help me with this please! I don’t understand

Help Me With This Please! I Dont Understand

Answers

Answer 1

Answer:

40/41

Step-by-step explanation:

tanB=opposite length/adjacent length

tanB=40/41


Related Questions

find the value of x. help with geometry pls

Answers

Answer:

Find the value of x:-

To find Y, use Pythagorean theorem:- [tex]c^{2} =a^{2} +b^{2}[/tex]

[tex](2.1)^{2} =y^{2} +(1.4)^{2}[/tex]

[tex]2.1^{2}=4.41[/tex]

[tex]1.4^{2} =1.96[/tex]

[tex]4.41=y^{2} +1.96[/tex]

subtract 1.96 from both sides

[tex]2.45=y^{2}[/tex]

[tex]y=1.5652[/tex]

Now, to find x:-

[tex]x=y+y[/tex]

[tex]= 1.5632+1.5652[/tex]

[tex]x=3.1 \: ft[/tex]

~OAmalOHopeO

A sample of 900 computer chips revealed that 61% of the chips fail in the first 1000 hours of their use. The company's promotional literature claimed that under 64% fail in the first 1000 hours of their use. Is there sufficient evidence at the 0.02 level to support the company's claim

Answers

Answer:

The p-value of the test is 0.0301 > 0.02, which means that there is not sufficient evidence at the 0.02 level to support the company's claim.

Step-by-step explanation:

The company's promotional literature claimed that under 64% fail in the first 1000 hours of their use.

At the null hypothesis, we test if the proportion is of at least 64%, that is:

[tex]H_0: p \geq 0.64[/tex]

At the alternative hypothesis, we test if the proportion is of less than 64%, that is:

[tex]H_1: p < 0.64[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.

64% is tested at the null hypothesis:

This means that [tex]\mu = 0.64, \sigma = \sqrt{0.64*0.36}[/tex]

A sample of 900 computer chips revealed that 61% of the chips fail in the first 1000 hours of their use.

This means that [tex]n = 900, X = 0.61[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \frac{0.61 - 0.64}{\frac{\sqrt{0.64*0.36}}{\sqrt{900}}}[/tex]

[tex]z = -1.88[/tex]

P-value of the test and decision:

The p-value of the test is the probability of finding a sample proportion below 0.61, which is the p-value of z = -1.88.

Looking at the z-table, z = -1.88 has a p-value of 0.0301.

The p-value of the test is 0.0301 > 0.02, which means that there is not sufficient evidence at the 0.02 level to support the company's claim.

(X^2 + 6x + 8) divided (x + 2)

Answers

Answer:

x+ 4

Step-by-step explanation:

      ____x__+4___

x+2 | [tex]x^2 + 6x + 8[/tex]

        [tex]x^2 + 2x[/tex]

        ------------

                [tex]4x + 8\\[/tex]

                 [tex]4x + 8\\[/tex]

                  --------

                     0

Answer:

x+4

Step-by-step explanation:

Lynbrook West, an apartment complex, has 100 two-bedroom units. The monthly profit (in dollars) realized from renting out x apartments is given by the following function. p(x)=-12x^2+2160x-59000 To maximize the monthly rental profit, how many units should be rented out? units What is the maximum monthly profit realizable?

Answers

Answer:

To maximize the monthly rental profit, 90 units should be rented out.

The maximum monthly profit realizable is $38,200.

Step-by-step explanation:

Vertex of a quadratic function:

Suppose we have a quadratic function in the following format:

[tex]f(x) = ax^{2} + bx + c[/tex]

It's vertex is the point [tex](x_{v}, y_{v})[/tex]

In which

[tex]x_{v} = -\frac{b}{2a}[/tex]

[tex]y_{v} = -\frac{\Delta}{4a}[/tex]

Where

[tex]\Delta = b^2-4ac[/tex]

If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].

In this question:

Quadratic equation with [tex]a = -12, b = 2160, c = -59000[/tex]

To maximize the monthly rental profit, how many units should be rented out?

This is the x-value of the vertex, so:

[tex]x_{v} = -\frac{b}{2a} = -\frac{2160}{2(-12)} = \frac{2160}{24} = 90[/tex]

To maximize the monthly rental profit, 90 units should be rented out.

What is the maximum monthly profit realizable?

This is p(90). So

[tex]p(90) = -12(90)^2 + 2160(90) - 59000 = 38200[/tex]

The maximum monthly profit realizable is $38,200.

compute (-12)+(-8)+30​

Answers

Answer:

10

Step-by-step explanation:

(-12) + (-8) +30

-(12+8)+30

-20 + 30

10

Express the speed of 0.0000000015 seconds in scientific notation

Answers

[tex]\\ \sf\longmapsto 0.0000000015[/tex]

[tex]\\ \sf\longmapsto 0.0015\times 10^{-6}s[/tex]

[tex]\\ \sf\longmapsto 0.015\times 10^{-7}s[/tex]

[tex]\\ \sf\longmapsto 0.15\times 10^{-8}s[/tex]

[tex]\\ \sf\longmapsto 1.5\times 10^{-9}s[/tex]

Answer: 0.0000000015 = 1.5 × 10⁻⁹

Concept:

When converting an integer to scientific notation:

- If the number is ≥1, then count the moves of the decimal point to the right until the number is 0<number<10. The number of moves will be the exponent that is positive.

- For example: If converting 300, since there are two moves until it is left with 0<3<10. Thus, the scientific notation will be 3 × 10²

- If the number is <1, then count the moves of the decimal point to the left until the number is 0<number<10. The number of moves will be the exponent that is negative.

- For example: If converting 0.004, since there are three moves until it is left with 0<4<10. Thus, the scientific notation will be 4 × 10⁻³

Solve:

0.0000000015

The decimal point needs to move 9 times to the left to get a number that is between 0 and 10. The number is 1.5.

Thus, the scientific notion of 0.0000000015 will be 1.5 × 10⁻⁹

Hope this helps!! :)

Please let me know if you have any questions

3. Find the least common denominator for the group of denominators using the method of prime numbers. 45, 75, 63​

Answers

We have to find LCM

3 | 45,75,63

3 | 15,25,21

5 | 5,25,7

5 | 1,5,7

7 | 1,1,7

LCM=3×3×5×5×7=1575

The least common denominator for the group of denominators using the method of prime numbers is 1575.

What is least common multiple?

LCM stands for Least Common Multiple. It is a method to find the smallest common multiple between any two or more numbers.  A factor is one of the numbers that multiplies by a whole number to get that number.

For the given situation,

The numbers are 45, 75, 63​

Prime factors of 45 = [tex]3,3,5[/tex]

Prime factors of 75 = [tex]3,5,5[/tex]

Prime factors of 63 = [tex]3,3,7[/tex]

Then the LCM can be found by, first take the common factors then multiple the remaining factors as,

⇒ [tex](3)(3)(5)(5)(7)[/tex]

⇒ [tex]1575[/tex]

Hence we can conclude that the least common denominator for the group of denominators using the method of prime numbers is 1575.

Learn more about least common multiple here

https://brainly.com/question/24859913

#SPJ2

please help i dont wanna fail

Answers

Answer:

4

Step-by-step explanation

Plug in the numbers for x and y.

4/4 ( 2 + (6) - (4))

Remove the parenthesis. Since 4/4 is equal to 1, you can put down 1 as well.

1 (2 + 6 - 4)

Distribute the 1. When anything is multiplied by 1, it remains the same.

2 + 6 - 4

Simplify.

4

[tex]\huge\boxed{\textsf{Hey there!}}[/tex]

[tex]\huge\boxed{\mathsf{\dfrac{x}{4}(2 + y - x)}}[/tex]

[tex]\huge\boxed{\mathsf{= \dfrac{4}{4}(2 + 6 - 4)}}[/tex]

[tex]\huge\boxed{\mathsf{= 1(8 - 4)}}[/tex]

[tex]\huge\boxed{\mathsf{= 1(4)}}[/tex]

[tex]\huge\boxed{\mathsf{= 4}}[/tex]

[tex]\huge\boxed{\textsf{Therefore, your answer is: 4}}\huge\checkmark[/tex]

[tex]\huge\boxed{\boxed{\textsf{Good luck on your assignment \& enjoy your day!}}}[/tex]

~[tex]\huge\boxed{\boxed{\huge\boxed{\mathsf{Amphitrite1040:)}}}}[/tex]

kofi earned 50 cedis mowing lawn. today, kofi earned 60% of what he earned yesterday mowing lawns. how much money did kojo earn mowing lawn today

Answers

Answer:

Kofi earned today = 30 cedis

Step-by-step explanation:

Given:

Kofi earned yesterday = 50 cedis

Kofi earned today = 60% of Kofi earned yesterday

Find:

Kofi earned today

Computation:

Kofi earned today = 60% of Kofi earned yesterday

Kofi earned today = 60% x 50

Kofi earned today = 0.60 x 50

Kofi earned today = 30

Kofi earned today = 30 cedis

Evaluate the line integral
Soydx + zdy + xdz,
[»= f (t)=dw= f'(t)dt
where C is the parametric curve
x=t, y=t, z=ť, Ost<1.

Answers

It looks like you're asked to compute

[tex]\displaystyle\int_C y\,\mathrm dx + z\,\mathrm dy + x\,\mathrm dz[/tex]

where C is parameterized by ⟨t, t, t⟩ with 0 ≤ t ≤ 1.

In other words, x = y = z = t, so dx = dy = dz = dt, and the integral reduces to

[tex]\displaystyle\int_C y\,\mathrm dx + z\,\mathrm dy + x\,\mathrm dz = \int_0^1 t\,\mathrm dt + t\,\mathrm dt + t\,\mathrm dt \\\\ = 3 \int_0^1 t\,\mathrm dt \\\\ =\frac32t^2\bigg|_{t=0}^{t=1} \\\\ =\boxed{\frac32}[/tex]

a. 1140
b. 1130
c. 1120
d. 115

Answers

Answer:

1130

Step-by-step explanation:

1109+7 = 1116

1116+7 = 1123

Adding 7 each time

1123+7 = 1130

An electronic switching device occasionally malfunctions, but the device is considered satisfactory if it makes, on average, no more than 0.20 error per hour. A particular 5-hour period is chosen for testing the device. If no more than 1 error occurs during the time period, the device will be considered satisfactory.
(a) What is the probability that a satisfactory device will be considered unsatisfactory on the basis of the test? Assume a Poisson process.
(b) What is the probability that a device will be accepted as satisfactory when, in fact, the mean number of errors is 0.25? Again, assume a Poisson process.

Answers

Solution :

It is given that the device works satisfactorily if it makes an average of no more than [tex]0.2[/tex] errors per hour.

The number of errors thus follows the Poisson distribution.

It is given that in [tex]5[/tex] hours test period, the number of the errors follows is

= [tex]0.2 \times 5[/tex]

= 1 error

Let X = the number of the errors in the [tex]5[/tex] hours

[tex]$X \sim \text{Poisson } (\lambda = 0.2 \times 5 =1)$[/tex]

Now that we want to find the [tex]\text{probability}[/tex] that a [tex]\text{satisfactory device}[/tex] will be misdiagnosed as "[tex]\text{unsatisfactory}[/tex]" on the basis of this test. We know that device will be unsatisfactory if it makes more than [tex]1[/tex] error in the test. So we will determine probability that X is greater than [tex]1[/tex] to get required answer.

So the required probability is :

[tex]P(X>1)[/tex]

[tex]$=1-P(X \leq 1)$[/tex]

[tex]$=1-[P(X=0)+P(X=1)]$[/tex]

[tex]$=1- \left( \frac{e^{-1} 1^0}{0!} + \frac{e^{-1} 1^0}{1!} \right) $[/tex]

[tex]$=1-(2 \times e^{-1})$[/tex]

[tex]$=1-( 2 \times 0.367879)$[/tex]

[tex]$=1-0.735759$[/tex]

[tex]=0.264241[/tex]

So the [tex]\text{probability}[/tex] that the [tex]\text{satisfactory device}[/tex] will be misdiagnosed as "[tex]\text{unsatisfactory}[/tex]" on the basis of the test whose result is 0.264241

a certain number plus two is five find the number​

Answers

x=3

Step-by-step explanation:

x+2=5

x=5-2

x=3

Question Which of the following is a benefit of using email to communicate at work ? a) You can express yourself in a limited number of characters b) You don't have to worry about using proper grammar. c) You always get a response right away. d ) You can reach a large audience with one communication .

Answers

Answer:

d) you can reach a large audience with one communication

Step-by-step explanation:

common sense

What is the period of the graph of y = 5 sin (pi x) + 3?

Answers

Equate whats inside (arguments) [tex]\sin[/tex] with base period of sine function [tex]2\pi[/tex] and solve for x to get period,

[tex]\pi x=2\pi\implies x=2[/tex]

So the period of the graph of the given function is precisely 2.

Hope this helps :)

Answer:

Step-by-step explanation:

bvjvhvghj

Please help !!! Plzzzz

Answers

Answer:  7

Explanation:

Because we have a midsegment, this means that it is half as long as the side it's parallel to. You can think of "mid" as "middle" and that could lead to "halfway" to remember to take half.

So z = 14/2 = 7

if 7a - 11b = 0, what will be the value of a:b​

Answers

Answer:

11:7

Step-by-step explanation:

Solution

Here

7a-11b=0

a:b=?

we know that

a=7

b=11

ans =11:7

Hence proved

Answer:

[tex]thank \: you[/tex]

Which subset(s) of numbers does 5 3/8 belong to ?

Answers

Answer:

Rational number

Step-by-step explanation:

Given

[tex]5\frac{3}{8}[/tex]

Required

The subset it belongs to

Express as improper fraction

[tex]5\frac{3}{8} = \frac{43}{8}[/tex]

The above number is rational because it is represented by the division of 2 integers, i.e. 43 and 8 are integers

Express as decimals

[tex]5\frac{3}{8} = 5.375[/tex]

The above number cannot be classified as integers or whole because it has decimal parts

What is the slope of the line that passes through the points listed in the table?
x l y
8 l 3
10 l 7

A. -4
B. -2
C. 2
D. 4

Answers

Answer:

2

Step-by-step explanation:

The slope is given by

m = ( y2-y1)/(x2-x1)

   = (7-3)/(10-8)

    = 4/2

    = 2

Kinsey has a plan to save $60 a month for 16 months so that she can purchase a new television. After 11 months Kinsey has saved $600. If the most that Kinsey can possibly save is $80 per month, which of the following statements is true? a. Kinsey will meet her goal and does not need to adjust her plan. b. Kinsey must save $72 per month to achieve her goal. c. Kinsey must save $75 per month to achieve her goal. d. Kinsey will not be able to achieve her goal. Please select the best answer from the choices provided A B C D

Answers

Answer:

b. Kinsey must save $72 per month to achieve her goal.

Step-by-step explanation:

Goal over 16 months: $60 x 16 = $960

Collected after 11 months: $600

$360 still needed5 months lefts

$360 ÷ 5 = $72

Kinsey must save $72 per month to achieve her goal. The answer we got by converting the sentence to Equation and solving.b is the required answer.

Kinsey has a plan to save $60 a month for 16 months so that she can purchase a new television. After 11 months Kinsey has saved $600. If the most that Kinsey can possibly save is $80 per month, which of the following statements given is true.

What is an Equation?

Two expressions with equal sign is called equation.

Goal over 16 months: $60 x 16 = $960

Collected after 11 months: $600

$360 still needed

5 months lefts

$360 ÷ 5 = $72

Therefore Kinsey must save $72 per month to achieve her goal.

To learn more about equations click here: https://brainly.com/question/19297665

#SPJ2

a car completes a journey in 8hours it covers half the distance at 40kms per hours and the rest at 60 km per hour. what is the total distance of the journey?​

Answers

Answer:

384 kmph

Step-by-step explanation:

(x
3
+y
3
)(xy
4
+7)

Answers

Answer:

question is not proper

Step-by-step explanation:

question is

evaluate (5^0-4^-1)×3/4​

Answers

Answer:

[tex](5^{0} -4^{-1} )(\frac{3}{4} )\\\\=(1-\frac{1}{4^{1}} )(\frac{3}{4} )\\\\=(\frac{4}{4} -\frac{1}{4} )(\frac{3}{4} )\\\\=(\frac{3}{4} )(\frac{3}{4} )\\\\=\frac{9}{16}[/tex]

An urn contains 12 balls, five of which are red. Selection of a red ball is desired and is therefore considered to be a success. If three balls are selected, what is the expected value of the distribution of the number of selected red balls

Answers

The expected value of the distribution of the number of selected red balls is 0.795.

What is the expected value?

The expected value of the distribution is the mean or average of the possible outcomes.

There are 12 balls in an urn, five of which are crimson. The selection of a red ball is desired and hence considered a success.

In this case, the possible outcomes are 0, 1, 2, or 3 red balls.

To calculate the expected value, we need to find the probability of each outcome and multiply it by the value of the outcome.

The probability of selecting 0 red balls is :

[tex]$\frac{7}{12} \cdot \frac{6}{11} \cdot \frac{5}{10} = \frac{105}{660}$[/tex].

The probability of selecting 1 red ball is :

[tex]$3 \cdot \frac{5}{12} \cdot \frac{7}{11} \cdot \frac{6}{10} + 3 \cdot \frac{7}{12} \cdot \frac{5}{11} \cdot \frac{6}{10} + 3 \cdot \frac{7}{12} \cdot \frac{6}{11} \cdot \frac{5}{10} = \frac{315}{660}$[/tex].

The probability of selecting 2 red balls is

[tex]:$\dfrac{5}{12} \cdot \frac{7}{11} \cdot \frac{6}{10} + \frac{7}{12} \cdot \frac{5}{11} \cdot \frac{6}{10} + \frac{7}{12} \cdot \frac{6}{11} \cdot \frac{5}{10} = \frac{105}{660}$.[/tex]

The probability of selecting 3 red balls is

[tex]$\dfrac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} = \frac{15}{660}$[/tex]

The expected value is then :

[tex]$0 \cdot \frac{105}{660} + 1 \cdot \frac{315}{660} + 2 \cdot \frac{105}{660} + 3 \cdot \frac{15}{660} = \frac{525}{660} = \frac{175}{220} \approx \boxed{0.795}$[/tex]

To learn more about the expected value of the distribution click here:

https://brainly.com/question/29068283

#SPJ5

NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!! PLEASE explain thoroughly. Chapter 9 part 1

1. How can you determine the end behaviors for a graph from the function? What are the possible behaviors?

2. How is solving a polynomial inequality different from a solving a polynomial equation? How do the solutions differ?

3. What is a composite function? How does order of the composite function play a role in solving the composition?

Answers

9514 1404 393

Explanation:

1. End behavior is the behavior of the function when the value of the independent variable gets large (or otherwise approaches the end of the domain). There are generally four kinds of end behavior:

the function approaches a constant (horizontal asymptote)the function approaches a function (slant asymptote, for example)the function oscillates between two of the above end behaviorsthe function tends toward +∞ or -∞

Of these, behavior 2 will ultimately look like one of the others.

For polynomials, the function will always approach ±∞ as the independent variable approaches ±∞. Whether the signs of the infinities agree or not depends on the even/odd degree of the polynomial, and the sign of its leading coefficient.

For exponential functions, the end behavior is a horizontal asymptote in one direction and a tending toward ±∞ in the other direction.

For trig functions sine and cosine, the end behavior is the same as the "middle" behavior: the function oscillates between two extreme values.

For rational functions (ratios of polynomials), the end behavior will depend on the difference in degree between numerator and denominator. If the degree of the denominator is greater than or equal to that of the numerator, the function will have a horizontal asymptote. If the degree of the numerator is greater, then the end behavior will asymptotically approach the quotient of the two functions—often a "slant asymptote".

__

2. A polynomial inequality written in the form f(x) ≥ 0, or f(x) > 0, will be solved by first identifying the real zeros of the function f(x), including the multiplicity of each. For positive values of x greater than the largest zero, the sign of the function will match the sign of the leading coefficient. The sign will change at each zero that has odd multiplicity, so one can work right to left to identify the sign of the function in each interval between odd-multiplicity zeros.

The value of the function will be zero at each even-multiplicity zero, but will not change sign there. Obviously, the zero at that point will not be included in the solution interval if the inequality is f(x) > 0, but will be if it is f(x) ≥ 0. Once the sign of the function is identified in each interval, the solution to the inequality becomes evident.

As a check on your work, you will notice that the sign of the function for x > max(zeros) will be the same as the sign of the function for x < min(zeros) if the function is of even degree; otherwise, the signs will be different.

The solution to a polynomial inequality is a set of intervals on the real number line. The solution to a polynomial equation is a set of points, which may be in the complex plane.

__

3. A composite function is a function of a function, or a function of a composite function. For example f(g(x)) is a composite function. The composition can be written using either of the equivalent forms ...

  [tex](f\circ g)(x)\ \Leftrightarrow\ f(g(x))[/tex]

It can be easy to confuse an improperly written composition operator with a multiplication symbol, so the form f(g(x)) is preferred when the appropriate typography is not available.

When simplifying the form of a composition, the Order of Operations applies. That is, inner parenthetical expressions are evaluated (or simplified) first. As with any function, the argument of the function is substituted wherever the independent variable appears.

For example, in computing the value f(g(2)), first the value of g(2) is determined, then that value is used as the argument of the function f. The same is true of other arguments, whether a single variable, or some complicated expression, or even another composition.

Note that the expression f(g(x)) is written as the composition shown above. The expression g(f(x)) would be written using the composition operator with g on the left of it, and f on the right of it:

  [tex](g\circ f)(x)\ \Leftrightarrow\ g(f(x))[/tex]

That is, with respect to the argument of the composition, the functions in a composition expression are right-associative. For example, ...

  for h(x)=2x+3, g(x)=x^2, f(x)=x-2 we can evaluate f(g(h(x)) as follows:

  f(g(h(x)) = f(g(2x+3) = f((2x+3)^2) = (2x+3)^2 -2

It should be obvious that g(h(f(x)) will have a different result.

  g(h(f(x)) = g(h(x-2)) = g(2(x-2)+3) = (2(x-2)+3)^2

Knowing that AQPT = AARZ, a congruent side pair is:

Answers

Answer:

A. QT ≅ AZ

Step-by-step explanation:

When writing a congruence statement of two triangles, the order of arrangement of the letters used in naming the triangles are carefully considered. Corresponding sides and angles of both triangles are arranged accordingly in the order they appear.

Given that ∆QPT ≅ ∆ARZ, we have the following sides that correspond and are congruent to each other:

QP ≅ AR

PT ≅ RZ

QT ≅ AZ

The only correct one given in the options given above is QT ≅ AZ

3 coins Priya spends $45 on gas, $10 on dinner, and $8 on a video game. How much money did Priya spend on variable expenses?​

Answers

Answer:

3x=63

Step-by-step explanation:

3 coins means a coin is x and total expenditure is equal to 63

Find the slope of the line passing through the points (9, 1) and (9,-4).

Answers

Answer:

slope is undefined

Step-by-step explanation:

(9, 1 ) and (9, - 4 )

Since the x- coordinates of the 2 points are 9, then the line is vertical and parallel to the y- axis with slope being undefined.

Slope is the change in y over the change in x.

Slope = (-4 - 1) / (9 -9) = -5/0 you cannot divide by 0,so the slope is undefined. This means it is a vertical line

Identify the decimals labeled with letters A B and C on the scale

Answers

Answer:

A. 37.39 B. 37.41 C. 37.27

Write the equation of the trigonometric graph

Answers

Answer:

y = sin(4(x+π/8)) + 1

Step-by-step explanation:

For a trigonometric equation of form

y = Asin(B(x+C)) + D,

the amplitude is A, the period is 2π/B, the phase shift is C, and the vertical shift is D (shifts are relative to sin(x) = y)

First, the amplitude is the distance from the center to a top/bottom point (also known as a peak/trough respectively). The center of the function given is at y=1, and the top is at y=2, Therefore, 2-1= 1 is our amplitude.

Next, the period is the distance between one peak to the next closest peak, or any matching point to the next matching point. One peak of this function is at x=0 and another is at x= π/2, so the period is (π/2 - 0) = π/2. The period is equal to 2π/B, so

2π/B  = π/2

multiply both sides by b to remove a denominator

2π = π/2 * B

divide both sides by π

2 = 1/2 * B

multiply both sides by 2 to isolate b

4 = B

After that, the phase shift is the horizontal shift from sin(x). In the base function sin(x), one center is at x=0. However, on the graph, the closest centers to x=0 are at x=± π/8. Therefore, π/8 is the phase shift.

Finally, the vertical shift is how far the function is shifted vertically from sin(x). In sin(x), the centers are at y=0. In the function given, the centers are at y=1, symbolizing a vertical shift of 1.

Our function is therefore

y = Asin(B(x+C)) + D

A = 1

B = 4

C = π/8

D = 1

y = sin(4(x+π/8)) + 1

Answer(s):

[tex]\displaystyle y = sin\:(4x + \frac{\pi}{2}) + 1 \\ y = -cos\:(4x \pm \pi) + 1 \\ y = cos\:4x + 1[/tex]

Explanation:

[tex]\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 1 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{8}} \hookrightarrow \frac{-\frac{\pi}{2}}{4} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\frac{\pi}{2}} \hookrightarrow \frac{2}{4}\pi \\ Amplitude \hookrightarrow 1[/tex]

OR

[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 1 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\frac{\pi}{2}} \hookrightarrow \frac{2}{4}\pi \\ Amplitude \hookrightarrow 1[/tex]

You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of sine, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of [tex]\displaystyle y = sin\:4x + 1,[/tex] in which you need to replase “cosine” with “sine”, then figure out the appropriate C-term that will make the graph horisontally shift and map onto the cosine graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY REALLY ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the sine graph [photograph on the right] is shifted [tex]\displaystyle \frac{\pi}{8}\:unit[/tex] to the right, which means that in order to match the cosine graph [photograph on the left], we need to shift the graph BACK [tex]\displaystyle \frac{\pi}{8}\:unit,[/tex] which means the C-term will be negative, and perfourming your calculations, you will arrive at [tex]\displaystyle \boxed{-\frac{\pi}{8}} = \frac{-\frac{\pi}{2}}{4}.[/tex] So, the sine graph of the cosine graph, accourding to the horisontal shift, is [tex]\displaystyle y = sin\:(4x + \frac{\pi}{2}) + 1.[/tex] Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph hits [tex]\displaystyle [0, 2],[/tex] from there to [tex]\displaystyle [\frac{\pi}{2}, 2],[/tex] they are obviously [tex]\displaystyle \frac{\pi}{2}\:unit[/tex] apart, telling you that the period of the graph is [tex]\displaystyle \frac{\pi}{2}.[/tex] Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the midline. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at [tex]\displaystyle y = 1,[/tex] in which each crest is extended one unit beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.

I am delighted to assist you at any time.

Other Questions
what happens when transitioning between photosynthesis and cellular respiration? What is the final step in the fourth stage of technological design, after a product has been improved abs approved PLEASE HELP!!!The distance d of a particle moving in a straight line is given by d(t) = 2t^3 + 5t 2, where t is given in seconds and d is measured in meters.Find the velocity of the particle for t = 7 seconds.A) 152 m/sB) 47 m/sC) 733 m/sD) 299 m/s what is the slope of a line perpendicular to y=-(7)/(4)x Write a paragraph on 'What you would expect as help if it happens that you are in serious trouble' Explain two ways that 3-Dimensional and 2-Dimensional objects are connected. Find BD , given that line AB is the angle bisector of Write a rule to describe the transformation.A. rotation 180 about the originB. reflection across y=xC. rotation 90 clockwise about the originD. rotation 90 counterclockwise about the origin When ever you have time plz help me Using a deck of 52 playing cards, what are the odds in favor of drawing a Jack or 10? solve the equation r-4s+s=8r+2s=28 Para que se emplean los subproductos de las cosechas? Please help 4. The equation of a curve is y = (3 - 2x)^3 + 24x.(a) Find an expression for dy/dx 5. The equation of a curve is y = 54x - (2x - 7)^3. (a) Find dy/dx 1+4=52+3=1010+5=254+1? (4xy + 2xy 2y) (7xy + 6xy 2y)Find the difference of polynomials ? half past 9:00p.m. what is half past of 9:00p.m. Find the midpoint of the line segment with end coordinates of: (-2,-2) and (2,8) How many solutions does it have? Pls help A study conducted by the Center for Population Economics at the University of Chicago studied the birth weights of 614 babies born in New York. The mean weight was 3398 grams with a standard deviation of 892 grams. Assume that birth weight data are approximately bell-shaped. Estimate the number of newborns who weighed between 1614 grams and 5182 grams. Round to the nearest whole number. ? It is very nice, .tag question