 \\ \\ f(2) + g(2) = 14 + 2 \\ \red{ \bold{(f + g)(2) = 14}}[/tex]
Step by step Explanation:
[tex]f(x) = x2 + 10g(x) = 1[/tex]
[tex](f + g)(2).[/tex]
Step 1
The equation is in standard form.
[tex]xf = 10gx + x2[/tex]Step 2
Divide both sides by x.
[tex] \frac{xf}{x} = \frac{10gx + x2}{x} [/tex]Step 3
Dividing by x undoes the multiplication by x.
[tex]f = \frac{10gx + x2}{x} [/tex]Step 4
Divide x 2 + 10 g x by x.
[tex]f = 10g + \frac{x2}{x} [/tex]My Answer is.
[tex]\color{green}f \ = \frac{10g + \frac{x2}{x} }{f€g} x2 = {14}^{x} [/tex]A parabola opens upward. The parabola goes through the point (3,-1),
and the vertex is at (2,-2).
Find the value of A for the parabola. Show your work. Use Part 1 and 2 to write the equation of the parabola.
Answer:
a=1
Step-by-step explanation:
Hopefully this helps :)
The equation of the parabola is: y = (x - 2)² - 2. Finding the value of A
The vertex of the parabola is at (2,-2). Since the parabola opens upward, the equation of the parabola will be of the form:
y = A(x - 2)² - 2
We can plug the point (3,-1) into this equation to find the value of A.
-1 = A(3 - 2)² - 2
Simplifying the right side of the equation, we get:
-1 = A - 2
Adding 2 to both sides of the equation, we get:
1 = A
Therefore, the value of A is 1.
Writing the equation of the parabola
The equation of the parabola is:
y = (x - 2)² - 2
To know more about parabola:
https://brainly.com/question/11911877
#SPJ2
The diagram shows a cylinder of diameter 6 cm and height 20 cm what is the volume in cm3
Answer:
565.2cm³
Step-by-step explanation:
the radius= 6/2= 3 cm
the height= 20cm
the volume= 3.14× 3²×20
= 3.14×180= 565.2 cm³
Check the picture below.
find the area of the trapezoid. helppppopop thank you
Answer:
[tex]\frac{4}{3}\:\mathrm{cm^2}[/tex]
Step-by-step explanation:
The area of a trapezoid can be found by multiplying the average of its bases and its height.
We're given:
One base of 4 cmOne base of 12 cmHeight of 1/6 cmTo find the average of a set of [tex]n[/tex] values, add all the values in the set and divide by [tex]n[/tex]. Therefore, to find the average of the two bases, we add 4 to 12 and divide by 2.
The average of the bases is therefore [tex]\frac{4+12}{2}=\frac{16}{2}=8[/tex]
Thus, the area of the trapezoid is [tex]8\cdot \frac{1}{6}=\frac{8}{6}=\boxed{\frac{4}{3}\:\mathrm{cm^2}}[/tex]
Five students and two teachers pose for a picture.in how many ways can they line up side by side for a picture. 2. In how many ways can they line up if they must have the teachers on both sides of the picture? 3.what is the probability that the two teachers occupy two of the three middle slots?