given the causal, lti transfer function: h left parenthesis z right parenthesis equals fraction numerator o left parenthesis z right parenthesis over denominator i left parenthesis z right parenthesis end fraction equals fraction numerator z over denominator open parentheses z minus begin display style 1 fourth end style close parentheses end fraction, determine the impulse response h[n]= o[n]. select which of the folowing choices is correct

Answers

Answer 1

The correct choice is: The impulse response h[n] is equal to o[n]. To determine the impulse response h[n] of the given causal, LTI transfer function, we need to take the inverse Z-transform of the transfer function H(z).

The given transfer function is:

H(z) = \frac{Z}{(Z - \frac{1}{4})}

To find the impulse response h[n], we need to find the inverse Z-transform of H(z). In this case, since the transfer function is a simple ratio of Z-transforms, we can directly read off the impulse response.

The impulse response h[n] can be written as:

h[n] = [Z^n]

In this case, since the numerator of the transfer function is Z, the impulse response is h[n] = Z^n.

Therefore, the correct choice is: The impulse response h[n] is equal to o[n].

Learn more about inverse Z-transform here:

https://brainly.com/question/32622869

#SPJ11


Related Questions

2-derive the outputs' boolean equations (written in simplified forms) for decimal
to bcd priority encoder such that the smallest digit has the highest priority. show
all the steps for the simplification.

Answers

To derive the output Boolean equations for a decimal to BCD (Binary-Coded Decimal) priority encoder, we need to follow a step-by-step process. Let's assume the inputs are D3, D2, D1, and D0, representing the decimal input digits from 0 to 9.

Step 1: Determine the number of outputs required.

In a decimal to BCD priority encoder, we need four outputs to represent the BCD code for each decimal input digit. Let's denote the outputs as Y3, Y2, Y1, and Y0.

Step 2: Write the truth table.

Construct a truth table with inputs (D3, D2, D1, D0) and outputs (Y3, Y2, Y1, Y0) for all possible input combinations. In this case, the truth table will have 10 rows (corresponding to the decimal digits 0 to 9).

Step 3: Determine the outputs based on priority.

The priority encoder assigns a unique code to each input, giving priority to the smallest input digit. The priority order for the decimal digits is as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Based on this priority, we can determine the outputs (Y3, Y2, Y1, Y0) for each decimal input digit in the truth table.

Step 4: Write the Boolean equations for each output.

To simplify the Boolean equations, we can use Karnaugh maps (K-maps) when the number of inputs is small. In this case, we have four inputs (D3, D2, D1, D0), which are convenient for K-map simplification.

Construct a separate K-map for each output (Y3, Y2, Y1, Y0) and fill in the corresponding output values based on the truth table.

Step 5: Simplify the Boolean equations using K-maps.

Analyze each K-map and group adjacent 1s to form product terms. These product terms will represent the simplified Boolean equations for the outputs.

Step 6: Write the final simplified Boolean equations.

Based on the simplified product terms obtained from the K-maps, write the final Boolean equations for each output (Y3, Y2, Y1, Y0).

Following these steps will allow you to derive the outputs' Boolean equations in simplified form for a decimal to BCD priority encoder with the smallest digit having the highest priority.

Learn more about Boolean equations:

https://brainly.com/question/26041371

#SPJ11

what would be the most logical order to analyze the joints in this simple truss if the goal was only to determine the force in each member:

Answers

To determine the force in each member of a simple truss, it is important to analyze the joints in a logical order. The most common approach is to start with the joints that have the fewest number of unknown forces. This allows for a step-by-step process of solving for the forces in each member.

First, identify the joints with zero unknown forces, which are typically the supports. These joints can be analyzed first as they provide fixed values for some forces.

Next, move on to the joints with one unknown force. Solve for this force using the equations of equilibrium, such as the summation of forces in the x and y directions. Repeat this process for all the joints with only one unknown force.

After analyzing the joints with one unknown force, proceed to the joints with two unknown forces. Apply the equilibrium equations to solve for these forces.

Continue this process, analyzing joints with increasing numbers of unknown forces until all the forces in the members are determined.

By analyzing the joints in a logical order, starting with those with fewer unknown forces, the forces in each member of the truss can be accurately determined. This systematic approach simplifies the analysis process and ensures an accurate evaluation of the truss.

You can learn more about equilibrium equations at: brainly.com/question/31097181

#SPJ11

if the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of

Answers

If the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of sixteen.

The power handling capacity of a transmission line depends on the product of the voltage and current flowing through it. According to Ohm's Law, power (P) is equal to the product of voltage (V) and current (I), i.e., P = V * I.

When the voltage is increased by four times, let's say from V1 to V2, the power handling capacity of the line can be calculated by comparing the two situations.

Let's assume the current remains the same in both situations (I1 = I2). Then, we can calculate the power handling capacity as follows:

P1 = V1 * I1     (initial power handling capacity)
P2 = V2 * I2     (new power handling capacity)

Since I1 = I2, we can rewrite the equations as:

P1 = V1 * I1
P2 = V2 * I1

Now, if V2 is four times V1, we have:

V2 = 4 * V1

Substituting this into the equation for P2:

P2 = (4 * V1) * I1

Simplifying further:

P2 = 4 * (V1 * I1)

Since P1 = V1 * I1, we can rewrite P2 as:

P2 = 4 * P1


Therefore, if the transmission line voltage is raised by four times, the power handling capacity of the line would be increased by a factor of sixteen.

This means that the line would be able to handle sixteen times the power compared to its initial capacity.

To know more about Ohm's Law visit:

https://brainly.com/question/30452191

#SPJ11

for the following closed-loop system calculate the gains of compensator, kp and ki, such that a closed-loop response to a unit-step input has an overshoot (mp) of approx. 16% and a settling time (ts) of approximately 1 s (2%)

Answers

To calculate the gains of the compensator, Kp and Ki, in order to achieve a closed-loop response with approximately 16% overshoot (Mp) and a settling time of approximately 1 second (2%), we need to design a controller that meets these specifications.

1. Overshoot (Mp):

The overshoot of a closed-loop system is influenced by the damping ratio (ζ). The relation between overshoot and damping ratio is given by the equation: Mp = e^((-ζπ) / sqrt(1 - ζ^2)).

For a desired overshoot of 16% (0.16), we can solve the equation to find the damping ratio (ζ): ζ = sqrt((ln(Mp))^2 / (π^2 + (ln(Mp))^2)).

2. Settling Time (Ts):

The settling time is determined by the dominant closed-loop pole, which is related to the natural frequency (ωn) and damping ratio (ζ). The settling time is approximately 4 / (ζ * ωn).

For a settling time of 1 second (2%), we can solve the equation to find the natural frequency (ωn): ωn = 4 / (Ts * ζ).

Once we have obtained the values of ζ and ωn, we can design the compensator gains Kp and Ki based on the desired specifications.

It's important to note that the specific details of the closed-loop system or transfer function were not provided in the question, so further information would be needed to perform the calculations and determine the appropriate values of Kp and Ki.

Learn more about Overshoot here:

https://brainly.com/question/30423363

#SPJ11

a single-phase 50 kva, 2400–120 v, 60 hz transformer has a leakage impedance of (0.023 1 j 0.05) per-unit and a core loss of 600 watts at rated voltage

Answers

The leakage impedance of a single-phase 50 kVA, 2400-120 V, 60 Hz transformer is (0.023 + j0.05) per-unit.

The leakage impedance of a transformer represents the resistance and reactance of the winding that does not contribute to the power transfer. In this case, the leakage impedance is given as (0.023 + j0.05) per-unit. The real part, 0.023, represents the resistance, while the imaginary part, 0.05, represents the reactance. The per-unit value is used to normalize the impedance with respect to the rated values of the transformer.

The core loss of the transformer is given as 600 watts at rated voltage. Core loss refers to the power dissipated in the transformer core due to hysteresis and eddy current losses. It is important to consider the core loss when calculating the overall efficiency of the transformer.

Know more about transformer here:

https://brainly.com/question/15200241

#SPJ11

a new integration method based on the coupling of mutistage osculating cones waverider and busemann inlet for hypersonic airbreathing vehicles

Answers

Therefore, the phrase describes a new method of integrating multistage osculating cones, waverider, and Busemann inlet technologies to improve the performance of hypersonic airbreathing vehicles. This integration aims to enhance aerodynamic efficiency and reduce drag, ultimately leading to more efficient and faster vehicles.

The phrase "a new integration method based on the coupling of multistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles" refers to a method of combining different technologies to improve the performance of hypersonic airbreathing vehicles. Here is a step-by-step explanation:

1. Multistage osculating cones: These are structures that change shape at different stages of flight to optimize aerodynamic performance. They are used to reduce drag and increase efficiency.

2. Waverider: A waverider is a type of vehicle design that uses the shockwaves generated by its own supersonic flight to create lift. This design allows for increased aerodynamic efficiency at high speeds.

3. Busemann inlet: A Busemann inlet is a type of air intake design that reduces the effects of shockwaves during supersonic flight. It helps to slow down and compress the incoming air, increasing efficiency and reducing drag.

4. Integration method: The integration method mentioned in the question refers to combining the multistage osculating cones, waverider, and Busemann inlet technologies to create a more efficient and high-performing hypersonic airbreathing vehicle.

The phrase describes a new method of integrating multistage osculating cones, waverider, and Busemann inlet technologies to improve the performance of hypersonic airbreathing vehicles. This integration aims to enhance aerodynamic efficiency and reduce drag, ultimately leading to more efficient and faster vehicles.

To learn more about compress visit:

brainly.com/question/32332232

#SPJ11

Other Questions
Substances as large as or larger than _____________ are normally not allowed to pass through the filtration membrane. which of these vehicles off-tracks the most? a 5-axle tractor towing a 45-foot trailer. a 5-axle tractor towing a 42-foot trailer. a 5-axle tractor towing a 52-foot trailer. can someone help answer this and explain how you did it the electric field around an isolated electron has a certain strength at a 2-cm distance from the electron. the electric field strength 1 cm from the electron is... simple periodic complex periodic continuous aperiodic or transient aperiodic a combination of any of these (if so which ones?) write a function that takes one integer as its parameter. the function should return true if the inputted integer is even, and false if it is odd. run the function with the integers 5 and 10. print out the results. In the chronic pulmonary disease ___, the alveolar walls lose their elasticity, become overinflated, and eventually ruptur at constant temperature, a 144.0 ml sample of gas in a piston chamber has a pressure of 2.25 atm. calculate the pressure of the gas if this piston is pushed down hard so that the gas now has a volume of 36.0 ml. A graduated cylinder contains 26 cm3 of water. an object with a mass of 21 grams and a volume of 15 cm3 is lowered into the water. what will the new water level be Read this passage from Walden, looking for examples of literary devices. Time is but the stream I go a-fishing in. I drink at it; but while I drink I see the sandy bottom and detect how shallow it is. Its thin current slides away, but eternity remains. I would drink deeper; fish in the sky, whose bottom is pebbly with stars. I cannot count one. What device does Thoreau use in this passage o select a stir-fry dish, a restaurant customer must select a type of rice, protein, and sauce. there are two types of rices, three proteins, and seven sauces. how many different kinds of stir-fry dishes are available? a. 2 3 7 b. 2 3 7 c. 2 3 7 d. 23 7 Determine the convergence or divergence of the sequence with the given nth term. if the sequence converges, find its limit. (if the quantity diverges, enter diverges. ) an = 5 n 5 n 8 Items that can be seen, touched, and measured directly can be described as ___________. a single-phase 50 kva, 2400120 v, 60 hz transformer has a leakage impedance of (0.023 1 j 0.05) per-unit and a core loss of 600 watts at rated voltage In what month does Australia celebrate Labor Day? maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial which of the following miscellaneous itemized deductions is not subject to the 2%-of-agi floor? a.amortizable premium on taxable bonds b.home office expenses of an employee or outside salesperson c.appraisal fees for a casualty loss d.legal, accounting, and tax return preparation fees e.expenses of job hunting zac petersons estate reports the following information: value of estate assets $ 2,300,000 conveyed to spouse 1,000,000 conveyed to children 230,000 conveyed to trust fund for benefit of cousin 500,000 conveyed to charities 260,000 funeral expenses 23,000 administrative expenses 41,000 debts 246,000 what is the taxable estate value? A certain species of sea otters lives off the coast of Alaska. Some have the ability to tolerate the colder waters farther north while others stay in the central coastal area. As a result of a large oil spill along the northern coast, most of the otters living in those colder waters die. Afterwards, the population of otters, in general, is now less tolerant of cold water. What is this an example of The function that accepts a c-string as an argument and converts the string to a long integer is:___________