Answer:
1. where the skater turns and goes back in the opposite direction- point w
2. gravitational force of the object
3. point a
4. the bar representing sphere 4 should be twice as tall as the bar representing sphere 2
5. B; its mass is smaller (?)
yolo
Answer:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Explanation:
An empty airplane with a mass of 200,000 kg must have a speed of 82 m/s to achieve takeoff. Once it is fully loaded, the airplane has a mass of 350,000 kg. It has 3200 m of runway. a) How much force is needed to get the full airplane safely in the air?
b) How much runway would the empty airplane use if its engines generated the same force?
Answer:
a) A force of 367718.75 newtons is needed to get the full airplane safely in the air.
b) The empty airplane would need a runway of 1828.571 meters.
Explanation:
a) This problem can be solved by using the Work-Energy Theorem, which states that work needed by the airplane to get minimum speed is equal to its change in translational kinetic energy, both measured in joules. The resulting formula is presented below:
[tex]F\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{f}^{2}-v_{o}^{2})[/tex] (1)
Where:
[tex]F[/tex] - Minimum net force, measured in newtons.
[tex]\Delta s[/tex] - Runway length, measured in meters.
[tex]m[/tex] - Mass of the airplane, measured in kilograms.
[tex]v_{o}[/tex], [tex]v_{f}[/tex] - Initial and final speeds of the airplane, measured in meters per second.
If we know that [tex]m = 350000\,kg[/tex], [tex]v_{o} = 0\,\frac{m}{s}[/tex], [tex]v_{f} = 82\,\frac{m}{s}[/tex] and [tex]\Delta s = 3200\,m[/tex], then the minimum net force needed by the airplane to get itself safely in the air:
[tex]F = \frac{m\cdot (v_{f}^{2}-v_{o}^{2})}{2\cdot \Delta s}[/tex]
[tex]F = \frac{(350000\,kg)\cdot \left[\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (3200\,m)}[/tex]
[tex]F = 367718.75\,N[/tex]
A force of 367718.75 newtons is needed to get the full airplane safely in the air.
b) If we know that [tex]m = 200000\,kg[/tex], [tex]v_{o} = 0\,\frac{m}{s}[/tex], [tex]v_{f} = 82\,\frac{m}{s}[/tex] and [tex]F = 367718.75\,N[/tex], then the length of the runway is:
[tex]\Delta s = \frac{m\cdot (v_{f}^{2}-v_{o}^{2})}{2\cdot F}[/tex]
[tex]\Delta s = \frac{(200000\,kg)\cdot \left[\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (367718.75\,N)}[/tex]
[tex]\Delta s = 1828.571\,m[/tex]
The empty airplane would need a runway of 1828.571 meters.
A body with mass 2 kg absorbs heat 418.4J when its temperature raises from 293K to 343K . What is the specific heat of the body?
Answer:
C M (change in T) = heat absorbed thermal equation for heat gained
C = 418.4 J / (2 kg * 50 deg K) = 4.184 J / kg * deg K specific heat
Note: 1 gm =.001 kg
So C = .004184J / gm * deg K
Also, 1 J = .239 cal so in conventional terms
C = .001 cal / gm deg K (very low, water would be 1 cal / gm deg C
A 10.0kg box sits at rest on ramp that has an incline of 20.0° from the horizontal. What is the force of gravity acting on the box?
A. -98.0N
B. 98.0N
C. -92.1N
D. -33.5N
Answer:
98.0N
Explanation:
Janet jumps off a high diving platform with
a horizontal velocity of 2.6 m/s and lands in
the water 1.5 s later.
How far from the base of the platform
does she land? The acceleration of gravity
is 9.8 m/s?
Answer in units of m.
Answer:
11.025m
Explanation:
In this question there is no vertical velocity,
t= 1.5s
Height of platform=h
From Newton equation
s = ut + 1/2gt^2
But there is no vertical velocity,
Hence,
Then u=0
h = 0 + 1/2 x 9.8 x (1.5)^2
h = 11.025m
IS IT B!! if not pls helpp!
Answer:
I believe you are correct but we just started this unit
Explanation:
What is the same about a particle as gas, liquid, or solid?
A. The speed at which the particles move.
B. The volume that the substance takes up.
C. The chemical composition.
D. The temperature of the substance.
The thing same about a particle as gas, liquid, or solid is its chemical composition.
What are states of matter?
Matter exists in three different states: solid, liquid, and gas. By examining the configuration of their particles, it is possible to understand why they have various qualities. Theoretically, at this temperature, particles move slowly and have the least amount of energy.
Phase refers to the material's actual state. To pay attention to is the word physical. Only physical means can change the state of matter. You can make a physical change if energy is added (by raising the temperature) or subtracted (by freezing things).
The chemical composition of matter same about a particle as gas, liquid or solid.
To learn more about states of matter refer to the link:
brainly.com/question/9402776
#SPJ5
An astronaut sitting on the launch pad on Earth's surface is 6,400 kilometers from Earth's center and weighs 400 newtons. Calculate her weight when she reaches an altitude of 6,400 kilometers above the surface of Earth.
Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
Henry designs an experiment to find out why plants without flowers tend to be wind-pollinated and not animal-pollinated. He takes samples from a variety of plants and studies them in the field. He finds that the evidence supports his hypothesis. Which of these was the hypothesis Henry was testing? Choose the correct answer. Nonflowering plants make less pollen than flowering plants. Nonflowering plants lack the structures to attract animal pollinators. Nonflowering plants grow close to the ground and capture fewer pollinators. Nonflowering plants grow close to the ground because they have no pollen grains.
Answer:
option 2
Explanation:
you are very welcom
aluminum has a density of 270 kg/m3. what volume of aluminum would have a mass of 49.9 kg?
(unit = m^3)
0.184[tex]m^{3}[/tex] is the answer for Acellus students!
A person runs 15.0 km north then turns around and runs 10.0 Km south. what is his dstance
Answer:
25km
Explanation:
The person runs 15km Northward
Turns around and runs 10km southward
The distance is the length of path covered by the person running.
This is given as:
Distance = Distance North + Distance South
Distance = 15km + 10km = 25km
Answer:
25km
Explanation:
cant explain but ik
When fireworks explode, sound and light are produced. These are examples of(1 point)
macroscopic inputs.
macroscopic outputs.
microscopic inputs.
microscopic outputs.
Answer: macroscopic outputs
Explanation:
When fireworks explode, sound and light are produced. These are examples of macroscopic outputs. Because, explosion from fireworks is an exothermic process which releases massive heat energy to the surroundings.
What is exothermic reaction?Exothermic reaction are those which evolve heat energy to the surroundings. The change in enthalpy of the reaction is negative here. Whereas, in an endothermic reaction energy is absorbed by the reactants.
Exothermic reactions sometimes results in massive explosion. The heat energy released to the surroundings from the fire works is macroscopic level.
The small scale process or quantity that cannot be measured using normal scales are called microscopic units. Therefore, the sound, light, and heat from the explosion all are macroscopic outputs.
Find more on exothermic reactions:
https://brainly.com/question/29206227
#SPJ6
A horizontal pole is attached to the side of a building. There is a pivot P at the wall and a chain is connected from the end of the pole to a point higher up the wall. There is a tension force F in the chain. What is the moment of the force F about the pivot P?
Answer:
Fscos63
Explanation:
Given that a horizontal pole is attached to the side of a building. There is a pivot P at the wall and a chain is connected from the end of the pole to a point higher up the wall. There is a tension force F in the chain. What is the moment of the force F about the pivot P?
Taking the moment from the pivot point P, that means the moment at point p = 0
Then, if we consider the weight mg of the pole, according to the principle of equilibrium : sum of the upward forces equal to the sum of the downward forces.
Therefore, mg = Fsinø ....... (1)
Also, taking moment at point P
Let the length of the pole = s
The length of the weight of the pole = 1/2 S
Fscosø = mgs/2
The distance s will cancel out
2Fcosø = mg ...... (3)
Substitute mg in equation 1 into equation 3
2fcosø = fsinø
F will cancel out
Tanø = 2
Ø = tan^-1(2)
Ø = 63.4 degree
The moment of force F about pivot point P will be
Moment = force × distance
Moment = Fcos63 × S
Moment = Fscos63
Hi!! Does anyone know this answer? :D
Answer:
Im not fully corrrect but I would say C
Explanation:
Which of these pairs of atoms are isotpoes? (Physical Science) Pair A Pair B Pair C # protons 6 8 5 2 12 12 # neutrons 8 8 5 3 13 14
Answer:
I guess that the atoms are:
Protons: 6 8 5 2 12 12
Neutrons: 8 8 5 3 13 14
Now, two atoms are isotopes if they share the same number of protons (so both atoms are the same element) but they have a different number of neutrons.
From the given options, the only two that have the same number of protons but a different number of neutrons are:
Protons 12, neutrons 13
and
Protons 12, neutrons 14.
These two are isiotopes.
I NEED ANSWER ASAP!!!
At which point(s) will acceleration occur shown in the image???
Answer:
Gravity is an ever present force, and therefore acceleration is guaranteed to happen at every single one of those points (and in fact, everywhere in the universe).
On top of that, friction will be present in all four spots (friction with the rails, with the air, with the axles, etc.), and friction is a perfectly acceptable force that will cause acceleration, slowing the roller coaster down.
So the correct answer is every single point, regardless of what answer the teacher expects.
The object will be moving faster if the acceleration and velocity are pointing in the same direction. The object will also slow down if the acceleration is pointing in the opposite direction as the velocity.
What role of acceleration in the motion of object?When an object's speed, direction of motion, or both change, it accelerates. Even while it may appear to be virtually immediate in some circumstances, such as when a golf ball is struck by a club or during car collisions, changes in an object's speed are always continuous.
Since gravity is a constant force, acceleration will unavoidably occur at each of those locations and throughout the whole universe.
Therefore, In addition, there will be friction at all four locations—friction with the axles, the air, the rails, etc.—and friction is a completely normal force that will accelerate the roller coaster, slowing it down.
Learn more about acceleration here:
https://brainly.com/question/14814063
#SPJ2
Explain how the design of a racing car makes it less likely to turn over.
The principles which allow aircraft to fly are also applicable in car racing. The only difference being the wing or airfoil shape is mounted upside down producing downforce instead of lift. The Bernoulli Effect means that: if a fluid (gas or liquid) flows around an object at different speeds, the slower moving fluid will exert more pressure than the faster moving fluid on the object. The object will then be forced toward the faster moving fluid. The wing of an airplane is shaped so that the air moving over the top of the wing moves faster than the air beneath it. Since the air pressure under the wing is greater than that above the wing, lift is produced. The shape of the Indy car exhibits the same principle. The shape of the chasis is similar to an upside down airfoil. The air moving under the car moves faster than that above it, creating downforce or negative lift on the car. Airfoils or wings are also used in the front and rear of the car in an effort to generate more downforce. Downforce is necessary in maintaining high speeds through the corners and forces the car to the track. Light planes can take off at slower speeds than a ground effects race car can generate on the track. An Indy ground effect race car can reach speeds in excess of 230 mph using downforce. In addition the shape of the underbody (an inverted wing) creates an area of low pressure between the bottom of the car and the racing surface. This sucks the car to road which results in higher cornering speeds.
The total aerodynamic package of the race car is emphasized now more than ever before. Teams that plan on staying competitive use track testing and wind tunnels to develop the most efficient aerodynamic design. The focus of their efforts is on the aerodynamic forces of negative lift or downforce and drag. The relationship between drag and downforce is especially important. Aerodynamic improvements in wings are directed at generating downforce on the race car with a minimum of drag. Downforce is necessary for maintaining speed through the corners. Unwanted drag which accompanies downforce will slow the car. The efficient design of a chassis is based on a downforce/drag compromise. In addition the specific race circuit will place a different demand on the aerodynamic setup of the car.
A road course with low speed corners, requires a car setup with a high downforce package. A high downforce package is necessary to maintain speeds in the corners and to reduce wear on the brakes. This setup includes large front and rear wings. The front wings have additional flaps which are adjustable. The rear wing is made up of three sections that maximize downforce.
The speedway setup looks much different. The front and rear wings are almost flat and are used as stabilizers. The major downforce is found in the shape of the body and underbody. Drag reduction is more critical on the speedway than on other circuits. Since the drag force is proportional to the square of the speed, minimizing drag is a primary concern in the speedway setup. Lap speeds can average over 228 mph and top speeds can exceed 240 mph on a speedway circuit. Effective use of downforce is especially pronounced in highspeed corners. A race car traveling at 200 mph. can generate downforce that is approximately twice its own weight.
Generating the necessary downforce is concentrated in three specific areas of the car. The ongoing challenge for team engineers is to fine tune the airflow around these areas.
What is the gravitational force of attraction between a 55 kg boy and a 40 kg girl if they are 0.10 meters apart?
Answer:
[tex]1.5\cdot 10^{-5}\:\mathrm{N}[/tex]
Explanation:
Newton's Law of Gravitation is given as:
[tex]F=G\frac{m_1m_2}{r^2}[/tex], where [tex]G[/tex] is gravitational constant [tex]6.67\cdot 10^{-11}[/tex] and [tex]r[/tex] is the distance between their centers of mass.
Therefore, the gravitational force between them is:
[tex]F=6.67\cdot 10^{-11}\frac{55\cdot40}{0.1^2}= \fbox{$1.5\cdot 10^{-5}\:\mathrm{N}$}[/tex] (two significant figures).
Please help ASAP please ASAP
What distance is required for a train
to stop if its intial Velocity is 23 m/s
and its deceleration is 0.25m/s (Assume the train decelerates at a constant rate.)
Explanation:
what is time in this question
I was having trouble with this problem, and problems like it: A 3.2 kg pelican, with a 1.73 kg fish in its mouth, is flying 1.52 m/s at a height of 40 m when the fish wiggles free and fall back toward the ocean. How fast is the fish moving when it hits the water?
Answer:
28.1 m/s
Explanation:
[tex]u_x[/tex] = Initial velocity of the fish = 1.52 m/s
y = Height of the bird = 40 m
[tex]a_y[/tex] = Acceleration in y axis = [tex]9.81\ \text{m/s}^2[/tex]
[tex]u_y[/tex] = Initial velocity in y axis = 0
[tex]y=u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow 40=0+\dfrac{1}{2}\times 9.81t^2\\\Rightarrow t=\sqrt{\dfrac{40\times 2}{9.81}}\\\Rightarrow t=2.86\ \text{s}[/tex]
[tex]v_y=u_y+a_yt\\\Rightarrow v_y=0+9.81\times 2.86\\\Rightarrow v_y=28.057\ \text{m/s}[/tex]
The final velocity in x direction will remain the same as the initial velocity as there is no acceleration in the x direction [tex]u_x=v_x=1.52\ \text{m/s}[/tex]
Resultant velocity is given by
[tex]v=\sqrt{v_x^2+v_y^2}\\\Rightarrow v=\sqrt{1.52^2+28.057^2}\\\Rightarrow v=28.1\ \text{m/s}[/tex]
The fish is moving at a velocity of 28.1 m/s when it hits the water.
If Minnie the Mouse starts moving at 2m/s and increases her velocity to 4m/s because she is being chased, what is heracceleration if the time is 2 seconds?
Answer:
1m/s²
Explanation:
Given parameters:
Initial velocity = 2m/s
Final velocity = 4m/s
Time of chase = 2s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time;
A = [tex]\frac{v - u }{t}[/tex]
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken
A = [tex]\frac{4 - 2}{2}[/tex] = 1m/s²
A student pulls a block across the desk in physics class. He applies 14N of
tension in the string, but friction holds the box back with 4N. His partner
measures the acceleration of the box across the desk to be 2m/s2. What
must the mass of the box be?
100 Pointsss hellppp
can you please show a picture
whats the result of rounding 52.8015 into five significant figures
Answer:
52.802
Explanation:
"Significant figures" in Mathematics refer to the digits that give accuracy to the value of a measurement. There are specific rules when it comes to determining the significant figures. For example, all non-zero digits are considered significant and zeroes located in-between non-zero numbers are significant. In the number given above, the digit "0" is located between "8" and "1," therefore, it is significant. All the digits above are significant.
The problem is only asking for "five" significant figures. We can do this by counting from the left to the right. By this means, we know that the number will be rounded off to the nearest thousandths, which is "1." The number after 1 is 5, which means that 1 digit will be added to number 1, thus, making the digit into "2." The last digit (5) will then be removed.
Explanation:
five significant of 52.8015=52.801 ..
Fig. 2.1 shows a train
Fig. 2.1
The total mass of the train and its passengers is 750000kg. The train is travelling at a speed of 84m/s.
The driver applies the brakes and the train takes 80s to slow down to a speed of 42m/s.
(a) Calculate the impulse applied to the train as it slows down,
impulse =
[3]
(b) Calculate the average resultant force applied to the train as it slows down,
force =
(2)
Answer:
[tex]\mathrm{(a)\:}32,000,000\:\mathrm{Ns},\\\mathrm{(b)\:}390,000\:\mathrm{N}[/tex]
Explanation:
The impulse-momentum theorem states the impulse on an object is equal to the change in momentum of that object. Momentum is given by [tex]p=mv[/tex]. Since mass is constant, the train's change in momentum is:
[tex]\Delta p=m\Delta v=750,000\cdot42=31,500,000=\fbox{$32,000,000\:\mathrm{Ns}$}[/tex](two significant figures).
Impulse is also given as [tex]\Delta p = F\Delta t[/tex], where [tex]F[/tex] is the average force applied and [tex]\Delta t[/tex] is change in time. Since [tex]t[/tex] is given as [tex]80\mathrm{s}[/tex], we have the following equation:
[tex]F\Delta t=\Delta p\\\\F=\frac{\Delta p}{\Delta t},\\\\F=\frac{31,500,000}{80},\\\\F=393,750=\fbox{$390,000\:\mathrm{N}$}[/tex](two significant figures).
An object is subject to a 84 Nm torque about a point when a
21 N of force is applied to a second point along the object's
length. How far apart are the two points
Answer:
d = 4[m]
Explanation:
Torque in physics is defined as the product of force by distance. This way you can use the following equation to calculate the torque.
[tex]T=F*d[/tex]
where:
T = torque [N*m]
F = force [N]
d = distance [m]
Now replacing in the equation above.
[tex]84=21*d\\\\d= 4[m][/tex]
A ‘can-chiller’ is used to make a can of drink colder. The initial temperature of the liquid in the can was 25.0 °C. The can-chiller decreased the temperature of the liquid to 20.0 °C. The amount of energy transferred from the liquid was 6930 J. The mass of liquid in the can was 0.330 kg.
Calculate the specific heat capacity of the liquid. Give the unit.
Please help :)
Answer:
4200 J/°C/kg
Explanation:
The formula for heat transfer is given by :
Q= m*c*ΔT where;
Q= heat transferred = 6930 J
m=mass of the liquid = 0.330 kg
c= specific heat capacity=?
ΔT = 25-20 = 5.0°C
Applying the values in the formula as;
Q= m*c*ΔT
6930 = 0.330 * c * 5
6930 = 1.65 c
6930/1.65 = c
4200 = c
c= 4200 J/°C/kg
If there is a difference in air pressure between two locations, what happens?
Answer:
High in the atmosphere, air pressure decreases. ... A low pressure system has lower pressure at its center than the areas around it. Winds blow towards the low pressure, and the air rises in the atmosphere where they meet. As the air rises, the water vapor within it condenses, forming clouds and often precipitation.
Explanation:
What are five facts about magnets? Please help me
velocity of sound in solid is more than that in liquid.why?
Velocity of sound travels faster in solids than in liquids, and faster in liquids than in gases because "the density of solids is higher than that of liquids, meaning that the particles are closer together."
Answer:
Explanation:
Due to the fact that sound is caused by vibrations, it's more noticeable in liquid because the vibrations may cause ripples in the liquid
a) Las siglas M. RU significan
Answer:
Ver la explicación a continuación.
Explanation:
En física estas siglas significan movimiento rectilíneo uniforme, es decir es el tipo de movimiento donde la velocidad es constante. La velocidad no cambia con el tiempo.
Este tipo de movimiento se puede describir con la siguiente ecuación.
[tex]x=x_{0}+v*t[/tex]
Donde:
x = posición final [m]
xo = posición inicial [m]
v = velocidad [m/s]
t = tiempo [s]