Answer:
z = 1.77.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X, which is also the area of the normal curve to the left of Z. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Find z such that 3.8% of the standard normal curve lies to the left of z
Thus, z with a z-score of 0.038. Looking at the z-table, this is z = 1.77.
Answer to the question?
Answer:
35
Step-by-step explanation:
AEC and AEB form a straight angle(180°)
180-40=140
AEV and AED are equal
140 divided by 4 = 35
In 42 - 15 = 27, the number 42 is called the
the number 15 is called the
and the number 27 is called
Answer:
The Answer to the Ultimate Question of Life, the Universe, and Everything is 42
Step-by-step explanation:
In this equation, the number 42 is called a minuend.
15 is a subtrahend because it is being subtracted from another number.
The number 27 would be called the difference.
Find the approximate surface-area-to-volume ratio of a bowling ball with a radius of 5 inches.
A 0.6
B. 0.67
C. 1.67
D. 25
Answer:
Step-by-step explanation:
Solve for z
3z-5+2z=25-5z
Answer:
z=3
Step-by-step explanation:
1. collect like terms
5z-5=25-5z
2. Move the variable to the left hand side and change its sign
5z-5+5z=25
3. Collect like terms
10z=25+5
4. Divide both sides of the equation by 10
z=3
The solution to the equation is z = 3.
To solve for z in the equation 3z - 5 + 2z = 25 - 5z, we can simplify and combine like terms on both sides:
3z + 2z + 5z = 25 + 5
Combining the terms on the left side gives:
10z = 30
Next, we isolate the variable z by dividing both sides of the equation by 10:
(10z)/10 = 30/10
This simplifies to:
z = 3
Therefore, the solution to the equation is z = 3.
To know more about equation:
https://brainly.com/question/10724260
#SPJ6
The radius of a circle is 10 cm. Find its circumference in terms of \piπ.
[tex]{ \bf{ \underbrace{Given :}}}[/tex]
Radius of the circle "[tex]r[/tex]" = 10 cm.
[tex]{ \bf{ \underbrace{To\:find:}}}[/tex]
The circumference of the circle.
[tex]{ \bf{ \underbrace{Solution :}}}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:20\:π\:cm.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:2πr }[/tex]
[tex] = 2 \: \pi \times 10 \: cm \\ \\ = 20 \: \pi \: cm[/tex]
Therefore, the circumference of the circle is 20 π cm.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
Find the distance between a point (–7, –19) and a horizontal line at y = 3.
If you apply the changes below to the reciprocal parent function, F(x) =
what is the equation of the new function?
• Horizontally stretch by multiplying by 1/6
• Translate 5 units right.
Answer:
The answer is "Option B".
Step-by-step explanation:
Please find the complete question in the attached file.
The Horizontal stretch [tex]=(\frac{1}{6 \ x})\\\\[/tex]
Translation by 5 units right[tex]=( \frac{1}{6\ x})-5[/tex]
Answer:
its A i used his answer and got it wrong
Mention 3 places
where you can get
pre-approved for a
car loan
Answer:
Auto Credit Express, Carvana, Capital one auto loan
help please quick please
Answer:
the answer is 3.5
Step-by-step explanation:
PLEASE ANSWER!! Find EF using Pythagorean theorem. Express answer to one decimal place.
Answer:
115.5 cm
Step-by-step explanation:
A^2 + B^2 = C^2
41^2 + 108^2 = C^2
C^2 = 13345
C = 115.5 cm
I’ll give brainliest
OPTION A
y= 3x+6
This equation satisfies for all the value given in the table.
For (0,6)
y = 3(0)+6 = 6
For (2,12)
y=3(2) +6 = 6+6= 12
And so on.
In a sample of 400 students, 60% of them prefer eBooks.
A.Find 98% Confidence Interval for the proportion of all students that prefer ebooksb.
b. Find the margin of erro
Answer:
a) The 98% Confidence Interval for the proportion of all students that prefer ebooks is (0.55, 0.65).
b) The margin of error is of 0.05.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is of:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In a sample of 400 students, 60% of them prefer eBooks.
This means that [tex]n = 400, \pi = 0.6[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.054[/tex].
Margin of error -> Question b:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]M = 2.054\sqrt{0.6*0.4}{400}}[/tex]
[tex]M = 0.05[/tex]
The margin of error is of 0.05.
A.Find 98% Confidence Interval for the proportion of all students that prefer ebooksb.
Sample proportion plus/minus the margin of error.
0.6 - 0.05 = 0.55
0.6 + 0.05 = 0.65
The 98% Confidence Interval for the proportion of all students that prefer ebooks is (0.55, 0.65).
Xavier shoots a basketball in which the height, in feet, is modeled by the equation,h(t) = -4t2 + 10 + 18, where t is time, in
seconds. What is the maximum height of the basketball?
Answer:
The maximum height of the basketball is of 24.25 feet.
Step-by-step explanation:
Vertex of a quadratic function:
Suppose we have a quadratic function in the following format:
[tex]f(x) = ax^{2} + bx + c[/tex]
It's vertex is the point [tex](x_{v}, y_{v})[/tex]
In which
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = -\frac{\Delta}{4a}[/tex]
Where
[tex]\Delta = b^2-4ac[/tex]
If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].
Height of the basketball:
Given by the following function:
[tex]h(t) = -4t^2 + 10t + 18[/tex]
Which is a quadratic function with [tex]a = -4, b = 10, c = 18[/tex]
What is the maximum height of the basketball?
y(in this case h) of the vertex. So
[tex]\Delta = b^2-4ac = 10^2 - 4(-4)(18) = 388[/tex]
[tex]y_{v} = -\frac{388}{4(-4)} = 24.25[/tex]
The maximum height of the basketball is of 24.25 feet.
please help now
Your pump empties the water from a swimming pool in 4 hours. When your friend's pump is used together with your pump, the pool is emptied in 48 minutes. How long (in hours) does it take your friend's pump to empty the pool when working alone?
Answer:
Time taken for pump B to empty pool = 1 hour.
Step-by-step explanation:
Given:
Time taken for pump A to empty pool = 4 hour
Time taken together = 48 minutes = 48 / 60 = 4/5 hour
Find:
Time taken for pump B to empty pool
Computation:
Assume;
Time taken for pump B to empty pool = a
1/4 + 1/a = 1 / (4/5)
1/4 + 1/a = 5/4
1/a = 5/4 - 1/4
1/a = (5 - 1) / 4
1/a = 1
a = 1
Time taken for pump B to empty pool = 1 hour.
[tex] {x}^{2} + \sqrt{x} + \sqrt[5]{x} [/tex]
what is f'(3) of this equation?
Answer:
[tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
Step-by-step explanation:
Just to make it easier to see, [tex]\sqrt{x} = x^{\frac{1}{2} }[/tex] and [tex]\sqrt[5]{x} = x^{\frac{1}{5} }[/tex] This way we could more easily use the power rule of derivatives.
So if f(x) = [tex]x^{2} +x^{\frac{1}{2} } +x^{\frac{1}{5} }[/tex] then f'(x) will be as follows.
f'(x) = [tex]x^{1} +\frac{1}{2} x^{-\frac{1}{2} } +\frac{1}{5} x^{-\frac{4}{5} } = x +\frac{1}{2x^{\frac{1}{2} }} +\frac{1}{ 5x^{\frac{4}{5} }} = x +\frac{1}{2\sqrt{x}} +\frac{1}{ 5\sqrt[5]{x^4} }[/tex]
to find f'(3) just plug 3 into f'(x) so [tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
At Downunder Farms, Jamie is packing kiwi fruit in shipping crates. Each tray
holds 58 kiwis, and he can put 6 trays in a crate. How many kiwis does the
crate contain when it is full?
A. 64 kiwis
B. 290 kiwis
C. 348 kiwis
D. 174 kiwis
Answer:
348 kiwis
Step-by-step explanation:
Jamie is packing Kiwie fruits into a tray
Each tray holds 58 kiwis
He can put 6 trays in a crate
Hence when the craye is full the number of kiwis it will contain can be calculated as follows
°= 58×6
= 348 kiwis
Kern Shipping Inc. has a requirement that all packages must be such that the combined length plus the girth (the perimeter of the cross section) cannot exceed 99 inches. Your goal is to find the package of maximum volume that can be sent by Kern Shipping. Assume that the base is a square.
a. Write the restriction and objective formulas in terms of x and y. Clearly label each.
b. Use the two formulas from part (a) to write volume as a function of x, V(x). Show all steps.
Answer:
Step-by-step explanation:
From the given information:
a)
Assuming the shape of the base is square,
suppose the base of each side = x
Then the perimeter of the base of the square = 4x
Suppose the length of the package from the base = y; &
the height is also = x
Now, the restriction formula can be computed as:
y + 4x ≤ 99
The objective function:
i.e maximize volume V = l × b × h
V = (y)*(x)*(x)
V = x²y
b) To write the volume as a function of x, V(x) by equating the derived formulas in (a):
y + 4x ≤ 99 --- (1)
V = x²y --- (2)
From equation (1),
y ≤ 99 - 4x
replace the value of y into (2)
V ≤ x² (99-4x)
V ≤ 99x² - 4x³
Maximum value V = 99x² - 4x³
At maxima or minima, the differential of [tex]\dfrac{d }{dx}(V)=0[/tex]
[tex]\dfrac{d}{dx}(99x^2-4x^3) =0[/tex]
⇒ 198x - 12x² = 0
[tex]12x \Big({\dfrac{33}{2}-x}}\Big)=0[/tex]
By solving for x:
x = 0 or x = [tex]\dfrac{33}{2}[/tex]
Again:
V = 99x² - 4x³
[tex]\dfrac{dV}{dx}= 198x -12x^2 \\ \\ \dfrac{d^2V}{dx^2}=198 -24x[/tex]
At x = [tex]\dfrac{33}{2}[/tex]
[tex]\dfrac{d^2V}{dx^2}\Big|_{x= \frac{33}{2}}=198 -24(\dfrac{33}{2})[/tex]
[tex]\implies 198 - 12 \times 33[/tex]
= -198
Thus, at maximum value;
[tex]\dfrac{d^2V}{dx^2}\le 0[/tex]
Recall y = 99 - 4x
when at maximum x = [tex]\dfrac{33}{2}[/tex]
[tex]y = 99 - 4(\dfrac{33}{2})[/tex]
y = 33
Finally; the volume V = x² y is;
[tex]V = (\dfrac{33}{2})^2 \times 33[/tex]
[tex]V =272.25 \times 33[/tex]
V = 8984.25 inches³
33. Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5
b. The constant is 2
C. The power is 10
d. The constant is 5
Answer:
Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5. ( true)
b. The constant is 2
C. The power is 10
d. The constant is 5
A ramp is in the shape of a triangle
Answer:
Step-by-step explanation:
Which expression entered into a graphing calculator will return the probability
that 35 or fewer heads come up when flipping a coin 100 times?
A. binomcdf(35, 100, 0.5)
B. binomcdf(100, 0.5, 35)
C. binomcdf(100, 35, 0.5)
O D. binomcdf(35, 0.5, 100)
Answer:
B. binomcdf(100, 0.5, 35)
Step-by-step explanation:
Binomcdf function:
The binomcdf function has the following syntax:
binomcdf(n,p,a)
In which n is the number of trials, p is the probability of a success in a trial and a is the number of sucesses.
35 or fewer heads come up when flipping a coin 100 times.
100 coins are flipped, which means that n = 100.
Equally as likely to be heads or tails, so p = 0.5
35 or fewer heads, so a = 35.
Then
binomcdf(n,p,a) = binomcdf(100,0.5,35)
The correct answer is given by option B.
Which inequality is true?
А. Зп > 9
B. 7 + 8< 11
C. 27 -1 < 5
D. 2 > 2
SUBMIT
< PREVIOUS
9514 1404 393
Answer:
А. Зп > 9
Step-by-step explanation:
The inequality of A may or may not be true. (It is true only if n > 3.) All of the others are definitely false.
The retail cost of a TV is 50 % more than its wholesale cost. Therefore, the retail cost is ____ times the wholesale cost.
Answer:
Let the retail cost be x and the wholesale cost be y
Step-by-step explanation:
x = y + 0.50y
x = 1.50y
Therefore the retail cost is 1.50 times the wholesale cost.
On a coordinate plane, triangle B C D has points (negative 4, 1), (negative 2, 1), (negative 4, 3). Triangle B prime C prime D prime has points (negative 1, negative 4), (negative 1, negative 2), (negative 3, negative 4). Triangle BCD is rotated counterclockwise to form triangle B’C’D’. What is the angle of rotation? 45° 90° 180° 360°
9514 1404 393
Answer:
90° CCW
Step-by-step explanation:
The transformation from B to B' is ...
B(-4, 1) ⇒ B'(-1, -4)
(x, y) ⇒ (-y, x) . . . . . matches the transformation for 90° CCW
Answer:
90 degrees
Step-by-step explanation:
Is this the correct answer?
Answer:
Correct.
Step-by-step explanation:
It looks good to me.
Good job!
Two trains leave a train station at the same time. One travels north at 12 miles per hour. The other train travels south at 9 miles per hour. In
how many hours will the two trains be 88.2 miles apart?
O 4.7 hours
O 4.2 hours
O 2.1 hours
O 8.4 hours
Answer:
4.2 hours
Step-by-step explanation:
Will choose brainliest! Please help! (This is Khan Academy)
Answer:
Option B. A = (5/6)^-⅛
Step-by-step explanation:
From the question given above, we obtained:
(5/6)ˣ = A¯⁸ˣ
We can obtain the value of A as follow:
(5/6)ˣ = A¯⁸ˣ
Cancel x from both side
5/6 = A¯⁸
Recall:
M¯ⁿ = 1/Mⁿ
A¯⁸ = 1/A⁸
Thus,
5/6 = 1/A⁸
Cross multiply
5 × A⁸ = 6
Divide both side by 5
A⁸ = 6/5
Take the 8th root of both sides
A = ⁸√(6/5)
Recall
ⁿ√M = M^1/n
Thus,
⁸√(6/5) = (6/5)^⅛
Therefore,
A = (6/5)^⅛
Recall:
(A/B)ⁿ = (B/A)¯ⁿ
(6/5)^⅛ = (5/6)^-⅛
Therefore,
A = (5/6)^-⅛
Question 14 of 14
Which expression gives the distance between the points
(1,-2) and (2, 4)?
O A. (1+23° +(2-47
O B. (1-2)*+(-2-4)
O c. 111-23 +4:32-47
O D. Hit+2y +(2-479
Answer:
c
Step-by-step explanation:
Drew hiked two trails Rocky Hill is 7 /8 miles long battle in Brook Trail is 4/5 mile long how much further did Drew hike on Rocky Hill Trail then I'll babbling Brook Trail write an equation
Write the word sentence as an inequality.
3.2 less than a number t is at most 7.5
t-3.2 ≤ 7.5
"at most" means less than or equal to
Could anyone help me please?
9514 1404 393
Answer:
4
Step-by-step explanation:
In order to evaluate f(g(-1)), you first need to find g(-1).
The graph of g(x) crosses the line x = -1 at y = 1, so g(-1) = 1.
The second step is evaluating f(1). The graph of f(x) crosses the line x=1 at y=4, so f(1) = 4.
f(g(-1)) = f(1) = 4