Answer
I feel the answer is C because it could cause mental and physical trauma
Explanation:
What is the relationship between force and momentum?
A. A force will always increase momentum
B. A force acting for a certain time results in a change in momentum
C. There is no relationship
D. It depends on the kind of force
Answer:
Explanation:
B
5) Choose the best revision of the following statement: "All the isotopes of a particular element decay radioactively by
emitting electrons."
A. All the isotopes of a particular element are stable and do not decay.
B. Some isotopes are stable and others are unstable. Unstable isotopes decay by emitting various subatomic
particles and radiation
C. Some isotopes are stable and others are unstable. Unstable isotopes decay by emitting protons or
electrons.
D. The statement is correct as it is currently written.
Answer:
B. some isotopes are stable and others are unstable. unstable isotopes decay by emitting various subatomic particles and radiation.
Explanation:
test gave me the answer so yeah :/ XD
Need help y’all ASAP please...physics
Answer:
t = 3/8 seconds
Explanation:
h=-16t^2 - 10t+6
h= 0 when it hits the ground
0=-16t^2 - 10t+6
factor out a -2
0= -2(8t^2 +5t -3)
divide by -2
0 = (8t^2 +5t -3)
factor
0=(8t-3) (t+1)
using the zero product property
8t-3 = 0 t+1 =0
8t = 3 t= -1
t = 3/8 t= -1
t cannot be negative ( no negative time)
t = 3/8 seconds
A bullet has a mass of 0.06 kg. Starting from rest, after the gun's trigger is pulled, a constant force acts on the bullet for the next 0.025 seconds until the bullet leaves the barrel of the gun with a speed of 992 m/s.
What is the change in momentum of the bullet?
The change in momentum of the bullet : 59.52 kg m/s
Further explanationGiven
m=0.06 kg
Δt=0.025 s
vo=0(from rest)
vt= 992 m/s
Required
The change in momentum
Solution
The change in momentum = ΔP
ΔP =m(vt-vo)
ΔP =0.06(992-0)
ΔP =59.52 kg m/s
a string attached to a 60.0 Hz vibr.ator creates a standing wave with 5 loops. What frequency would make 7 loops? (Unit = Hz)
Answer:
F=84.0 Hz
Explanation:
Using the equation f= n (v/2L), frequency equals number of loops times velocity over 2 times the length, in order to get 60.0 Hz of frequency from 5 loops, v/2L would have to equal 12. (12*5=60) v/2L is constant, so to find the frequency of 7 loops you would times 7 by 12 to get 84.0.
Hope this helped! :)
The weight of a 0.5 kg object on the surface of Planet X is 20 N. If the radius of the planet is 4 X 106 m, what is its mass?
Answer:
The mass of the Planet X is 9.595 x 10²⁴ kg.
Explanation:
mass of the object, m = 0.5 kg
radius of the Planet X, r = 4 x 10⁶ m
weight of the object, W = F = 20 N
let the mass of the Planet X = mₓ
Apply Newton's gravitational law;
[tex]F = \frac{Gmm_x}{r^2} \\\\m_x = \frac{Fr^2}{Gm} \\\\m_x = \frac{(20)(4\times 10^6)^2}{6.67 \times 10^{-11} \ \times \ 0.5} \\\\m_x = 9.595 \times 10^{24} \ kg[/tex]
Therefore, the mass of the Planet X is 9.595 x 10²⁴ kg.
Water is found as a solid, liquid, and gas on ____.
please help thank you
which of the following statements BEST describes the difference between an atom and an ion ?
Answer:
well the correct answer is
d. An atom contains equal numbers of protons and electrons whereas an ion contains unequal numbers of protons and electrons .Explanation:
A charged atom is known as an ion, well it can be negative as well as positive charge.
if atom has more protons than electrons then it get positively charged and known as cationif the atom has more electrons that the number of protons then the atom get negatively charged and known as anionDetermine the absolute pressure on the bottom of a swimming pool 30.0 mm by 8.4 mm whose uniform depth is 1.9 mm .
Answer:
=101343.62N/m^2
Explanation:
absolute pressure on the bottom of a swimming pool= atmospheric pressure +( 2 ×ρ ×g)
( 2 ×ρ ×g)= guage pressure
atmospheric pressure= 101325pa
h= height= 1.9 mm = 1.9×10^-3m
ρ = density of water
= 1000kg/m^3
g= acceleration due to gravity= 9.8m/s^2
Then substitute, we have
absolute pressure on the bottom of a swimming pool= 101325+ [0.0019 ×1000 × 9.8)]
=101343.62N/m^2
Hence, the absolute pressure on the bottom of a swimming pool is =101343.62N/m^2
Victor covers 210 km by car at a speed of 70 km/hr. find the time taken to cover this distance.
Answer:
3 hrs
Explanation:
the distance covered by victor= 210 km
speed= 70 km/hrs
so, 70×3= 210
so the answer is 3 hrs
BTW im a small kid so don't just right away say the explanation sucks and the subject physics is not yet started in my grade.
edit: don't give me brainless answer plz.
HELP ASAP!
Everything on screenshot.
Answer:
11. D
12. A
13. B
Explanation:
Which of these is another name for Newton's
first law?
A. the law of action-reaction
B. the law of force and acceleration
C. the law of gravity
D. the law of inertia
which is true about the way air flows
A. high pressure to low pressure
B. low pressure to high pressure
C. cold air to hot air
D. hot air to cold air
Answer:
A High-to-Low
Explanation:
its like water running down a hill.
1. Determine the kinetic energy of a 625-kg roller coaster car that is moving with a speed of 18.3 m/s,
Answer:
104653.13J
Explanation:
Given parameters:
Mass of roller coaster = 625kg
Speed = 18.3m/s
Unknown:
Kinetic energy = ?
Solution:
The kinetic energy is the energy due to the motion of a body.
Kinetic energy = [tex]\frac{1}{2}[/tex] x m x v²
m is the mass
v is the speed
Kinetic energy = [tex]\frac{1}{2}[/tex] x 625 x 18.3² = 104653.13J
(BRAINLIEST)
Which is an example of the force of attraction between two objects that have mass?
Magnetism
Gravity
Solar energy
Electricity
(BRAINLIEST)
Answer:
Gravity
because it's factorised by mass of a body.
For other forces, they deal with charges of negligible mass and weights
Answer:
Gravity
Explanation:
Please answer the questions... I will surely mark you as the brainliest according to me :)
Answer:
(a) You can tell that have the same strength because they have attracted the same amount of paper clips.
(b) Iron is used in electromagnets because steel retained magnetic properties after the power was turned off, but in the iron, the paper clips dropped off right away.
A 0.41kg football that is initially at rest acquires a velocity of 35m/s when it is kicked. If the kicker's boot remains in contact with the ball for 0.08s, what is the average force of the kick?
Answer:
F = 318.88[N]
Explanation:
This problem can be solved by the principle of momentum conservation, which tells us that momentum is preserved before and after kicking the ball.
In this way, we can construct the following equation.
[tex]F*t=m*v[/tex]
where:
F = force [N]
t = time = 0.08 [s]
m = mass = 0.41 [kg]
v = velocity [m/s]
[tex]F*0.045=0.41*35\\F=318.88[N][/tex]
A 4 kg bowling bowl is sitting on a table 1 meter off the ground. How much potential energy does it have?
Answer:
[tex]\huge\boxed{\sf P.E. = 39.2\ Joules}[/tex]
Explanation:
Given Data:
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
Required:
Potential Energy = P.E. = ?
Formula:
P.E. = mgh
Solution:
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807An inductor with an inductance of .5 henrys (H) is to be connected to a 60 Hz circuit. What will the inductive reactance (X L) be
Answer:
1885.2 ohms
Explanation:
Step one:
given data
L=5H
f=60Hz
Required
The inductive reactance of the inductor
Step two:
Applying the expression
XL= 2πfL
substitute
XL=2*3.142*60*5
XL=1885.2 ohms
A block of mass m is hung from the ceiling by the system of massless springs consisting of two layers. The upper layer consists of 3 strings in paralle, and the lower layer consists of 2 strings in parallel. The horizontal bar between the two layers has negligible mass. The force constants of all springs are k. Calculate the period of the vertical oscillations of the block.
Answer:
T₀ = 2π [tex]\sqrt{\frac{m}{k} }[/tex] T = [tex]\sqrt{\frac{5}{6} }[/tex] T₀
Explanation:
When the block is oscillating it forms a simple harmonic motion, which in the case of a spring and a mass has an angular velocity
w = [tex]\sqrt{k/m}[/tex]
To apply this formula to our case, let's look for the equivalent constant of the springs.
Let's start with the springs in parallels.
* the three springs in the upper part, when stretched, lengthen the same distance, therefore the total force is
F_total = F₁ + F₂ + F₃
the springs fulfill Hooke's law and indicate that the spring constant is the same for all three,
F_total = - k x - k x - kx = -3k x
therefore the equivalent constant for the combination of the springs at the top is
k₁ = 3 k
* the two springs at the bottom
following the same reasoning the force at the bottom is
F_total2 = - 2 k x
the equivalent constant at the bottom is
k₂ = 2 k
now let's work the two springs are equivalent that are in series
the top spring is stretched by an amount x₁ and the bottom spring is stretched x₂
x₂ = x -x₁
x₂ + x₁ = x
if we consider that the springs have no masses we can use Hooke's law
[tex]-\frac{F_{1} }{k_{1} } - \frac{F_{2}}{k_{2} } = \frac{F}{k_{eq} }[/tex]
therefore the equivalent constant is the series combination is
[tex]\frac{1}{k_{eq} } = \frac{1}{k_{1} } + \frac{1}{k_{2} }[/tex]
we substitute the values
\frac{1}{k_{eq} } = \frac{1}{3k } + \frac{1}{2k }
\frac{1}{k_{eq} } = \frac{5}{6k} }
k_eq = [tex]\frac{6k}{5}[/tex]
therefore the angular velocity is
w = [tex]\sqrt{\frac{6k}{5m} }[/tex]
angular velocity, frequency, and period are related
w = 2π f = 2π / T
T = 2π / w
T = 2π [tex]\sqrt{\frac{5m}{6k} }[/tex]
T₀ = 2π [tex]\sqrt{\frac{m}{k} }[/tex]
T = [tex]\sqrt{\frac{5}{6} }[/tex] T₀
what causes sound to have low pitch
A.Sound Wave with high frequency.
B.sound wave with low frequency.
C.sound wave with large amplitude
D.sound wave with small amplitude
Help pleaseeee need the answers ASAP
Answer:
- 670 kg.m/s
Explanation:
Newton's third law states that to every action, there is equal and opposite reaction force. Since the force will be same but different in direction and acted in the same time then the impulses ( force multiply by time) of the two car be same in magnitude but different in direction - 670 kg.m/s