Answer:
31475404.8 kg/day
Explanation:
From the information given:
The power plant capacity W = 3570 MW
Energy content of the coal = 28000 kJ/kg
let assume that the thermal efficiency = 35%
Recall that:
1 kw = 3600 kJ/hr provided that the energy conversion is 100% efficient
But assuming the thermal efficiency = 35%.
Then:
Heat input = 3600/0.35 = 10286 kJ/kw.hr
Now, for producing 1 kw.hr, the quantity of the required coal = 10286/28000
= 0.36736 kg
For 3570 MW, the amount of coal that must be input is:
= 0.36736 kg × 3570000
= 1311475.2 kg/hr
= 1311475.2 × 24 kg/day
= 31475404.8 kg/day
A hockey puck is sliding across the ice with an initial velocity of 25 m/s. If the coefficient of friction between the hockey puck and the ice is 0.08, how much time (in seconds) will it take before the hockey puck slides to a stop
Answer: 31.89seconds
Explanation:
Based on the information given, we are meant to calculate deceleration which will be:
t = V/a
where, a = mg
Therefore, t = V/mg
t = 25/0.08 × 9.8
t = 25/0.784
t = 31.89seconds
Therefore, the time that it will take before the hockey puck slides to a stop is 31.89seconds.
3. Four charges having charge q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges
Answer:
Fr = 1.91 * 9*10⁹*q²/L²
Explanation:
Let´s say that the corners of the square are A B C and D
We are going to find out the force on the charge placed on B ( the charge placed in the upper right corner.
As all the charges are positive (the same sign), then all the three forces on the charge in B are of rejection.
Force due to charge placed in A
module Fₓ = K* q² / L² in the direction of x
Force due to charge placed in C
module Fy = K* q²/L² in the direction of y
Force due to the charge placed in D
That force will have the direction of the diagonal of the square, and the distance between charges placed in D and A is the length of the diagonal.
d² = L² + L² = 2*L²
d = √2 * L
The module of the force due to charge place in D
F₄₅ = K*q²/ 2*L²
To get the force we need to add first Fₓ and Fy
Fx + Fy = F₁
module of F₁ = √ Fx² + Fy² the direction will be the same as the diagonal of the square then:
F₁ = √ ( K* q²/L² )² + ( K* q²/L² )²
F₁ = √ 2 * K*q²/L²
And now we add forces F₁ and F₄₅ to get the net force Fr on charge in point B.
The direction of Fr is the direction of the diagonal and is of rejection
the module is
Fr = F₁ * F₄₅
Fr = √ 2 * K*q²/L² + K*q²/ 2*L²
Fr = ( √ 2 + 0,5 ) * K*q² /L²
K = 9*10⁹ Nm²C²
Fr = 1.91 * 9*10⁹*q²/L²
We don´t know units of L and q
You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a
If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:
D. Δt= √2Δd/a
What is the equation for finding the length of time for a free fall?The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².
So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.
Learn more about free fall here:
https://brainly.com/question/12167131
#SPJ1
The equation of damped oscillations is given in the form x=0.05e^-0.25sin½πt (m). Find the velocity of an oscillating point at the moments of time: 0, T, 2T, 3T and 4T.
Explanation:
The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum
A motorist travels due North at 90 km/h for 2 hours. She changes direction and travels West at 60 km/for 1 hour.
a) Calculate the average speed of the motorist [4]
b) Calculate the average velocity of the motorist.
Answer:
a) S = 63.2 km/h
b) V = 63.2 km/h*(-0.316 , 0.949)
Explanation:
Let's define:
North as the positive y-axis
East as the positive x-axis.
Also, remember the relation:
Distance = Time*Speed
Let's assume that she starts at the position (0km, 0km)
Then she travels due North at 90km/h for two hours, then the displacement is
90km/h*2h = 180km to the north
Then the new position is:
(0km, 180km)
Then she travels West at 60km/h for one hour.
Then the distance traveled to the West (negative x-axis) is:
60km/h*1h = 60km to the west
Then the new position is:
(-60km, 180km).
a) The average speed is defined as the quotient between the displacement and the time.
We know that the total time traveled is 3 hours.
And the displacement is the difference between the final position and the initial position.
this is:
D = √( -60km - 0km)^2 + (180km - 0km)^2)=
D = √( (60km)^2 + (180km)^2) = 189.7 km
Then the average speed is:
S = (189.7 km)/(3 h) = 63.2 km/h
b) Now we want to find the average velocity, this will be equal to the average speed times a versor that points from the origin to the direction of the final position.
So, if the final position is (-60km, 180km)
We need to find a vector that represents the same angle, but that is on the unit circle.
Then, if the module of the final position is 189.7 km (as we found above), then the versor is just given by:
(-60km/ 189.7 km, 180km/ 189.7 km)
(-60/189.7 , 180/189.7)
We can just check that the module of the above versor is 1.
[tex]module = \sqrt{(\frac{-60}{189.7} )^2 + (\frac{180}{189.7} )^2} = \frac{1}{189.7}* \sqrt{(-60 )^2 + (180 )^2} = 1[/tex]
Then the average velocity is:
V = 63.2 km/h*(-60/189.7 , 180/189.7)
We can simplify our versor so the velocity equation is easier to read:
V = 63.2 km/h*(-0.316 , 0.949)
The liquid and gaseous state of hydrogen are in thermal equilibrium at 20.3 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of the molecules (in m/s). What If? At what temperature (in K) would an atom of xenon in a canister of xenon gas have the same most probable speed as the hydrogen in thermal equilibrium at 20.3 K?
Answer:
a) the most probable speed of the molecules is 409.2 m/s
b) required temperature of xenon is 1322 K
Explanation:
Given the data in the question;
a)
Maximum probable speed of hydrogen molecule (H₂)
[tex]V_{H_2[/tex] = √( 2RT / [tex]M_{H_2[/tex] )
where R = 8.314 m³.Pa.K⁻¹.mol⁻¹ and given that T = 20.3 K
molar mass of H₂; [tex]M_{H_2[/tex] = 2.01588 g/mol
we substitute
[tex]V_{H_2[/tex] = √( (2 × 8.314 × 20.3 ) / 2.01588 × 10⁻³ )
[tex]V_{H_2[/tex] = √( 337.5484 / 2.01588 × 10⁻³ )
[tex]V_{H_2[/tex] = 409.2 m/s
Therefore, the most probable speed of the molecules is 409.2 m/s
b)
Temperature of xenon = ?
Temperature of hydrogen = 20.3 K
we know that;
T = (Vxe² × Mxe) / 2R
molar mass of xenon; Mxe = 131.292 g/mol
so we substitute
T = ( (409.2)² × 131.292 × 10⁻³) / 2( 8.314 )
T = 21984.14167 / 16.628
T = 1322 K
Therefore, required temperature of xenon is 1322 K
who is corazon aquino?
Answer:
Maria Corazon Sumulong Cojuangco Aquino, popularly known as Cory Aquino, was a Filipino politician who served as the 11th President of the Philippines, the first woman to hold that office.
Answer:
Former President of the Philippines
Explanation:
URGENT
The component of solid-state physics that works with and/or heats metals and alloys to give them certain desired
shapes or properties is..
Answer:
the is metallurgy .....
From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.
Answer:
time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.
Explanation:
Height, h = 15 m
Newton's second law
Force = mass x acceleration
The unit of gravitational force is Newton and the value is m x g.
where, m is the mas and g is the acceleration due to gravity.
Let the time of fall is t.
Use second equation of motion
[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]
Let the final speed is v.
Use third equation of motion
[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]
At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
At a rock concert, the sound intensity 1.0m in front of the bank of loudspeakers is 0.10 W/m^2. A fan is 30.0m from the loudspeakers. Her eardrums have a diameter of 8.4mm.How much energy is transferred to each eardrum in one second?
Answer: The amount of energy transferred to each eardrum in one second is [tex]6.2 \times 10^{-9} J[/tex].
Explanation:
Given: Intensity = 0.10 [tex]W/m^{2}[/tex]
Now, at 30.0 m the intensity will be calculated as follows.
[tex]Intensity = \frac{(30.0 m)^{2}}{(1 m)^{2}}\\= 900[/tex]
This means that the intensity is 900 times less assuming that the wave is spherical.
Hence, the new intensity is calculated as follows.
[tex]\frac{0.10 W/m^{2}}{900}\\= 1.11 \times 10^{-4} W/m^{2}[/tex]
The area of ear drum is expressed as follows.
[tex]Area = \pi \times r^{2}\\= 3.14 \times (4.2 mm)^{2}\\= 5.54 \times 10^{-5} m^{2}\\[/tex]
Formula used to calculate energy is as follows.
[tex]P = I \times a[/tex]
where,
P = power or energy
I = intensity
a = area
Substitute the values into above formula as follows.
[tex]P = I \times a\\= 1.11 \times 10^{-4} W/m^{2} \times 5.54 \times 10^{-5} m^{2}\\= 6.2 \times 10^{-9} W[/tex]
Thus, we can conclude that amount of energy transferred to each eardrum in one second is [tex]6.2 \times 10^{-9} J[/tex].
what are the symptoms of hepatitis 'b'
Water with a volume flow rate of 0.001 m3/s, flows inside a horizontal pipe with diameter of 1.2 m. If the pipe length is 10m and we assume fully developed internal flow, find the pressure drop across this pipe length.
Answer:
[tex]\triangle P=1.95*10^{-4}[/tex]
Explanation:
Mass [tex]m=0.001[/tex]
Diameter [tex]d=1.2m[/tex]
Length [tex]l=10m[/tex]
Generally the equation for Volume flow rate is mathematically given by
[tex]Q=AV[/tex]
[tex]V=\frac{Q}{\pi/4D^2}[/tex]
[tex]V=\frac{0.001}{\pi/4(1.2)^2}[/tex]
[tex]V=8.84*10^{-4}[/tex]
Generally the equation for Friction factor is mathematically given by
[tex]F=\frac{64}{Re}[/tex]
Where Re
Re=Reynolds Number
[tex]Re=\frac{pVD}{\mu}[/tex]
[tex]Re=\frac{1000*8.84*10^{-4}*1.2}{1.002*10^{-3}}[/tex]
[tex]Re=1040[/tex]
Therefore
[tex]F=\frac{64}{Re}[/tex]
[tex]F=\frac{64}{1040}[/tex]
[tex]F=0.06[/tex]
Generally the equation for Friction factor is mathematically given by
[tex]Head loss=\frac{fLv^2}{2dg}[/tex]
[tex]H=\frac{0.06*10*(8.9*10^-4)^2}{2*1.2*9.81}[/tex]
[tex]H=19.9*10^{-9}[/tex]
Where
[tex]H=\frac{\triangle P}{\rho g}[/tex]
[tex]\triangle P=\frac{19.9*10^{-9}}{10^3*(9.81)}[/tex]
[tex]\triangle P=H*\rho g[/tex]
[tex]\triangle P=1.95*10^{-4}[/tex]
Computer use ___code to transmit information
Binary code is the answer
Answer:
binary code is the answer of blank
Calculate the battery voltage to send 2.5 A of current through a light bulb with 3.6 ohms of resistance
Answer:
9 volts
Explanation:
[tex]v = i \times r \\ v = 2 .5 \times 3.6 \\ v = 9[/tex]
Can anyone help
Me please the question is on the photo that I attached it to
Answer:
2.8 MW
Explanation:
There are 7 wind turbines in the wind farm as shown in the diagram. Thus, the energy output by one turbine is 1/7 if the total energy output. So, 19.6/7=2.8MW
A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.
Answer:
Explanation:
Given that:
Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm
For objective lens of focal length f₁ = 20 mm
s₁' = 120 mm + 20 mm = 140 mm
∴
Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{140}{20}[/tex]
[tex]m_1 = 7 \ m[/tex]
For objective lens of focal length f₁ = 4 mm
s₁' = 120 mm + 4 mm = 124 mm
[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{124}{4}[/tex]
[tex]m_1 = 31 \ m[/tex]
For objective lens of focal length f₁ = 1.4 mm
s₁' = 120 mm + 1.4 mm = 121.4 mm
[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]
[tex]m_1 = \dfrac{121.4}{1.4}[/tex]
[tex]m_1 = 86.71 \ m[/tex]
The magnification of the eyepiece is given as:
[tex]m_e = 5X \ and \ m_e = 15X[/tex]
Thus, the largest angular magnification when [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]
[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]
= 86.71 × 15
= 1300.65
The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]
[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]
= 7 × 5
= 35
The largest magnification will be 1300.65 and the smallest magnification will be 35.
What is magnification?Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.
Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.
It is given in the question:
Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm
now we will calculate the magnification for all three focal lengths of the objective lens.
Also, each objective forms an image 120 mm beyond its second focal point.
(1) For an objective lens of focal length [tex]f_1=20 \ mm[/tex]
[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]
Magnification will be calculated as
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]
(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]
s₁' = 120 mm + 4 mm = 124 mm
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]
(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]
s₁' = 120 mm + 1.4 mm = 121.4 mm
[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]
Now the magnification of the eyepiece is given as:
[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]
Thus, the largest angular magnification when
[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]
[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]
[tex]m_{large}=86.71\times 15=1300.65[/tex]
The smallest angular magnification derived when
[tex]m_1=7\ \ \ \ m_e=5[/tex]
[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]
[tex]m_{small}=7\times 5=35[/tex]
Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.
To know more about magnification follow
https://brainly.com/question/1599771
Newton's third law states that for every action force there is an equal and opposite reaction force. An idiot in your class says, "Wow that means everything cancels and nothing ever moves, it is all an illluussion! Wowwwwww" What statement best proves to him he is an idiot.
a) The equal and opposite forces act on different objects
b) If there is even a slight imbalance in the third law there will be a net force causing acceleration
C) he's right, all forces cancel, any motion I have ever seen is wrong
[tex] \huge \mathfrak{Answer.... }[/tex]
The Correct Answer is :
B. if there is even a slight imbalance in third law there will be a net force causing acceleration.
A slight difference in the forces can result in acceleration of an object.
[tex] \mathrm{✌TeeNForeveR✌}[/tex]
what is the application of a spherometer in the medical field?
Answer:
To correct the defects of vision by measuring the radius of curvature and thus the power of the lenses.
Explanation:
A spherometer is an instrument used to measure the curvature of objects such as lenses and curved mirrors.
Generally it consists of a fine screw which is moving in a nut carried on the center of a 3 small legged table or frame. The feet forms the vertices of an equilateral triangle. The lower end of the screw and those of the table legs are finely tapered and terminate in hemispheres.
If the screw has two turns of the thread to the milli meter the head is generally divided into 50 equal parts, so that differences of 0.01 millimeter may be measured without using a vernier scale.
The spherometer is used to measure the radius of curvature of the lenses so that the opthalmologist find the focal length of the lens and then give the power to the lens to correct the defects of vision.
Example 9.1
The Archer
Let us consider the situation proposed at the beginning of
this section. 160kg archer stands at rest on frictionless ice
and fires a 0.50-kg arrow horizontally at 50 m s (Fig. 9.2).
With what velocity does the archer move across the ice after
firing the arrow
v1f = -0.16 ms
Explanation:
Use the conservation law of linear momentum:
m1v1i + m2v2i = m1v1f + m2v2f
where
v1i = v2i = 0
m1 = 160 kg
m2 = 0.50 kg
v2f = 50m/s
v1f = ?
So we have
0 = (160 kg)v1f + (0.5 kg)(50 m/s)
v1f = -(25 kg-m/s)/(160 kg)
= -0.16 m/s
Note: the negative sign means that its direction is opposite that of the arrow.
A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting
Answer:
the person is sitting 1.5 m from the left end of the board
Explanation:
Given the data in the question;
Wb = 125 N
Wm = 500 N
T₂ = 250 N
Now, we know that;
T₁ + T₂ = Wb + Wm
T₁ + 250 = 125 + 500
T₁ = 125 + 500 - 250
T₁ = 375 N
so tension of the left chain is 375 N.
Now, taking torque about the left end
500 × d + 125 × 2 = 250 × 4
500d + 250 = 1000
500d = 1000 - 250
500d = 750
d = 750 / 500
d = 1.5 m
Therefore, the person is sitting 1.5 m from the left end of the board.
The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 3.0 rev/s in 13.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 25 s interval
Answer:
The tub turns 37.520 revolutions during the 25-second interval.
Explanation:
The total number of revolutions done by the tub of the washer ([tex]\Delta n[/tex]), in revolutions, is the sum of the number of revolutions done in the acceleration ([tex]\Delta n_{1}[/tex]), in revolutions, and deceleration stages ([tex]\Delta n_{2}[/tex]), in revolutions:
[tex]\Delta n = \Delta n_{1} + \Delta n_{2}[/tex] (1)
Then, we expand the previous expression by kinematic equations for uniform accelerated motion:
[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} - \ddot n_{2} \cdot t_{2}^{2})[/tex] (1b)
Where:
[tex]\ddot n_{1}, \ddot n_{2}[/tex] - Angular accelerations for acceleration and deceleration stages, in revolutions per square second.
[tex]t_{1}, t_{2}[/tex] - Acceleration and deceleration times, in seconds.
And each acceleration is determined by the following formulas:
Acceleration
[tex]\ddot n_{1} = \frac{\dot n}{t_{1}}[/tex] (2)
Deceleration
[tex]\ddot n_{2} = -\frac{\dot n}{t_{2} }[/tex] (3)
Where [tex]\dot n[/tex] is the maximum angular velocity of the tub of the washer, in revolutions per second.
If we know that [tex]\dot n = 3\,\frac{rev}{s}[/tex], [tex]t_{1} = 13\,s[/tex] and [tex]t_{2} = 12\,s[/tex], then the quantity of revolutions done by the tub is:
[tex]\ddot n_{1} = \frac{3\,\frac{rev}{s} }{13\,s}[/tex]
[tex]\ddot n_{1} = 0.231\,\frac{rev}{s^{2}}[/tex]
[tex]\ddot n_{2} = -\frac{3\,\frac{rev}{s} }{12\,s}[/tex]
[tex]\ddot n_{2} = -0.25\,\frac{rev}{s^{2}}[/tex]
[tex]\Delta n = \frac{1}{2}\cdot ( \ddot n_{1}\cdot t_{1}^{2} + \ddot n_{2} \cdot t_{2}^{2})[/tex]
[tex]\Delta n = \frac{1}{2}\cdot \left[\left(0.231\,\frac{rev}{s^{2}} \right)\cdot (13\,s)^{2}-\left(-0.25\,\frac{rev}{s^{2}} \right)\cdot (12\,s)^{2}\right][/tex]
[tex]\Delta n = 37.520\,rev[/tex]
The tub turns 37.520 revolutions during the 25-second interval.
En 2.0 s, una particula con aceleración constante a lo largo del eje x se mueve desde x =10 m
hasta x =50 m. La rapidez al final del recorrido es de 10 m/s. ¿Cuál es la aceleración de la partícula?
which of the following is the correct description of momentum?
-the product of mass and acceleration -the product of mass and velocity
-velocity divided by mass
-acceleration divided by mass
Answer:
The product of mass and velocity is the correct answer
Explanation:
Momentum is defined as mass × velocity
p = mv
Answer:
The product of mass and velocity
Explanation:
I just did it and got it right with a 100%
Posted 1/3/23
What are the practical systems under continuos time system?
Answer:
REVIEWS
Wing-Kuen Ling, in Nonlinear Digital Filters, 2007
Controllability and observability
For a continuous time system, assume that x(0) = 0. ∀x1, if ∃t1 > 0 and u(t) such that x(t1) = x1, then the continuous time system is said to be reachable. Similarly, for a discrete time system, assume that x(0) = 0. ∀x1, if ∃n1 > 0 and u(n) such that x(n1) = x1, then the discrete time system is said to be reachable. For a continuous time system, if ∀x0, x1, ∃t1 > 0 and u(t) such that x(0) = x0 and x(t1) = x1, then the continuous time system is said to be controllable. Similarly, for a discrete time system, if ∀x0, x1, ∃n1 > 0 and u(n) such that x(0) = x0 and x(n1 = x1, then the discrete time system is said to be controllable. For LTI systems, the set of reachable state is R(|BAB… AnB|), where R(A) is defined as the range of A, that is R(A) = {y : y = Ax}. Also, the LTI systems are controllable if and only if R(A) = Rn Or in other words, rank(|BAB… AnB|) = n.
How can i prove the conservation of mechanical energy?
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
how can the starch be removed from the leaves of potted plants
Answer:
Explanation:
There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.
Speeding up
Slowing down
Standing still
Holding at a constant non-zero velocity
Answer:
speeding up is the answer
Explanation:
from the graph it can be seen that as the time (horizontal axis) increases the speed of vehicle (vertical axis) increases
A toy car of mass 600g moves through 6m in 2 seconds. The average kinetic energy of the toy car is
Answer:
12
Explanation:
I'm a beginner so am not sureeeeee
Mention & Instrument used to measure
the mass of the body.
Answer:
a scale is used to measure the mass of the body