The tangent vector for the given line is
T(t) = d/dt ⟨-2 - 3t, 1 - 4t, -5t⟩ = ⟨-3, -4, -5⟩
On its own, this vector points to a single point in space, (-3, -4, -5).
Multiply this vector by some scalar t to get a whole set of vectors, essentially stretching or contracting the vector ⟨-3, -4, -5⟩. This set is a line through the origin.
Now translate this set of vectors by adding to it the vector ⟨-2, -4, 0⟩, which correspond to the given point.
Then the equation for this new line is simply
L(t) = ⟨-3, -4, -5⟩t + ⟨-2, -4, 0⟩ = ⟨-2 - 3t, -4 - 4t, -5t⟩
The vector parametric equation for the line through the point is [tex]r = (-2, \ -4, \ 0) +(-3, \ -4, \ -5)t\\\\[/tex].
GivenGive a vector parametric equation for the line through the point (−2,−4,0) that is parallel to the line ⟨−2−3t,1−4t,−5t⟩.
What is a parametric equation vector?Parametric equations of the line segment are defined by its endpoints.
To find the vector equation of the line segment, we’ll convert its endpoints to their vector equivalents.
Two lines are parallel if they have the same direction, and in the parametric form, the direction of a line is always the vector of constants that multiply t (or the parameter).
The vector equation of a line is given by:
[tex]\rm v = r_0+tv[/tex]
Where v is the direction vector and [tex]\rm r_0[/tex] is a point of the line.
The tangent vector for the given line is
T(t) = d/dt ⟨-2 - 3t, 1 - 4t, -5t⟩ = ⟨-3, -4, -5⟩
Here,
[tex]\rm r_0 = (-2,-4,0) \ and \ v=(-3, \ -4, \ -5)t\\\\[/tex]
Then,
[tex]r = (-2, \ -4, \ 0) +(-3, \ -4, \ -5)t\\\\[/tex]
x = -2-3t, y = -4-4t, and z = 0-5t
To know more about the Parametric equation click the link given below.
https://brainly.com/question/14701215
HELPPPP PLZ
Witch statement is true about the value of |6|?
Answer:
The third choice is the correct one.
Step-by-step explanation:
The absolute value of six means that it's the distance from 0 to six, and that distance will be positive regardless of the number being negative or not.
Answer: The third answer is correct
Step-by-step explanation:
Since |6| is the absolute value of positive six, the value of an absolute value of any number is always positive.
8x + 2 = = 7 + 5x + 15
Answer:
2.5
Step-by-step explanation:
8x + 2 = 7 + 5x + 15
Combine like terms:
8x + 2 = 7 + 5x + 15
8x + 2 = 22
-2 -2
-----------------
8x = 20
---- ----
8 8
x = 2.5
Hope this helped.
A 40-foot tree casts a shadow 60 feet long. How long would the shadow of a 6-foot man be at that time?
Answer:
26 ft
Step-by-step explanation:
I'm guessing this is how it's done
60-40= 20
there for at this time any shadow would be 20x it's original height/length
so 6+20=26 ft
lmk if I'm correct
Taking ratios
Let the shadow length=x ft
[tex]\\ \sf\longmapsto 40:60=6:x[/tex]
[tex]\\ \sf\longmapsto \dfrac{40}{60}=\dfrac{6}{x}[/tex]
[tex]\\ \sf\longmapsto \dfrac{4}{6}=\dfrac{6}{x}[/tex]
[tex]\\ \sf\longmapsto 4x=6(6)[/tex]
[tex]\\ \sf\longmapsto 4x=36[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{36}{4}[/tex]
[tex]\\ \sf\longmapsto x=9[/tex]
Simone invests $2,000 in an account that compounds interest quarterly and earns 9%. How many years will it take for his money to double? (Round your answer to one decimal place.)
no te puedo contestarte yo no hablo inglés
Can someone help me with this?
Answer:
183.3 in^3
Step-by-step explanation:
Find the volume of the rectangular bottom
V = l*w*h
V = 5*5*6 =150 in^3
Find the volume of the triangular pyramid
V = 1/3 Bh where B is the area of the base and h is the height
V = 1/3 ( 5*5) * 4 = 100/3
Add the two volumes together
150 + 100/3
150 +33.3
183.3 in^3
The absolute value of the dilation factor is the ratio of each side length of the dilated quadrilateral to the corresponding side length of the preimage. How does the ratio of the perimeters in parts B and D compare with the ratio of corresponding side lengths
9514 1404 393
Answer:
perimeter ratio = dilation factor
Step-by-step explanation:
In general, all linear dimensions are scaled by the dilation factor. This includes lengths of sides, perimeter, circumference, diameter, radius, or any other 1-dimensional (length) measure of a figure.
The ratio of perimeters is equal to the ratio of side lengths.
Primo car rental agency charges $21 per day plus $0.20 por milo. Ultimo car rental agency charges $24 per day plus $1.00 per milo. Find the daily mileage for which the Ultimo charge is four times the Primo charge.
The mileage is
Answer:
300 miles
Step-by-step explanation:
Let us consider the miles they travelled is 'm'
Mileage for Primo= 21 + (m × 0.20) = 21+0.2m
Mileage for Ultimo= 24+ ( m× 1.00) = 24 + m
Question says The mileage is equal when Ultimo's charge is 4× Primo
Thus,
4 × (21+0.2m) = 24+ m
84 + 0.8m = 24 + m
60 = 0.2m
m = 300
Convert the degree measurement to radians. Express answer as multiple of π: - 60°
A. π/3
B. −π/4
C. −π/5
D. −π/3
Answer:
-pi/3
Step-by-step explanation:
To convert from degree to radians, multiply by pi/180
-60 * pi/180 = -60/180 *pi = -pi/3
Answer:
D. -pi/3
Step-by-step explanation:
degree to radians formula: x=degree, x*pi/180
x=-60
-60*pi/180=-pi/3
Write the complies number z=3-3i in trigonometric form
Answer:
3*sqrt(2) and 3pi/4
Step-by-step explanation:
tan(theta)=y/x and r^2=y^+x^2.
tan(theta)=-3/3=-1, theta=3pi/4
r=sqrt(3^2+3^2)=3*sqrt(2)
any equations that equal three?
help fast I'm dum
and I'm sorry if I keep spamming this.
Curtis types 48 words in 1 minute how many words does Curtis type in 8 minutes? use the following equivalent rates to help solve the problem. how many words does Curtis type in 8 minutes?
Answer:
384
Step-by-step explanation:
Answer:
384 words
Step-by-step explanation:
Number of words typed in 1 minute = 48
So, number of words typed in 8 minutes
= Number of words typed in 1 minute × 8
= 48 × 8
= 384
So, Curtis types 384 words in 8 minutes.
look at the image below
Answer:
201.1 km²
Step-by-step explanation:
Surface area of the figure,
4πr²
= 4×π×4²
= 64π
= 201.1 km² (rounded to the nearest tenth)
if the value of a any quadratic function f (x)=ax^2 + BX + C is -8, the function will
Answer:
The parabola will open downward
Step-by-step explanation:
f (x)=ax^2 + BX + C
Since a = -8
The parabola will open downward
When a< 0 the graph opens downwards
a>0 the graph opens upwards
Mark earns $47,800 a year working for a delivery service. He is single and pays $2,152.60 in state income tax each year. He claims no dependents. What is the tax rate of Mark’s state he lives in?
Answer:
4.5%
Step-by-step explanation:
The tax rate=(2152.6/47800)*100=4.5%
5.
A number is squared, then multiplied by 6. The result is 54. What was the number?
Answer:
Answer:
± 3
Step-by-step explanation:
let n be the number then the number squared is n² , so
6n² = 54 ( divide both sides by 6 )
n² = 9 ( take the square root of both sides )
n = ± [tex]\sqrt{9}[/tex] = ± 3
That is the number is 3 or - 3
what is the answer I need help?
Answer:
8 1/8 units^3
Step-by-step explanation:
This figure is a rectangular prism, and the volume of a rectangular prism is given by the formula:
lwh
But since we have the area of the base snd the height of the figure, there is also one formula that we can use to find the volume:
bh
Which means area of base times the height.
USE THE FORMULA bh:
16 1/4 x 1/2
= 65/4 x 1/2
= 65/8
SIMPLIFIED: 8 1/8
Volume is measured in cubic units
SO YOUR ANSWER IS 8 1/8 units^3
y=4.5x+13.45 y=6x-4.55
Step-by-step explanation:
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Point Form:
(
12
,
67.45
)
Equation Form:
x
=
12
,
y
=
67.45
what is 98×63-32×69=
Answer: plz marl brainilist
3966
Step-by-step explanation:
(98 × 63 - 32 × 69
98 * 63) - (32 * 69)
Solve 5 (2x + 1 ) + 4 = 6 ( 3x + 2) - 7
5(2x+1)+4=6(3x+2)-7
10x+5+4=18x+12-7
10x-18x=12-7-5-4
-8x=-4 (-1)
8x=4
x=4/8 (/4)
x=1/2
Answer:
x = 1/2
Step-by-step explanation:
5(2x + 1) + 4 = 6 (3x + 2) - 7
~Simplify both sides
10x + 9 = 18x + 5
~Subtract 9 from both sides
10x = 18x - 4
~Subtract 18x to both sides
-8x = -4
~Divide -8 to both sides
x = 1/2
Best of Luck!
Factor this polynomial expression.
3x^2 - 12x+ 12
A. (3x - 2)(x-6)
B. 3(x-2)(x + 2)
C. 3(x-2)(x-2)
D. 3(x + 2)(x + 2)
Sydney has finished all his work on time, but many of his teammates are still struggling to complete their assignments. What should he do? a) Not distract them; they may get farther behind. O b) Listen to them complain about their workloads O c) Help them complete their work d) Share his thoughts on how they could get their work done faster
Answer:
I think the correct option is c
Answer:
I think the correct answer is (d)
Step-by-step explanation:
if he shares his thoughts on how they could get their work done faster like using an app like this, then it would be of great help to them
The correlation coefficient, r, between the prices of smartphones, x, and the number of sales of phones, y, equals −0.63.
Select the statement which best describes the relationship between the price and sales.
The value of r indicates that the number of sales decreases as the price decreases.
The value of r indicates that the number of sales decreases as the price stays the same.
The value of r indicates that the number of sales decreases as the price increases.
The value of r indicates that the number of sales is not related to the price.
I think its (C): The value of r indicates that the number of sales decreases as the price increases.
Answer:
(C) The value of r indicates that the number of sales decreases as the price increases.
ED2021.
The best statement, given the correlation coefficient of -0.63 is: value of r indicates that the number of sales decreases as the price increases.
What is a Negative Correlation Coefficient?A negative correlation coefficient has a negative sign, and implies a negative relationship between two variables.
This means that, as one variable decreases, the other variable increases.
Thus, a correlation coefficient of -0.63 shows a negative relationship between prices of smartphones and the number of sales.
Therefore, the best statement, given the correlation coefficient of -0.63 is: value of r indicates that the number of sales decreases as the price increases.
Learn more about correlation coefficient on:
https://brainly.com/question/4219149
The graph shows the solution of the following system of equations. y=-5/3x+3 y=1/3x-3 What is the solution? A. (-3,2) B. (3,2) C. (-3,-2) D. (3,-2)
Answer:
(3,-2)
Step-by-step explanation:
-5/3x + 3 = 1/3x - 3
-5/3x = 1/3x - 6
-2x = -6
x = 3
y = -5/3(3) + 3
y = -5 + 3
y = -2
A farmer wishes to construct a fence around his rectangular field. The farmer has 150 feet of fence and
wishes to have the length be three more than the width. What is the width of the field. Make sure and
include feet in your answer.
Help
Answer:
The width is 36 feet
Step-by-step explanation:
If the width of the fence is x then its length is x+3.
The perimeter is 150 feet, so we have the equation:
2(x + x + 3) = 150
4x + 6 = 150
x = 144/4 = 36 feet
For the function F defined by F(x) = x2 – 2x + 4, find F(b+3).
Answer:
[tex]\displaystyle F(b + 3) = b^2 + 4b + 7[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystlye F(x) = x^2 - 2x + 4[/tex]
And we want to find F(b + 3).
We can substitute:
[tex]\displaystyle F(b + 3) = (b + 3)^2 - 2(b+3) + 4[/tex]
Expand:
[tex]\displaystyle = (b^2 + 6b + 9) + (-2b -6) + 4[/tex]
Rearrange:
[tex]\displaystyle = (b^2) + (6b-2b) + (9 - 6 + 4)[/tex]
Combine like terms. Hence:
[tex]\displaystyle = b^2 +4b + 7[/tex]
In conclusion:
[tex]\displaystyle F(b + 3) = b^2 + 4b + 7[/tex]
If the cube root parent function is horizontally stretched by a factor of 4, then translated 5 units right and 3 units up, write an equation to represent the new function?
Answer:
The cube root parent function:
f(x) = [tex]\sqrt[3]{x}[/tex]Horizontally stretched by a factor of 4:
g(x) → f(1/4x) = [tex]\sqrt[3]{1/4x}[/tex]Translated 5 units right:
h(x) → g(x - 5) = [tex]\sqrt[3]{1/4x - 5}[/tex]Translated 3 units up:
k(x) → h(x) + 3 = [tex]\sqrt[3]{1/4x - 5} + 3[/tex]Salaries of entry-level computer engineers have Normal distribution with unknown mean and variance. Three randomly selected computer engineers have following salaries (in $1000s): 70, 80, 90. The average and the standard deviation of the data in the sample are 80 and 10. Using hypothesis testing, determine if this sample provides a sufficient evidence, at a 10% level of significance, that the average salary of all entry-level computer engineers is different from $60,000.
a. Null hypothesis.
b. alternative hypothesis.
c. test statistic.
d. acceptance region.
Answer:
H0 : μ = 60000
H1 : μ ≠ 60000
Test statistic = 3.464
Step-by-step explanation:
Given :
Sample mean salary, xbar = 80000
Sample standard deviation, s = 10000
Population mean salary , μ = 60000
Sample size, n = 3
Hypothesis :
H0 : μ = 60000
H1 : μ ≠ 60000
The test statistic :
T = (xbar - μ) ÷ (s/√(n))
T = (80000 - 60000) ÷ (10000/√(3))
T = 20000 / 5773.5026
T = 3.464
The Decison region :
If Tstatistic >Tcritical
Tcritical at 10%, df = 2 ; two - tailed = 2.9199
Tstatistic > Tcritical ; He
A bicyclist is at point A on a paved road and must ride to point C on another paved road. The two roads meet at
an angle of 38° at point B. The distance from A to B is 18 mi, and the distance from B to C is 12 mi (see
the figure). If the bicyclist can ride 22 mph on the paved roads and 6.8 mph off-road, would it be faster for the bicyclist to ride from A to C on the paved roads or to ride a direct line from A to C off-road? Explain.
Answer:
Step-by-step explanation:
The diagrammatic expression to understand this question very well is attached in the image below.
By applying the law of cosine rule; we have:
a² = b² + c² - 2bc Cos A --- (1)b² = a² + c² - 2ac Cos B --- (2)c² = a² + b² - 2ab Cos C --- (3)From the diagram attached below, we need to determine the side "b" by using equation (2) from above:
b² = a² + c² - 2ac Cos B
From the information given:
a = 12 miles; c = 18 miles; ∠B = 38°
∴
replacing the values into the above equation:
b² = 12² + 18² - 2(12)(18) Cos (38°)
b² = 144 + 324 - 432 × (0.7880)
b² = 468 - 340.416
b² = 127.584
[tex]b = \sqrt{127.584}[/tex]
b = 11.30 miles
However, we are also being told that the speed from A → C = 6.8 mph
Thus, the time required to go from A → C can be determined by using the relation:
[tex]\mathbf{speed = \dfrac{distance}{time}}[/tex]
making time the subject of the formula, we have:
[tex]\mathbf{time= \dfrac{distance}{speed }}[/tex]
[tex]\mathbf{time= \dfrac{11.30}{6.8}}[/tex]
time = 1.66 hours
By using the paved roads, the speed is given as = 22 mph
thus, the total distance covered = |AB| + |BC|
= (18+12) miles
= 30 miles
∴
[tex]\mathbf{time= \dfrac{distance}{speed }}[/tex]
[tex]\mathbf{time= \dfrac{30}{22}}[/tex]
time = 1.36 hours
Therefore, the time used off-road = 1.661 hours while the time used on the paved road is 1.36 hours.
Since we are considering the shortest time possible;
We can conclude that it would be faster for the bicyclist to ride from A to C on the paved roads since it takes a shorter time to reach its destination compared to the time used off-road.
Learn more about Law of cosine here:
https://brainly.com/question/24077856?referrer=searchResults
It would be faster for the bicyclist to ride from A to C on the paved roads since the time to go from A to C on the paved roads is 1.4 h and the time to go from A to C off-road is 1.7 h.
To calculate which way would be faster we need to find the distance from point A to C with the law of cosines:
[tex] \overline{AC}^{2} = \overline{AB}^{2} + \overline{BC}^{2} - 2\overline{AB}\overline{BC}cos(38) [/tex]
Where:
[tex]\overline{AB}[/tex]: is the distance between the point A and B = 18 mi
[tex]\overline{BC}[/tex]: is the distance between the point B and C = 12 mi
[tex] \overline{AC} = \sqrt{(18 mi)^{2} + (12 mi)^{2} - 2*18 mi*12 mi*cos(38)} = 11.3 mi [/tex]
Now, let's find the time for the two following cases.
1. From point A to C on the paved roads (t₁)
[tex] t_{1} = t_{AB} + t_{BC} [/tex]
The time can be calculated with the following equation:
[tex] t = \frac{d}{v} [/tex] (1)
Where:
d: is the distance
v: is the velocity
Then, the total time that it takes the bicyclist to go from point A to C on the paved roads is:
[tex] t_{1} = t_{AB} + t_{BC} = \frac{18 mi}{22 mph} + \frac{12 mi}{22 mph} = 1.4 h = 84 min [/tex]
2. From point A to C off-road (t₂)
With equation (1) we can calculate the time to go from point A to C off-road:
[tex] t_{2} = \frac{\overline{AC}}{v_{2}} = \frac{11.3 mi}{6.8 mph} = 1.7 h = 102 min [/tex]
Therefore, it would be faster for the bicyclist to ride from A to C on the paved roads.
To find more about the law of cosines, go here: https://brainly.com/question/15740431?referrer=searchResults
I hope it helps you!
LET R equal the rental fee for one locker write an equation that represents the situation
Answer:
R x 1= price of 1 locker
Step-by-step explanation:
it would continue the same way. Just multiply R and the number of lockers.
Is there a certain situation it was asking about?
2. Solve the following system of equations. y = 5 + x 2x + 2y = 30