Answer:
the answer is below
Explanation:
a) The conductivity of graphite (σ) is calculated using the formula:
[tex]\delta=\frac{1}{\sqrt{\pi f \mu \sigma} }\\\\\sigma =\frac{1}{\pi f \mu \delta^2}[/tex]
where f = frequency = 100 MHz, δ = skin depth = 0.16 mm = 0.00016 m, μ = 0.0000012
Substituting:
[tex]\sigma =\frac{1}{\pi *10^6* 0.0000012*0.00016^2}=0.99*10^4\ S/m[/tex]
b) f = 1 GHz = 10⁹ Hz.
[tex]\alpha=\sqrt{\pi f \mu \sigma} = \sqrt{0.0000012*10^9*\pi*0.99*10^5}=1.98*10^4\ Np/m\\\\20log_{10} e^{-\alpha z}=-30\ dB\\\\(-\alpha z)log_{10} e=-1.5 \\\\z=\frac{-1.5}{log_{10} e*-\alpha} =1.75*10^{-4}\ m=0.175\ mm[/tex]