Given the information below, write a proof that will allow you to state that ∠G ≅ ∠M.


Given: △FGH and △LMN with ∠F ≅ ∠L, (a vinculum is placed over all these letters) FG ≅ LM and FH ≅ LN.


Prove: ∠G ≅ ∠M

Your response should be in the form of a proof giving both the necessary statements and the reasons that justify them.

Answers

Answer 1

Answer:

Given: △FGH and △LMN with FG≅LM, ∠F≅∠L, and FH≅LN.

To Prove ∠G≅∠M.

Reasons:

FG≅LM  Given

FH≅LN  Given

∠F≅∠L  Given

△FGH≅△LMN (SAS Congruence Theorem)

∠G and ∠M are corresponding angles of △FGH≅△LMN

Therefore, ∠G≅∠M. Henced Proved.

Note:

The SAS congruence theorem can be used to prove that two triangles are congruent if we know that two sides and the included angle of one triangle are equal to the corresponding sides and included angle of the other.


Related Questions

You measure 49 turtles' weights, and find they have a mean weight of 68 ounces. Assume the population standard deviation is 4.3 ounces. Based on this, what is the maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight.Give your answer as a decimal, to two places±

Answers

The maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight is 1.0091 ounces.

Given that: Mean weight of 49 turtles = 68 ounces, Population standard deviation = 4.3 ounces, Confidence level = 90% Formula to calculate the maximal margin of error is:

Maximal margin of error = z * (σ/√n), where z is the z-score of the confidence level σ is the population standard deviation and n is the sample size. Here, the z-score corresponding to the 90% confidence level is 1.645. Using the formula mentioned above, we can find the maximal margin of error. Substituting the given values, we get:

Maximal margin of error = 1.645 * (4.3/√49)

Maximal margin of error = 1.645 * (4.3/7)

Maximal margin of error = 1.645 * 0.61429

Maximal margin of error = 1.0091

Thus, the maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight is 1.0091 ounces.

Learn more about margin of error visit:

brainly.com/question/29100795

#SPJ11

The maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight is 0.1346.

The formula for the maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight is shown below:

Maximum margin of error = (z-score) * (standard deviation / square root of sample size)

whereas for the 90% confidence level, the z-score is 1.645, given that 0.05 is divided into two tails. We must first convert ounces to decimal form, so 4.3 ounces will become 0.2709 after being converted to a decimal standard deviation. In addition, since there are 49 turtle weights in the sample, the sample size (n) is equal to 49. By plugging these values into the above formula, we can find the maximal margin of error as follows:

Maximal margin of error = 1.645 * (0.2709 / √49) = 0.1346.

Therefore, the maximal margin of error associated with a 90% confidence interval for the true population mean turtle weight is 0.1346.

Learn more about margin of error visit:

brainly.com/question/29100795

#SPJ11

Find a vector function, r(t), that represents the curve of intersection of the two surfaces. The cone z = x² + y² and the plane z = 2 + y r(t) =

Answers

A vector function r(t) that represents the curve of intersection of the two surfaces, the cone z = x² + y² and the plane z = 2 + y, is r(t) = ⟨t, -t² + 2, -t² + 2⟩.

What is the vector function that describes the intersection curve of the given surfaces?

To find the vector function representing the curve of intersection between the cone z = x² + y² and the plane z = 2 + y, we need to equate the two equations and express x, y, and z in terms of a parameter, t.

By setting x² + y² = 2 + y, we can rewrite it as x² + (y - 1)² = 1, which represents a circle in the xy-plane with a radius of 1 and centered at (0, 1). This allows us to express x and y in terms of t as x = t and y = -t² + 2.

Since the plane equation gives us z = 2 + y, we have z = -t² + 2 as well.

Combining these equations, we obtain the vector function r(t) = ⟨t, -t² + 2, -t² + 2⟩, which represents the curve of intersection.

Learn more about: Function

brainly.com/question/30721594

#SPJ11

The table shows values for functions f(x) and g(x) .
x f(x) g(x)
1 3 3
3 9 4
5 3 5
7 4 4
9 12 9
11 6 6
What are the known solutions to f(x)=g(x) ?

Answers

The known solutions to f(x) = g(x) can be determined by finding the values of x for which f(x) and g(x) are equal. In this case, analyzing the given table, we find that the only known solution to f(x) = g(x) is x = 3.

By examining the values of f(x) and g(x) from the given table, we can observe that they intersect at x = 3. For x = 1, f(1) = 3 and g(1) = 3, which means they are equal. However, this is not considered a solution to f(x) = g(x) since it is not an intersection point. Moving forward, at x = 3, we have f(3) = 9 and g(3) = 9, showing that f(x) and g(x) are equal at this point. Similarly, at x = 5, f(5) = 3 and g(5) = 3, but again, this is not considered an intersection point. At x = 7, f(7) = 4 and g(7) = 4, and at x = 9, f(9) = 12 and g(9) = 12. None of these points provide solutions to f(x) = g(x) as they do not intersect. Finally, at x = 11, f(11) = 6 and g(11) = 6, but this point also does not satisfy the condition. Therefore, the only known solution to f(x) = g(x) in this case is x = 3.

Learn more about values here:

https://brainly.com/question/30145972

#SPJ11

A swim team has 75 members and there is a 12% absentee rate per
team meeting.
Find the probability that at a given meeting, exactly 10 members
are absent.

Answers

To find the probability that exactly 10 members are absent at a given meeting, we can use the binomial probability formula. In this case, we have a fixed number of trials (the number of team members, which is 75) and a fixed probability of success (the absentee rate, which is 12%).

The binomial probability formula is given by:

[tex]\[ P(X = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \][/tex]

where:

- [tex]\( P(X = k) \)[/tex] is the probability of exactly k successes

- [tex]\( n \)[/tex] is the number of trials

- [tex]\( k \)[/tex] is the number of successes

- [tex]\( p \)[/tex] is the probability of success

In this case, [tex]\( n = 75 \), \( k = 10 \), and \( p = 0.12 \).[/tex]

Using the formula, we can calculate the probability:

[tex]\[ P(X = 10) = \binom{75}{10} \cdot 0.12^{10} \cdot (1-0.12)^{75-10} \][/tex]

The binomial coefficient [tex]\( \binom{75}{10} \)[/tex] can be calculated as:

[tex]\[ \binom{75}{10} = \frac{75!}{10! \cdot (75-10)!} \][/tex]

Calculating these values may require a calculator or software with factorial and combination functions.

After substituting the values and evaluating the expression, you will find the probability that exactly 10 members are absent at a given meeting.

To know more about probability visit-

brainly.com/question/31198163

#SPJ11

find all solutions of the equation cos x sin x − 2 cos x = 0 . the answer is a b k π where k is any integer and 0 < a < π ,

Answers

Therefore, the only solutions within the given interval are the values of x for which cos(x) = 0, namely [tex]x = (2k + 1)\pi/2,[/tex] where k is any integer, and 0 < a < π.

To find all solutions of the equation cos(x)sin(x) - 2cos(x) = 0, we can factor out the common term cos(x) from the left-hand side:

cos(x)(sin(x) - 2) = 0

Now, we have two possibilities for the equation to be satisfied:

 cos(x) = 0In this case, x can take values of the form x = (2k + 1)π/2, where k is any integer.

 sin(x) - 2 = 0 Solving this equation for sin(x), we get sin(x) = 2. However, there are no solutions to this equation within the interval 0 < a < π, as the range of sin(x) is -1 to 1.

For such more question on integer

https://brainly.com/question/929808

#SPJ11

Question 6 of 12 View Policies Current Attempt in Progress Solve the given triangle. Round your answers to the nearest integer. Ax Y≈ b= eTextbook and Media Sve for Later 72 a = 3, c = 5, B = 56°

Answers

The angles A, B, and C are approximately 65°, 56° and 59°, respectively.

Given data:

a = 3, c = 5, B = 56°

In a triangle ABC, we have the relation:

a/sin(A) = b/sin(B) = c/sin(C)

The given angle B = 56°

Thus, sin B = sin 56° = b/sin(B)

On solving, we get b = c sin B/ sin C= 5 sin 56°/ sin C

Now, we need to find the value of angle A using the law of cosines:

cos A = (b² + c² - a²)/2bc

Putting the values of a, b and c in the above formula, we get:

cos A = (25 sin² 56° + 9 - 25)/(2 × 3 × 5)

cos A = (25 × 0.5543² - 16)/(30)

cos A = 0.4185

cos⁻¹ 0.4185 = 65.47°

We can find angle C by subtracting the sum of angles A and B from 180°.

C = 180° - (A + B)C = 180° - (65.47° + 56°)C = 58.53°

Thus, the angles A, B, and C are approximately 65°, 56° and 59°, respectively.

To know more about angles visit:

https://brainly.com/question/31818999

#SPJ11

e 6xy dv, where e lies under the plane z = 1 x y and above the region in the xy-plane bounded by the curves y = x , y = 0, and x = 1

Answers

The problem involves evaluating the integral of 6xy over a specific region in three-dimensional space. The region lies beneath the plane z = 1 and is bounded by the curves y = x, y = 0, and x = 1 in the xy-plane.

To solve this problem, we need to integrate the function 6xy over the given region. The region is defined by the plane z = 1 above it and the boundaries in the xy-plane: y = x, y = 0, and x = 1.

First, let's determine the limits of integration. Since y = x and y = 0 are two of the boundaries, the limits of y will be from 0 to x. The limit of x will be from 0 to 1.

Now, we can set up the integral:

∫∫∫_R 6xy dv,

where R represents the region in three-dimensional space.

To evaluate the integral, we integrate with respect to z first since the region is bounded by the plane z = 1. The limits of z will be from 0 to 1.

Next, we integrate with respect to y, with limits from 0 to x.

Finally, we integrate with respect to x, with limits from 0 to 1.

By evaluating the integral, we can find the numerical value of the expression 6xy over the given region.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

given the equation 4x^2 − 8x + 20 = 0, what are the values of h and k when the equation is written in vertex form a(x − h)^2 + k = 0? a. h = 4, k = −16 b. h = 4, k = −1 c. h = 1, k = −24 d. h = 1, k = 16

Answers

the values of h and k when the equation is written in vertex form a(x − h)^2 + k = 0  is (d) h = 1, k = 16.

To write the given quadratic equation [tex]4x^2 - 8x + 20 = 0[/tex] in vertex form, [tex]a(x - h)^2 + k = 0[/tex], we need to complete the square. The vertex form allows us to easily identify the vertex of the quadratic function.

First, let's factor out the common factor of 4 from the equation:

[tex]4(x^2 - 2x) + 20 = 0[/tex]

Next, we want to complete the square for the expression inside the parentheses, x^2 - 2x. To do this, we take half of the coefficient of x (-2), square it, and add it inside the parentheses. However, since we added an extra term inside the parentheses, we need to subtract it outside the parentheses to maintain the equality:

[tex]4(x^2 - 2x + (-2/2)^2) - 4(1)^2 + 20 = 0[/tex]

Simplifying further:

[tex]4(x^2 - 2x + 1) - 4 + 20 = 0[/tex]

[tex]4(x - 1)^2 + 16 = 0[/tex]

Comparing this to the vertex form, [tex]a(x - h)^2 + k[/tex], we can identify the values of h and k. The vertex form tells us that the vertex of the parabola is at the point (h, k).

From the equation, we can see that h = 1 and k = 16.

Therefore, the correct answer is (d) h = 1, k = 16.

To know more about equation visit:

brainly.com/question/649785

#SPJ11

Given the equation y = 7 sin The amplitude is: 7 The period is: The horizontal shift is: The midline is: y = 3 11TT 6 x - 22π 3 +3 units to the Right

Answers

The amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3, where [11π/6(x - 22π/33)] represents the phase shift.

Given the equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the Right

For the given equation, the amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3.

To solve for the amplitude, period, horizontal shift and midline for the equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the right, we must look at each term independently.

1. Amplitude: Amplitude is the highest point on a curve's peak and is usually represented by a. y = a sin(bx + c) + d, where the amplitude is a.

The amplitude of the given equation is 7.

2. Period: The period is the length of one cycle, and in trigonometry, one cycle is represented by one complete revolution around the unit circle.

The period of a trig function can be found by the formula T = (2π)/b in y = a sin(bx + c) + d, where the period is T.

We can then get the period of the equation by finding the value of b and using the formula above.

From y = 7 sin [11π/6(x - 22π/33)] +3, we can see that b = 11π/6. T = (2π)/b = (2π)/ (11π/6) = 12π/11.

Therefore, the period of the equation is 12π/11.3.

Horizontal shift: The equation of y = a sin[b(x - h)] + k shows how to move the graph horizontally. It is moved h units to the right if h is positive.

Otherwise, the graph is moved |h| units to the left.

The value of h can be found using the equation, x - h = 0, to get h.

The equation can be modified by rearranging x - h = 0 to get x = h.

So, the horizontal shift for the given equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the right is 22π/33 to the right.

4. Midline: The y-axis is where the midline passes through the center of the sinusoidal wave.

For y = a sin[b(x - h)] + k, the equation of the midline is y = k.

The midline for the given equation is y = 3.

Therefore, the amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3, where [11π/6(x - 22π/33)] represents the phase shift.

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

Suppose we did a regression analysis that resulted in the following regression model: yhat = 11.5+0.9x. Further suppose that the actual value of y when x=14 is 25. What would the value of the residual be at that point? Give your answer to 1 decimal place.

Answers

The value of the residual at that point is 0.9.

The regression model is yhat = 11.5+0.9x. Given that the actual value of y when x = 14 is 25. We want to find the residual at that point. Residuals represent the difference between the actual value of y and the predicted value of y. To find the residual, we first need to find the predicted value of y (yhat) when x = 14. Substitute x = 14 into the regression model: yhat = 11.5 + 0.9x= 11.5 + 0.9(14)= 11.5 + 12.6= 24.1.

Therefore, the predicted value of y (yhat) when x = 14 is 24.1.The residual at that point is the difference between the actual value of y and the predicted value of y: Residual = Actual value of y - Predicted value of y= 25 - 24.1= 0.9.

To know more about residual visit:-

https://brainly.com/question/19131352

#SPJ11

Given f(x)=x^2-6x+8 and g(x)=x^2-x-12, find the y intercept of (g/f)(x)
a. 0
b. -2/3
c. -3/2
d. -1/2

Answers

The y-intercept of [tex]\((g/f)(x)\)[/tex]is (c) -3/2.

What is the y-intercept of the quotient function (g/f)(x)?

To find the y-intercept of ((g/f)(x)), we first need to determine the expression for this quotient function.

Given the functions [tex]\(f(x) = x^2 - 6x + 8\)[/tex] and [tex]\(g(x) = x^2 - x - 12\)[/tex] , the quotient function [tex]\((g/f)(x)\)[/tex]can be written as [tex]\(\frac{g(x)}{f(x)}\).[/tex]

To find the y-intercept of ((g/f)(x)), we need to evaluate the function at (x = 0) and determine the corresponding y-value.

First, let's find the expression for ((g/f)(x)):

[tex]\((g/f)(x) = \frac{g(x)}{f(x)}\)[/tex]

[tex]\(f(x) = x^2 - 6x + 8\) and \(g(x) = x^2 - x - 12\)[/tex]

Now, let's substitute (x = 0) into (g(x)) and (f(x)) to find the y-intercept.

For [tex]\(g(x)\):[/tex]

[tex]\(g(0) = (0)^2 - (0) - 12 = -12\)[/tex]

For (f(x)):

[tex]\(f(0) = (0)^2 - 6(0) + 8 = 8\)[/tex]

Finally, we can find the y-intercept of ((g/f)(x)) by dividing the y-intercept of (g(x)) by the y-intercept of (f(x)):

[tex]\((g/f)(0) = \frac{g(0)}{f(0)} = \frac{-12}{8} = -\frac{3}{2}\)[/tex]

Therefore, the y-intercept of [tex]\((g/f)(x)\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex], which corresponds to option (c).

Learn more about y-intercept of quotient function

brainly.com/question/30973944

#SPJ11

The additional growth of plants in one week are recorded for 11 plants with a sample standard deviation of 2 inches and sample mean of 10 inches. t at the 0.10 significance level = Ex 1,234 Margin of error = Ex: 1.234 Confidence interval = [ Ex: 12.345 1 Ex: 12345 [smaller value, larger value]

Answers

Answer :  The confidence interval is [9.18, 10.82].

Explanation :

Given:Sample mean, x = 10

Sample standard deviation, s = 2

Sample size, n = 11

Significance level = 0.10

We can find the standard error of the mean, SE using the below formula:

SE = s/√n where, s is the sample standard deviation, and n is the sample size.

Substituting the values,SE = 2/√11 SE ≈ 0.6

Using the t-distribution table, with 10 degrees of freedom at a 0.10 significance level, we can find the t-value.

t = 1.372 Margin of error (ME) can be calculated using the formula,ME = t × SE

Substituting the values,ME = 1.372 × 0.6 ME ≈ 0.82

Confidence interval (CI) can be calculated using the formula,CI = (x - ME, x + ME)

Substituting the values,CI = (10 - 0.82, 10 + 0.82)CI ≈ (9.18, 10.82)

Therefore, the confidence interval is [9.18, 10.82].

Learn more about standard deviation here https://brainly.com/question/13498201

#SPJ11

A study was carried out to compare the effectiveness of the two vaccines A and B. The study reported that of the 900 adults who were randomly assigned vaccine A, 18 got the virus. Of the 600 adults who were randomly assigned vaccine B, 30 got the virus (round to two decimal places as needed).

Construct a 95% confidence interval for comparing the two vaccines (define vaccine A as population 1 and vaccine B as population 2

Suppose the two vaccines A and B were claimed to have the same effectiveness in preventing infection from the virus. A researcher wants to find out if there is a significant difference in the proportions of adults who got the virus after vaccinated using a significance level of 0.05.

What is the test statistic?

Answers

The test statistic is approximately -2.99 using the significance level of 0.05.

To compare the effectiveness of vaccines A and B, we can use a hypothesis test for the difference in proportions. First, we calculate the sample proportions:

p1 = x1 / n1 = 18 / 900 ≈ 0.02

p2 = x2 / n2 = 30 / 600 ≈ 0.05

Where x1 and x2 represent the number of adults who got the virus in each group.

To construct a 95% confidence interval for comparing the two vaccines, we can use the following formula:

CI = (p1 - p2) ± Z * √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Where Z is the critical value corresponding to a 95% confidence level. For a two-tailed test at a significance level of 0.05, Z is approximately 1.96.

Plugging in the values:

CI = (0.02 - 0.05) ± 1.96 * √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

CI = -0.03 ± 1.96 * √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the confidence interval equation:

CI = -0.03 ± 1.96 * 0.01005

Calculating the confidence interval:

CI = (-0.0508, -0.0092)

Therefore, the 95% confidence interval for the difference in proportions (p1 - p2) is (-0.0508, -0.0092).

Now, to find the test statistic, we can use the following formula:

Test Statistic = (p1 - p2) / √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Plugging in the values:

Test Statistic = (0.02 - 0.05) / √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

Test Statistic = -0.03 / √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the test statistic equation:

Test Statistic = -0.03 / 0.01005 ≈ -2.99

To know more about  test statistic refer here:

https://brainly.com/question/32118948#

#SPJ11

jenna is redoing her bathroom floor with tiles measuring 6 in. by 14 in. the floor has an area of 8,900 in2. what is the least number of tiles she will need?

Answers

The area of the bathroom floor = 8,900 square inchesArea of one tile = Length × Width= 6 × 14= 84 square inchesTo determine the least number of tiles needed, divide the area of the bathroom floor by the area of one tile.

That is:Number of tiles = Area of bathroom floor/Area of one tile= 8,900/84= 105.95SPSince she can't use a fractional tile, the least number of tiles Jenna needs is the next whole number after 105.95. That is 106 tiles.Jenna will need 106 tiles to redo her bathroom floor.

To know more about fractional visit:

brainly.com/question/10354322

#SPJ11

Chi Square Crash Course Quiz Part A: We conduct a similar study
using the same two groups we used for the t-Test. Recall
that in this clothing study, the boys were randomly assigned to
wear either sup
You get the following data: I Clothing Condition (1= Superhero, 2= Street Clothes) When do superheroes work harder? Crosstabulation When do superheroes work harder? in their street clothes Total Count

Answers

In this problem, we are given that we conduct a similar study using the same two groups we used for the t-Test. Also, recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

We have been given the following data for Chi Square Crash Course Quiz Part A: Clothing Condition Street Clothes Superhero Total

When superheroes are loaded with content 832212.

When superheroes are not loaded with content 822224.

Total 165444.

According to the given data, we can construct a contingency table to carry out a Chi Square test.

The formula for Chi Square is: [tex]$$χ^2=\sum\frac{(O-E)^2}{E}$$[/tex].

Here,O represents observed frequency, E represents expected frequency.

After substituting all the values, we get,[tex]$$χ^2=\frac{(8-6.5)^2}{6.5}+\frac{(3-4.5)^2}{4.5}+\frac{(2-3.5)^2}{3.5}+\frac{(2-0.5)^2}{0.5}=7.98$$[/tex].

The critical value of Chi Square for α = 0.05 and degree of freedom 1 is 3.84 and our calculated value of Chi Square is 7.98 which is greater than the critical value of Chi Square.

Therefore, we reject the null hypothesis and conclude that there is a statistically significant relationship between the superhero's clothing condition and working hard. Hence, the given data is loaded with Chi Square.

To know more about Chi Square, visit:

https://brainly.com/question/31871685

#SPJ11

We can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

Given,Chi Square Crash Course Quiz Part A:

We conduct a similar study using the same two groups we used for the t-Test.

Recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

in their street clothes Total Count.

Using the data given in the question, let's construct a contingency table for the given data.

The contingency table is as follows:

Superhero Street Clothes Total Hard Work

30                 20                         50

Less Hard Work

20 30 50

Total 50 50 100

The total count of the contingency table is 100.

In order to find when superheroes work harder, we need to perform the chi-squared test.

Therefore, we calculate the expected frequencies under the null hypothesis that the clothing type (superhero or street clothes) has no effect on how hard the boys work, using the formula

E = (Row total × Column total)/n, where n is the total count.

The expected values are as follows:

Superhero Street Clothes TotalHard Work

25                  25                          50

Less Hard Work 25 25 50

Total 50 50 100

The chi-squared statistic is given by the formula χ² = ∑(O - E)² / E

where O is the observed frequency and E is the expected frequency.

The calculated value of chi-squared is as follows:

χ² = [(30 - 25)²/25 + (20 - 25)²/25 + (20 - 25)²/25 + (30 - 25)²/25]χ²

= 2.0

The degrees of freedom for the test is df = (r - 1)(c - 1) where r is the number of rows and c is the number of columns in the contingency table.

Here, we have df = (2 - 1)(2 - 1) = 1.

At a 0.05 level of significance, the critical value of chi-squared with 1 degree of freedom is 3.84. Since our calculated value of chi-squared (2.0) is less than the critical value of chi-squared (3.84), we fail to reject the null hypothesis.

Therefore, we can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

To know more about contingency table, visit:

https://brainly.com/question/30920745

#SPJ11

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B are the endpoints of an arc of a circle. Chords are drawn from the two endpoints to a third point, C, on the circle. Given m AB =64° and ABC=73° , mACB=.......° and mAC=....°

Answers

Measures of angles ACB and AC are is m(ACB) = 64°, m(AC) = 146°

What is the measure of angle ACB?

Given that m(AB) = 64° and m(ABC) = 73°, we can find the measures of m(ACB) and m(AC) using the properties of angles in a circle.

First, we know that the measure of a central angle is equal to the measure of the intercepted arc. In this case, m(ACB) is the central angle, and the intercepted arc is AB. Therefore, m(ACB) = m(AB) = 64°.

Next, we can use the property that an inscribed angle is half the measure of its intercepted arc. The angle ABC is an inscribed angle, and it intercepts the arc AC. Therefore, m(AC) = 2 * m(ABC) = 2 * 73° = 146°.

To summarize:

m(ACB) = 64°

m(AC) = 146°

These are the measures of angles ACB and AC, respectively, based on the given information.

Learn more about angles in circles

brainly.com/question/23247585

#SPJ11

Find the missing value required to create a probability
distribution. Round to the nearest hundredth.
x / P(x)
0 / 0.18
1 / 0.11
2 / 0.13
3 / 4 / 0.12

Answers

The missing value to create a probability distribution is 0.46.

To find the missing value required to create a probability distribution, we need to add the probabilities and subtract from 1.

This is because the sum of all the probabilities in a probability distribution must be equal to 1.

Here is the given probability distribution:x / P(x)0 / 0.181 / 0.112 / 0.133 / 4 / 0.12

Let's add up the probabilities:

0.18 + 0.11 + 0.13 + 0.12 + P(4) = 1

Simplifying, we get:0.54 + P(4) = 1

Subtracting 0.54 from both sides, we get

:P(4) = 1 - 0.54P(4)

= 0.46

Therefore, the missing value to create a probability distribution is 0.46.

Know more about probability distribution here:

https://brainly.com/question/28021875

#SPJ11

the table shows values for variable a and variable b. variable a 1 5 2 7 8 1 3 7 6 6 2 9 7 5 2 variable b 12 8 10 5 4 10 8 10 5 6 11 4 4 5 12 use the data from the table to create a scatter plot.

Answers

Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To create a scatter plot from the data given in the table with variables `a` and `b`, you can follow the following steps:

Step 1: Organize the dataThe first step in creating a scatter plot is to organize the data in a table. The table given in the question has the data organized already, but it is in a vertical format. We will need to convert it to a horizontal format where each variable has a column. The organized data will be as follows:````| Variable a | Variable b | |------------|------------| | 1 | 12 | | 5 | 8 | | 2 | 10 | | 7 | 5 | | 8 | 4 | | 1 | 10 | | 3 | 8 | | 7 | 10 | | 6 | 5 | | 6 | 6 | | 2 | 11 | | 9 | 4 | | 7 | 4 | | 5 | 5 | | 2 | 12 |```

Step 2: Create a horizontal and vertical axisThe second step is to create two axes, a horizontal x-axis and a vertical y-axis. The x-axis represents the variable a while the y-axis represents variable b. Label each axis to show the variable it represents.

Step 3: Plot the pointsThe third step is to plot each point on the graph. To plot the points, take the value of variable a and mark it on the x-axis. Then take the corresponding value of variable b and mark it on the y-axis. Draw a dot at the point where the two marks intersect. Repeat this process for all the points.

Step 4: Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To Know more about scatter plot visit:

https://brainly.com/question/29231735

#SPJ11

3 Taylor, Passion Last Saved: 1:33 PM The perimeter of the triangle shown is 17x units. The dimensions of the triangle are given in units. Which equation can be used to find the value of x ? (A) 17x=30+7x

Answers

The equation that can be used to find the value of x is (A) 17x = 30 + 7x.

To find the value of x in the given triangle, we can use the equation that represents the perimeter of the triangle. The perimeter of a triangle is the sum of the lengths of its three sides.

Let's assume that the lengths of the three sides of the triangle are a, b, and c. According to the given information, the perimeter of the triangle is 17x units.

Therefore, we can write the equation as:

a + b + c = 17x

Now, if we look at the options provided, option (A) states that 17x is equal to 30 + 7x. This equation simplifies to:

17x = 30 + 7x

By solving this equation, we can determine the value of x.

Learn more about triangle

brainly.com/question/29083884

#SPJ11

For the standard normal distribution, find the value of c such
that:
P(z > c) = 0.6454

Answers

In order to find the value of c for which P(z > c) = 0.6454 for the standard normal distribution, we can make use of a z-table which gives us the probabilities for a range of z-values. The area under the normal distribution curve is equal to the probability.

The z-table gives the probability of a value being less than a given z-value. If we need to find the probability of a value being greater than a given z-value, we can subtract the corresponding value from 1. Hence,P(z > c) = 1 - P(z < c)We can use this formula to solve for the value of c.First, we find the z-score that corresponds to a probability of 0.6454 in the table. The closest probability we can find is 0.6452, which corresponds to a z-score of 0.39. This means that P(z < 0.39) = 0.6452.Then, we can find P(z > c) = 1 - P(z < c) = 1 - 0.6452 = 0.3548We need to find the z-score that corresponds to this probability. Looking in the z-table, we find that the closest probability we can find is 0.3547, which corresponds to a z-score of -0.39. This means that P(z > -0.39) = 0.3547.

Therefore, the value of c such that P(z > c) = 0.6454 is c = -0.39.

To know more about normal distribution visit:

https://brainly.com/question/12922878

#SPJ11

What does a linear model look like? Explain what all of the pieces are? 2) What does an exponential model look like? Explain what all of the pieces are? 3) What is the defining characteristic of a linear model? 4) What is the defining characteristic of an exponential model?

Answers

A linear model is that it represents a constant Rate of change between the two variables.

1) A linear model is a mathematical representation of a relationship between two variables that forms a straight line when graphed. The equation of a linear model is typically of the form y = mx + b, where y represents the dependent variable, x represents the independent variable, m represents the slope of the line, and b represents the y-intercept. The slope (m) determines the steepness of the line, and the y-intercept (b) represents the point where the line intersects the y-axis.

2) An exponential model is a mathematical representation of a relationship between two variables where one variable grows or decays exponentially with respect to the other. The equation of an exponential model is typically of the form y = a * b^x, where y represents the dependent variable, x represents the independent variable, a represents the initial value or starting point, and b represents the growth or decay factor. The growth or decay factor (b) determines the rate at which the variable changes, and the initial value (a) represents the value of the dependent variable when the independent variable is zero.

3) The defining characteristic of a linear model is that it represents a constant rate of change between the two variables. In other words, as the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent amount determined by the slope. This results in a straight line when the data points are plotted on a graph.

4) The defining characteristic of an exponential model is that it represents a constant multiplicative rate of change between the two variables. As the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent multiple determined by the growth or decay factor. This leads to a curve that either grows exponentially or decays exponentially, depending on the value of the growth or decay factor.

For more questions on Rate .

https://brainly.com/question/25720319

#SPJ8

characterize the likely shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course.

Answers

The shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course is likely to be bell-shaped, symmetrical, and normally distributed. The bell curve, or the normal distribution, is a common pattern that emerges in many natural and social phenomena, including test scores.

The mean, median, and mode coincide in a normal distribution, making the data symmetrical on both sides of the central peak.In a graduate statistics course, it is reasonable to assume that students have a good understanding of the subject matter, and as a result, their scores will be evenly distributed around the average, with a few outliers at both ends of the spectrum.The histogram of the distribution of scores will have an approximately normal curve that is bell-shaped, with most of the scores falling in the middle of the range and fewer scores falling at the extremes.

To know more about histogram visit :-

https://brainly.com/question/16819077

#SPJ11

Please check within the next 20 minutes, Thanks!
Use the given minimum and maximum data entries, and the number of classes, to find the class width, the lower class limits, and the upper class limits. minimum = 21, maximum 122, 8 classes The class w

Answers

For a given minimum of 21, maximum of 122, and eight classes, the class width is approximately 13. The lower class limits are 21-33, 34-46, 47-59, 60-72, 73-85, 86-98, 99-111, and 112-124. The upper class limits are 33, 46, 59, 72, 85, 98, 111, and 124.

To find the class width, we need to subtract the minimum value from the maximum value and divide it by the number of classes.

Class width = (maximum - minimum) / number of classes

Class width = (122 - 21) / 8

Class width = 101 / 8

Class width = 12.625

We round up the class width to 13 to make it easier to work with.

Next, we need to determine the lower class limits for each class. We start with the minimum value and add the class width repeatedly until we have all the lower class limits.

Lower class limits:

Class 1: 21-33

Class 2: 34-46

Class 3: 47-59

Class 4: 60-72

Class 5: 73-85

Class 6: 86-98

Class 7: 99-111

Class 8: 112-124

Finally, we can find the upper class limits by adding the class width to each lower class limit and subtracting one.

Upper class limits:

Class 1: 33

Class 2: 46

Class 3: 59

Class 4: 72

Class 5: 85

Class 6: 98

Class 7: 111

Class 8: 124

To know more about lower class limits refer here:

https://brainly.com/question/31059294#

#SPJ11

If there care 30 trucks and 7 of them are red. What fraction are the red trucks

Answers

Answer:

7/30

Step-by-step explanation:

7 out of 30 is 7/30

how is the variable manufacturing overhead efficiency variance calculated?

Answers

Variable Manufacturing Overhead Efficiency can be calculated by comparing the standard cost of actual production at the standard number of hours required to produce the actual output, which is multiplied by the standard variable overhead rate per hour, with the actual variable overhead cost incurred in producing the actual output.

Variance is calculated by comparing the standard cost of actual production at the standard number of hours required to produce the actual output, which is multiplied by the standard variable overhead rate per hour, with the actual variable overhead cost incurred in producing the actual output.

The following formula can be used to calculate the Variable Manufacturing Overhead Efficiency Variance:

Variable Manufacturing Overhead Efficiency

Variance = (Standard Hours for Actual Output x Standard Variable Overhead Rate) - Actual Variable Overhead Cost

Where,

Standard Hours for Actual Output = Standard time required to produce the actual output at the standard variable overhead rate per hour

Standard Variable Overhead Rate = Budgeted Variable Manufacturing Overhead / Budgeted Hours

Actual Variable Overhead Cost = Actual Hours x Actual Variable Overhead Rate

The above formula can also be represented as follows:

Variable Manufacturing Overhead Efficiency Variance = (Standard Hours for Actual Output - Actual Hours) x Standard Variable Overhead Rate

Therefore, the Variable Manufacturing Overhead Efficiency Variance can be calculated by comparing the standard cost of actual production at the standard number of hours required to produce the actual output, which is multiplied by the standard variable overhead rate per hour, with the actual variable overhead cost incurred in producing the actual output. It is an essential tool that helps companies measure their actual productivity versus the estimated productivity.

To know more about standard variable visit:

https://brainly.com/question/30693267

#SPJ11

what is the probability that the length of stay in the icu is one day or less (to 4 decimals)?

Answers

The probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

To calculate the probability that the length of stay in the ICU is one day or less, you need to find the cumulative probability up to one day.

Let's assume that the length of stay in the ICU follows a normal distribution with a mean of 4.5 days and a standard deviation of 2.3 days.

Using the formula for standardizing a normal distribution, we get:z = (x - μ) / σwhere x is the length of stay, μ is the mean (4.5), and σ is the standard deviation (2.3).

To find the cumulative probability up to one day, we need to standardize one day as follows:

z = (1 - 4.5) / 2.3 = -1.52

Using a standard normal distribution table or a calculator, we find that the cumulative probability up to z = -1.52 is 0.0630.

Therefore, the probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

Know more about probability here:

https://brainly.com/question/25839839

#SPJ11

Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30) Y is Triangular with a peak (mode) at 20 Y~ Uniform(0, 20) Y~ Uniform(10, 20) Y ~ Uniform(10, 30)

Answers

"Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30)." is True and the correct answer is :

D. Y ~ Uniform(10, 30).

X is a standard uniform random variable, this means that X has a range from 0 to 1, which can be expressed as:

X ~ Uniform(0, 1)

Then, using the formula for a linear transformation of a uniform random variable, we get:

Y = 20X + 10

Also, we know that the range of X is from 0 to 1. We can substitute this to get the range of Y:

When X = 0,

Y = 20(0) + 10

Y = 10

When X = 1,

Y = 20(1) + 10

Y = 30

Therefore, Y ~ Uniform(10, 30).

Thus, the correct option is (d).

To learn more about standard uniform random variable visit : https://brainly.com/question/20815963

#SPJ11

find the volume v of the described solid s. a cap of a sphere with radius r and height h v = incorrect: your answer is incorrect.

Answers

To find the volume v of the described solid s, a cap of a sphere with radius r and height h, the formula to be used is:v = (π/3)h²(3r - h)First, let's establish the formula for the volume of the sphere. The formula for the volume of a sphere is given as:v = (4/3)πr³

A spherical cap is cut off from a sphere of radius r by a plane situated at a distance h from the center of the sphere. The volume of the spherical cap is given as follows:V = (1/3)πh²(3r - h)The volume of a sphere of radius r is:V = (4/3)πr³Substituting the value of r into the equation for the volume of a spherical cap, we get:v = (π/3)h²(3r - h)Therefore, the volume of the described solid s, a cap of a sphere with radius r and height h, is:v = (π/3)h²(3r - h)The answer is  more than 100 words as it includes the derivation of the formula for the volume of a sphere and the volume of a spherical cap.

To know more about volume, visit:

https://brainly.com/question/28058531

#SPJ11

Use geometry to evaluate the following integral. ∫1 6 f(x)dx, where f(x)={2x 6−2x if 1≤x≤ if 2

Answers

To evaluate the integral ∫[1 to 6] f(x) dx, where f(x) = {2x if 1 ≤ x ≤ 2, 6 - 2x if 2 < x ≤ 6}, we need to split the integral into two parts based on the given piecewise function and evaluate each part separately.

How can we evaluate the integral of the given piecewise function ∫[1 to 6] f(x) dx using geometry?

Since the function f(x) is defined differently for different intervals, we split the integral into two parts: ∫[1 to 2] f(x) dx and ∫[2 to 6] f(x) dx.

For the first part, ∫[1 to 2] f(x) dx, the function f(x) = 2x. We can interpret this as the area under the line y = 2x from x = 1 to x = 2. The area of this triangle is equal to the integral, which we can calculate as (1/2) * base * height = (1/2) * (2 - 1) * (2 * 2) = 2.

For the second part, ∫[2 to 6] f(x) dx, the function f(x) = 6 - 2x. This represents the area under the line y = 6 - 2x from x = 2 to x = 6. Again, this forms a triangle, and its area is given by (1/2) * base * height = (1/2) * (6 - 2) * (2 * 2) = 8.

Adding the areas from the two parts, we get the total integral ∫[1 to 6] f(x) dx = 2 + 8 = 10.

Therefore, by interpreting the given piecewise function geometrically and calculating the areas of the corresponding shapes, we find that the value of the integral is 10.

Learn more about: Integral

brainly.com/question/31059545

#SPJ11

please help me :( i don't understand how to do this problem
-5-(10 points) Let X be a binomial random variable with n=4 and p=0.45. Compute the following probabilities. -a-P(X=0)= -b-P(x-1)- -c-P(X=2)- -d-P(X ≤2)- -e-P(X23) - W

Answers

The probability of X = 0 for a binomial random variable with n = 4 and p = 0.45 is approximately 0.0897.

To compute the probability of X = 0 for a binomial random variable, we can use the probability mass function (PMF) formula:

[tex]P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)[/tex]

Where:

- P(X = k) is the probability of X taking the value k.

- C(n, k) is the binomial coefficient, given by C(n, k) = n! / (k! * (n - k)!).

- n is the number of trials.

- p is the probability of success on each trial.

- k is the desired number of successes.

In this case, we have n = 4 and p = 0.45. We want to find P(X = 0), so k = 0. Plugging in these values, we get:

[tex]P(X = 0) = C(4, 0) * 0.45^0 * (1 - 0.45)^(4 - 0)[/tex]

The binomial coefficient C(4, 0) is equal to 1, and any number raised to the power of 0 is 1. Thus, the calculation simplifies to:

[tex]P(X = 0) = 1 * 1 * (1 - 0.45)^4P(X = 0) = 1 * 1 * 0.55^4P(X = 0) = 0.55^4[/tex]

Calculating this expression, we find:

P(X = 0) ≈ 0.0897

Therefore, the probability of X = 0 for the binomial random variable is approximately 0.0897.

To know more about binomial random variable refer here:

https://brainly.com/question/31311574#

#SPJ11

Other Questions
You must complete the following tasks:1. Using the KNIME platform examine Summary Statistics2. Build Decision Tree, Logistic Regression and KNN workflows in KNIME3. Create a validation set: Split your dataset into two parts, "Train" and "Test".4. Train and build Classification models for your dataset5. Evaluate and compare the Performance of your Models using the ConfusionMatrix and Determine Accuracy RateWhen you have completed tasks 1-5 above, you 2.a) Explain the quantity theory of money.b) What are the basic assumptions behind the quantity theory of money?c) If money supply (M) rises by10% and real output or RGDP (Y) rises by 5%, what would be the % change in prices (P) assuming the velocity of circulation of money (V) remains constant.3. a) If the Fed wants to lower countrys money supply (M), will it buy bonds or sell bonds? b) Suppose the Fed wants to reduce countrys money supply by $500 billion by doing open market operations. How much bonds the Fed would have to buy or sell if the required reserve ratio is 10%? jenna is redoing her bathroom floor with tiles measuring 6 in. by 14 in. the floor has an area of 8,900 in2. what is the least number of tiles she will need? Chi Square Crash Course Quiz Part A: We conduct a similar studyusing the same two groups we used for the t-Test. Recallthat in this clothing study, the boys were randomly assigned towear either supYou get the following data: I Clothing Condition (1= Superhero, 2= Street Clothes) When do superheroes work harder? Crosstabulation When do superheroes work harder? in their street clothes Total Count If a female indentured servant became pregnant while still under servitude, the master typicallyQuestion 26 options:extended her term by two years.fired her immediately. xsold her contract to the highest bidder xdid nothing, because pregnancy was considered an inevitable part of life. x Suppose the real risk-free rate is 4.20%, the average expected future inflation rate is 4.40%, and a maturity risk premium is MRP = 0.043%(t-1), where t is the number of years to maturity. What rate of return would you expect on a 4-year Treasury security?Group of answer choices9.00%8.46%7.65%9.72%8.73% When COVID-19 started spreading across the world, the race was on to develop vaccines as quickly as possible. Such research & development has a high fixed cost and can only be undertaken in industries with high market concentration where firms have significant monopoly power, like the pharmaceutical industry. Examine this industry using the theory and models of market (or industry) structure. Should government be worried about any aspect of how an industry with this market structure will perform the following appear on a physician's intake form. identify the level of measurement: (a) happiness on a scale of 0 to 10 (b) family history of illness (c) age (d) temperature I have this done so far but it seems like im missing stuff toput in there. So far i only got 3 minutes and 40 seconds it atleastneeds to be 7 minuts. Can someboby please help me with this? it isdue Workers Production of Beef 1 5000 2 9500 3 12602 4 M Assume the MPL of the 4th worker is 1178. What is the value of "M" in the table?WorkersProduction of Beef15000295003126024M .currently have 179,000 in a bond account. You plan to add $6,100 per year at the end of the next 10 years to your bond account. the bond account will earn a return 7.75 percent the next ten years so how much will you have when you retire?You are planning your retirement in 10 years. You currently have $179,000 in a bond account You plan to add $6.300 per year at the end of each of the next 10 years to your bond account. The bond account wit eam a retum of 275 percent in each of the next 10 years. How much will you have when you retire? Do not round immediate calculations and round your final answers to 2 decinal places. Please check within the next 20 minutes, Thanks!Use the given minimum and maximum data entries, and the number of classes, to find the class width, the lower class limits, and the upper class limits. minimum = 21, maximum 122, 8 classes The class w Instructions The following data were accumulated for use in reconciling the bank account of Zek's Co. for May 2016: 1. Cash balance according to the company's records at May 31, 2016, $21,131. 2. Cash balance according to the bank statement at May 31, 2016, $27,606. 3. Checks outstanding, $13,321. 4. Deposit in transit, not recorded by bank, $7,293. 5. A check for $51 in payment of an account was erroneously recorded in the check register as $510. Bank debit memo for service charges, $12. 6. Journalize the entry or entries that should be made by the company. Refer to the Chart of Accounts for exact word. Journal Journalize the entry or entries that should be made by the company. Refer to the Chart of Accounts for exact wording of account titles. PAGE 1 JOURNAL DATE DESCRIPTION POST. REF. DEBIT 1 2 3 4 CREDIT Please show all work in excel! will upvote once both answred thank you!You are offered an annuity that will pay you 10,000 at the end of each year for 20 years, with the first payment being in 10 years from today. If the interest rate is 12% annually, what is this annuity worth to you today?26,935.5624,100.55200,00064,394.5574,694.44Your company is considering a project with the following cash flows.yearcashflow0-8001500022003-5000Assuming the cost of capital is 10%, first internal rate of return?7.46%7.51%8.20%0%9.54% please help me :( i don't understand how to do this problem-5-(10 points) Let X be a binomial random variable with n=4 and p=0.45. Compute the following probabilities. -a-P(X=0)= -b-P(x-1)- -c-P(X=2)- -d-P(X 2)- -e-P(X23) - W 1.Name three ways to link HR strategy to business strategy. (150words minimum) Susan has a $2,000,000 retirement account. Beginning today, Susan wishes to withdraw the first of twenty-five equal annual payments but still have $400,000 remaining after the final withdrawal. Assuming the retirement account will earn 7.5 percent per year, how much can she withdraw each period? the government sent 1200 checks to most americans last summer. this can be thought of as a one time lump sum tax cut. 31) what should happen to labor supply? 32) what will happen to consumption and by how much? and why? Standardization of documents is the main focus of: O Accounting and Auditing Organization for Islamic Financial Institutions (AAOIFI) O Islamic Financial Services Board (IFSB) O International Islamic Financial Market (IFM) O International Islamic Rating Agency (IIRA) (Present value of a growing perpetuity) Your firm has taken on cost saving measures that will provide a benefit of $16,000 in the first year. These cost savings will decrease each year at a rate of 4 percent forever. If the appropriate interest rate is 5 percent, what is the present value of these savings?