Determining a Local Maximum and Minimum
Analyze the table of values for the continuous function,
f(x), to complete the statements.
A local maximum occurs over the interval __
A local minimum occurs over the interval ___
Answer:
x=-1x=-3Step-by-step explanation:
Algebra level
find the measure of one exterior angle for the following regular polygon
Answer:
36 degrees
Step-by-step explanation:
10 corners/sides.
the sum of all exterior angles in a polygon is always 360 degrees.
so, one exterior angle here is 360/10 = 36 degrees
8.52 The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches. Pediatricians regularly measure the heights of toddlers to determine whether there is a problem. There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that [tex]\mu = 32, \sigma = 1.5[/tex]
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 32}{1.5}[/tex]
[tex]X - 32 = -1.645*1.5[/tex]
[tex]X = 29.5[/tex]
Heights of 29.5 and below could be a problem.
is 23/17 a rational number?
Answer:
rational number
Step-by-step explanation:
a rational number can be written as a/b where a and b are integers
23/17 = a/b where a = 23 and b = 17
This is a rational number
Two motor mechanics, Ravi and Raman, working together can overhaul a scooter in 6 hrs. Ravi alone can do the job in 12 hrs. In how many hrs.can Raman alone do it?
Answer:
12 hours
Step-by-step explanation:
For Ravi,
12 hours = 1 job
Given this, we can figure out how much Ravi does in 6 hours, and from that, we can figure out how much Raman can do in 6 hours. Finally, we can use that to figure out how many hours it would take for Raman to do the job.
12 hours = 1 job
First, to find how much Ravi does in 6 hours, we need to make the equation
6 hours = something
To do this, we know that 12/2 = 6, so we can divide both sides by 2 in the original equation to get
6 hours = 1/2 job.
Therefore, in 6 hours, Ravi does 1/2 of the job. As Raman and Ravi do the job in 6 hours, Raman must do the remaining work, or 1-1/2 = 1/2 of the job in 6 hours.
Therefore, for Raman,
6 hours = 1/2 job
We need to make the equation so that
1 job = something, as that something would be how many hours it would take for Raman to do the job. We know that 1/2 * 2 = 1, so we can multiply both sides by 2 to get
12 hours = 1 job for Raman.
Darryl has written 60 percent, or 12 pages, of his history report. Darryl wants to figure out how many total pages he needs to write. Darryl’s work is shown below.
Step 1: Write 60 percent as a ratio. StartFraction part Over whole EndFraction = StartFraction 60 Over 100 EndFraction
Answer:
total pages = 20
Step-by-step explanation:
60% of an unknown number is 12
Let the unknown number (total pages) be x.
60/100 of x = 12
60/100 * x = 12
3/5 x = 12
x = 12 * 5/3
x = 20
whats (-3,6) and (3,4) in y=mx+b form?
Answer:
y = -1/3x + 5
Step-by-step explanation:
First you want to find the slope with the formula y2-y1/x2-x1.
4-6/3-(-3)
-2/6
-1/3
Second you want to substitute one point and the slope to find the y-intercept.
6 = -3(-1/3) + b
6 = 1 + b
5 = b
Third you can fill in the information we solved for.
y = -1/3x + 5
Best of Luck!
A coin contains 9 grams of nickel and 161616 grams of copper, for a total weight of 25 grams.
What percentage of the metal in the coin is copper?
Answer:
64percents
Step-by-step explanation:
25-9=16 grams - weight of copper
(16/25)*100=64 percents
halp me children it's important
Answer:
64 cm³
Does the answer help you?
PLS HELP WILL MAKE FIRST RIGHT ANSWER GETS BRAINLIEST
What is the correct answer to this multiple choice question? Please help!!!
Answer:
By translating the function cos(x) 90 degrees to the right.
Step-by-step explanation:
The sine function is just the cosine function translated 90 degrees to the right. You can see the visualization below. They overlap.
If you're wondering why the diagram shows a shift in
[tex]\pi / 2[/tex]
That's just the equivalent to 90 degrees in radians.
Please hurry I will mark you brainliest
What is the equation of the line parallel to y = 2x - 4 and with the same x - intercept as 3x – 4y = 12?
Answer:
y=2x-8
Step-by-step explanation:
Hi there!
We want to find an equation of the line parallel to y=2x-4 but has the same x intercept as 3x-4y=12
Parallel lines have the same slope, but different y intercepts
In y=2x-4, which is written in y=mx+b form, m is the slope and b is the y intercept
2 is in the place of where the slope would be, so the slope of that line is 2
That means the slope of the line parallel to it would also have a slope of 2
Here is the equation of the parallel line so far:
y=2x+b
We need to find b, the y intercept
Typically, we'll substitute a point into the equation to solve for b, but we don't have a point, yet
We're given that the new line has the same x intercept as 3x-4y=12
The x intercept is the point where the line passes through the x axis, and so the value of y at that point is 0
Let's substitute 0 for y in 3x-4y=12 and solve for x to find the x intercept
3x-4(0)=12
Multiply
3x=12
Divide both sides by 3
x=4
So the value of the x intercept is 4. As a point, it's (4,0)
So now substitute the values of the point (4,0) into y=2x+b to find b
0=2(4)+b
Multiply
0=8+b
Subtract 8 from both sides
-8=b
Substitute -8 as b into the equation
y=2x-8
Hope this helps!
Find the length of the third side .
Answer:
a^2 + b^2 = c^2
4+16 = c^2
20 = c^2
c = [tex]\sqrt{20}[/tex] = [tex]2\sqrt{5}[/tex]
Step-by-step explanation:
2/5 divided by 8/5 .......
Answer:
1/4
Step-by-step explanation:
2/5 divided by 8/5 is the same as 2/5 * 5/8. we cross out the same 5's to get 2/8. We simplify that to 1/4.
1/4 is our answer.
(x^2+1)(x-1)=0 help me pls
Answer:
x = ±i , x=1
Step-by-step explanation:
(x^2+1)(x-1)=0
Using the zero product property
x^2 +1 = 0 x-1= 0
x^2 = -1 x=1
Taking the square root of the equation on the left
sqrt(x^2) = sqrt(-1)
x = ±i where i is the imaginary number
We still have x=1 from the equation on the right
please help:
give an example of an undefined term and how it relates to a circle.
PLEASE help me!!!
Amina has two bags.
In the first bag there are 3 red balls and 7 green balls.
In the second bag there are 5 red balls and 4
green balls.
Amina takes at random a ball from the first bag.
She then takes at random a ball from the second bag.
(a) Complete the probability tree diagram.
Answer:
Step-by-step explanation:
first
3/10 & 7/10
second
5/9 & 4/9
Which relation is not a function?
Answer:
A
For something to be a function every x value bust have at most 1 y value and in A 9 has 2 y values so it cant be a function
3a
[tex] \frac{3a + a {}^{2} }{a} [/tex]
Simplify.
Answer:
(3+a)
Step-by-step explanation:
3a + a^2
-------------
a
Factor out an a in the numerator
a(3+a)
-------------
a
Cancel like terms
(3+a)
Step-by-step explanation:
[tex] \frac{3a + {a}^{2} }{a} \\ = \frac{3a}{a} + \frac{ {a}^{2} }{a} \\ = 3 + a \\ thank \: you[/tex]
As above, let
$$f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2}.$$Give a polynomial $g(x)$ so that $f(x) + g(x)$ has a horizontal asymptote of $y=0$ as $x$ approaches positive infinity.
Answer:
Hello,
Step-by-step explanation:
[tex]\dfrac{f(x)}{3} =\dfrac{x^4+x^3+x^2+1}{(x-1)(x+2)} \\\\=\dfrac{(x^2+3)(x-1)(x+2)-3x+7}{(x-1)(x+2)} \\=x^2+3-\dfrac{3x-7}{(x-1)(x+2)} \\\\=x^2+3-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} =-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\\ \lim_{x \to +\infty} (\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} )\\\\=0+0=0\\\\\\P(x)=-x^2-3[/tex]
Answer:
[tex]g(x)=-3x^2-9[/tex]
Explanation:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
We need p(x) need to be a degree 2 polynomial so the numerator of the second fraction is degree 4. Our goal is to cancel the terms of the first fraction's numerator that are of degree 2 or higher.
So let p(x)=ax^2+bx+c.
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
Plug in our p:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{(ax^2+bx+c)(x^2+x-2)}{x^2+x-2}[/tex]
Take a break to multiply the factors of our second fraction's numerator.
Multiply:
[tex](ax^2+bx+c)(x^2+x-2)[/tex]
=[tex]ax^4+ax^3-2ax^2[/tex]
+[tex]bx^3+bx^2-2bx[/tex]
+[tex]cx^2+cx-2c[/tex]
=[tex]ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)-2c[/tex]
Let's go back to the problem:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex]
Let's distribute that 3:
[tex]\frac{3x^4+3x^3+2x^2+3}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex
So this forces [tex]a=-3[/tex].
Next we have [tex]a+b=-3[/tex]. Based on previous statement this forces [tex]b=0[/tex].
Next we have [tex]-2a+b+c=-3[/tex]. With [tex]b=0[/tex] and [tex]a=-3[/tex], this gives [tex]6+0+c=-3[/tex].
So [tex]c=-9[tex].
Next we have the x term which we don't care about zeroing out, but we have [tex]-2b+c[/tex] which equals [tex]-2(0)+-9=-9[/tex].
Lastly, [tex]-2c=-2(-9)=18[/tex].
This makes [tex]p(x)=-3x^2-9[/tex].
This implies [tex]g(x)\frac{(-3x^2-9)(x^2+x-2)}{x^2+x-2}[/tex] or simplified [tex]g(x)=-3x^2-9[/tex]
if n(u) = 800. n(a) = 400. n(b) = 300 n(āūb) = 200 what is n(anb) and n(a)
If the lengths of the legs of a right triangle are 4 and 8, what is the length of the hypotenuse?
PLEASE HELP
Answer:
[tex]4\sqrt{5}[/tex]
Step-by-step explanation:
In order to solve this problem, we can use the pythagorean theorem, which is
a^2 + b^2 = c^2, where and b are the legs of a right triangle and c is the hypotenuse. Since we are given the leg lengths, we can substitute them in. So, where a is we can put in a 4 and where b is we can put in an 8:
a^2 + b^2 = c^2
(4)^2 + (8)^2 = c^2
Now, we can simplify and solve for c:
16 + 64 = c^2
80 = c^2
c = [tex]\sqrt{80}[/tex]
Our answer is not in simplified radical form because the number under is divisible by a perfect square, 16. We can divide the inside, 80, by 16, and add a 4 on the outside, as it is the square root of 16:
c = [tex]4\sqrt{5}[/tex]
The length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To find the length of the hypotenuse in a right triangle, we can use the Pythagorean theorem. According to the theorem, in a right triangle, the square of the hypotenuse's length is equal to the sum of the squares of the lengths of the other two sides.
In this case, let's label the lengths of the legs as 'a' and 'b', with 'a' being 4 and 'b' being 8. The hypotenuse, which we need to find, can be represented as 'c'.
Applying the Pythagorean theorem, we have:
[tex]a^2 + b^2 = c^2[/tex]
Substituting the given values:
[tex]4^2 + 8^2 = c^2[/tex]
16 + 64 = [tex]c^2[/tex]
80 = [tex]c^2[/tex]
To find the length of the hypotenuse 'c', we need to take the square root of both sides:
√80 = √ [tex]c^2[/tex]
√80 = c
The square root of 80 is approximately 8.94.
Therefore, the length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To know more about hypotenuse , here
https://brainly.com/question/2217700
#SPJ2
which expression is equivalent to (4^-3)^-6
a.) 4^3
b.) 4^-9
c.) 4^-18
d.) 4^18
Answer:
Answer:
The answer is d.) 4^18
The constant value which is multiplied by each term in a geometric sequence to obtain the next term.
Answer: Geometric sequence is a sequence of numbers that follows a pattern were the next term is found by multiplying by a constant called the common ratio.
Step-by-step explanation:
Answer:
NOSEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Step-by-step explanation:
amusement park is 1.50$ for children and $4 for adults. on certain day 220 people entered the park, and the admission fee collected totalled 630.00. how many children and how many adults were admitted? write and use an equation to solve
230.000 childrenㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer:
230 children
Step-by-step explanation:
please help have a lot of lessons
1.4 (x + 5) + 1.6x = 52
Simplify <3
Please help explanation if possible
Answer:
[tex]y = 2x + 7[/tex]
Step-by-step explanation:
Use Point Slope Form since we are given the slope and coordinates. Why is the slope 2x?
In Depth: Parallel lines never touch so they are Lines that have same slope but different y intercept. An example is a square. A square has four parallel sides. The upper and lower sides will never touch because they are the same slope and they both have a finite distance vertically between them.
Back to the question, let use the Point Slope Form,
[tex]y - y_{1} = m(x - x_{1})[/tex]
Where y1 is the y coordinate of the given point, m is the slope and x is the x coordinates of the given points.
Substitute
[tex]y - ( - 1) = 2(x - ( - 4)[/tex]
[tex]y + 1 = 2(x + 4)[/tex]
Simplify
[tex]y + 1 = 2x + 8[/tex]
[tex]y = 2x + 7[/tex]
Which of the following statements best describes the relationship between
any point on an ellipse and each of its two foci?
A. The quotient of the distances to each focus equals a certain
constant.
B. The difference of the distances to each focus equals a certain
constant.
C. The sum of the distances to each focus equals a certain constant.
D. The product of the distances to each focus equals a certain
constant.
Answer:
C
Step-by-step explanation:
The sum of distances from any point on the ellipse to each foci equals a certain amount, no matter what point on the ellipse it starts from. The foci are on the major radius of the ellipse (the longer length of horizontal/vertical). The foci are of equal distance from the center, with one on each side.
If you wanted to find where the foci are using the major and minor radius, we can find that, representing the distance between the center and any foci as g,
g² = major radius² - minor radius². Then, the distance between the center and the foci is equal to g
write down amultiple of 4 and 14 which is less than 30
28
How?
Multiples of 4=8,12,16,20,24,28Multiples of 14=28,42We can see that 28 is the lowest common multiple also it is <30
Answer: 28.
Step-by-step explanation: 28 is divisible by 4: 28 / 4 = 7. 28 is divisible by 14: 28 / 14 = 2. And 28 is less than 30