Answer:
No, because 2^3 × 3^2 is equivalent to 72 which is a much smaller number than 6^5 which is equal to 7,776.
Step-by-step explanation:
2^3 × 3^2 = 6^5 ??
Use PEMDAS:
(2 × 2 × 2) × (3 × 3) = 6 × 6 × 6 × 6 × 6
(4 × 2) × 9 = 36 × 6 × 6 × 6
8 × 9 = 216 × 6 × 6
72 = 1,296 × 6
72 = 7,776
Step-by-step explanation:
no because they just added they exponents together. 6^5 is like saying 6 multiplied by itself 5 different times. same with the other numbers. if you switch the exponents around and multiply at different times it's like multiplying different numbers, because 2^3 is multiplying 2 by itself 3 individual times. if you move the exponent to the 6, you are multiplying a completely different number by its own self, so the two different methods cannot be congruent.
(I'm sorry I hope that made sense)
also you can just check with the calculator, this is just an explanation on why it will show up like that on the calculator
Find the length of the hypotenuse to the nearest tenth (example 4.5)
6
co
2
Answer:
hypotenuse = 6.3
Step-by-step explanation:
here 6 and 2 are the legs of the triangle . we are asked to find hypotenuse (longest side)
using pythagoras theorem
a^2 + b^2 = c^2
6^2 + 2^2 = c^2
36 + 4 = c^2
40 = c^2
[tex]\sqrt{40}[/tex] = c
6.32 = c
6.3 = c
A battery with a voltage of 3 V provides a voltage of 0.56 C to some circuits. Calculate the electrical power provided by this battery
Answer:
The power is 1.68 W.
Step-by-step explanation:
Voltage, V = 3 V
charge, q = 0.56 C
time, t = 1 s
The power is given by
P = V q/t
P = 3 x 0.56 / 1
P = 1.68 W
Please don't troll!!!!!!!
Answer:
Ben = $ 41
Kaden = $ 31
Step-by-step explanation:
Let initially Ben has $ p and then Kaden has $ (p - 10).
After that
Ben has= $ (p + 4)
Kaden has = $ (p- 10 + 4) = $ ( p - 6)
According to the question,
[tex]p- 6 = \frac{7}{9}\times (p+4)\\\\9 p- 54 = 7 p + 28 \\\\2 p = 82\\\\p =41[/tex]
Initially Ben has $ 41 and Kaden has $ 31.
Let a and b be real numbers where a 0. Which of the following functions could represent the graph below?
f(x) = x(x – a)3(x – b)3
f(x) = (x – a)2(x – b)4
f(x) = x(x – a)6(x – b)2
f(x) = (x – a)5(x – b)
Answer:
D
Step-by-step explanation:
D on edg
The measures of two complementary angles are represented by (2x) and (3x - 10)". What is the value of x?
Answer:
Step-by-step explanation:
2x + 3x - 10 = 90
Combine like terms
5x - 10 = 90
Add 10 to both sides
5x = 90+10
5x = 100
Divide both sides by 5
x =100/5
x = 20
A) m + n
B) 0
C) m - 1
D) -(m+n)
the required answer is 2m- (m-n)(m-1)
Line p is parallel to line q
Which set of statements about the angles is true ?
Need answer to this maths question plssss
Answer:
The fourth angles is 105
Step-by-step explanation:
The sum of the angles of a quadrilateral is 360
3*85 = 225
Let the fourth angle be x
225 +x = 360
x = 360 -225
x =105
What is the x value of the solution to the system of equations
4y=2x+8
Y=-x+2
Answer:
x=0;y=2
Step-by-step explanation:
4(-x+2)=2x+8 -4x+8=2x+8 -4x-2x=8-8 -6x=0 x=0 y=-x+2 y=0+2 y=2
Grade 10 Math. Solve for y. Will mark right answer brainliest :)
Answer:
y=5, y=[tex]\frac{38}{11}[/tex]
Step-by-step explanation:
Hi there!
We are given the equation
[tex]\frac{y+2}{y-3}[/tex]+[tex]\frac{y-1}{y-4}[/tex]=[tex]\frac{15}{2}[/tex] and we need to solve for y
first, we need to find the domain, which is which is the set of values that y CANNOT be, as the denominator of the fractions cannot be 0
which means that y-3≠0, or y≠3, and y-4≠0, or y≠4
[tex]\frac{y+2}{y-3}[/tex] and [tex]\frac{y-1}{y-4}[/tex] are algebraic fractions, meaning that they are fractions (notice the fraction bar), but BOTH the numerator and denominator have algebraic expressions
Nonetheless, they are still fractions, and we need to add them.
To add fractions, we need to find a common denominator
One of the easiest ways to find a common denominator is to multiply the denominators of the fractions together
Let's do that here;
on [tex]\frac{y+2}{y-3}[/tex], multiply the numerator and denominator by y-4
[tex]\frac{(y+2)(y-4)}{(y-3)(y-4)}[/tex]; simplify by multiplying the binomials together using FOIL to get:
[tex]\frac{y^{2}-2y-8}{y^{2}-7y+12}[/tex]
Now on [tex]\frac{y-1}{y-4}[/tex], multiply the numerator and denominator by y-3
[tex]\frac{(y-1)(y-3)}{(y-4)(y-3)}[/tex]; simplify by multiplying the binomials together using FOIL to get:
[tex]\frac{y^{2}-4y+3}{y^{2}-7y+12}[/tex]
now add [tex]\frac{y^{2}-2y-8}{y^{2}-7y+12}[/tex] and [tex]\frac{y^{2}-4y+3}{y^{2}-7y+12}[/tex] together
Remember: since they have the same denominator, we add the numerators together
[tex]\frac{y^{2}-2y-8+y^{2}-4y+3}{y^{2}-7y+12}[/tex]
simplify by combining like terms
the result is:
[tex]\frac{2y^{2}-6y-5}{y^{2}-7y+12}[/tex]
remember, that's set equal to [tex]\frac{15}{2}[/tex]
here is our equation now:
[tex]\frac{2y^{2}-6y-5}{y^{2}-7y+12}[/tex]=[tex]\frac{15}{2}[/tex]
it is a proportion, so you may cross multiply
2(2y²-6y-5)=15(y²-7y+12)
do the distributive property
4y²-12y-10=15y²-105y+180
subtract 4y² from both sides
-12y-10=11y²-105y+180
add 12 y to both sides
-10=11y²-93y+180
add 10 to both sides
11y²-93y+190=0
now we have a quadratic equation
Let's solve this using the quadratic formula
Recall that the quadratic formula is y=(-b±√(b²-4ac))/2a, where a, b, and c are the coefficients of the numbers in a quadratic equation
in this case,
a=11
b=-93
c=190
substitute into the formula
y=(93±√(8649-4(11*190))/2*11
simplify the part under the radical
y=(93±√289)/22
take the square root of 289
y=(93±17)/22
split into 2 separate equations:
y=[tex]\frac{93+17}{22}[/tex]
y=[tex]\frac{110}{22}[/tex]
y=5
and:
y=[tex]\frac{93-17}{22}[/tex]
y=[tex]\frac{76}{22}[/tex]
y=[tex]\frac{38}{11}[/tex]
Both numbers work in this case (remember: the domain is y≠3, y≠4)
So the answer is:
y=5, y=[tex]\frac{38}{11}[/tex]
Hope this helps! :)
Expand 3(c + 3).
3(c + 3) =
Answer:
3c + 9
Step-by-step explanation:
Remember to multiply everything in the brackets by the number outside the brackets.
Helppp and explain please and ty ;)
Answer:
Does this seem right to you?
A truck is being filled with cube-shaped packages that have side lengths of \frac{1}{4} 4 1 foot. The part of the truck that is being filled is in the shape of a rectangular prism with dimensions 8ft\times6\frac{1}{4}ft\times7\frac{1}{2}ft8ft×6 4 1 ft×7 2 1 ft.
Complete Question
A truck is being filled with cube-shaped packages that have side lengths 1/4 foot. The part of the truck that is being filled is in the shape of a rectangular prism with dimensions 8ft × 6 1/4 ft × 7 1/2 ft. Find the number of cubes that can fill that part of the truck
Answer:
1500 cubes
Step-by-step explanation:
Step 1
Find the volume of the cube
V = side length ³
V = (1/4 ft)³
V = 1/64
Step 2
Find the volume of the rectangular prism
= Length × Width × Height
= 8ft × 6 1/4 ft × 7 1/2 ft
= 8 × 25/4 × 15/2
= 375 ft³
Step 3
Number of cubes in the truck
Volume of the Rectangular Prism ÷ Volume of the cube
= 375ft³ ÷ 1/4ft³
= 375 × 4
= 1500 cubes
Therefore, the number of cubes that can fill that part of the truck(Rectangular prism) = 1500 cubes
Ava works at a florist shop and earns $7.50 an hour plus a fixed bonus for each bouquet she arranges. Write a formula that will help her determine how much she will make in a week. Let's Let a= total amount earned, h= hours worked in one week, n= number of bouquets she arranged, and b= bonus amount for bouquets
Answer: a = 7.5h + bn
Step-by-step explanation:
Since Ava works at a florist shop and earns $7.50 an hour plus a fixed bonus for each bouquet she arranges.
where,
a = total amount earned,
h= hours worked in one week,
n = number of bouquets she arranged
b= bonus amount for bouquets
Then, the formula that will help her determine how much she will make in a week will be:
a = (7.5 × h) + (b × n)
a = 7.5h + bn
The formula is a = 7.5h + bn.
Find f ′(x) for f(x) = cos (5x2).
Answer:
I think its No Solution
Step-by-step explanation:
Hope it helps
Evaluate the function requested. Write your answer as a fraction in lowest terms. Triangle A B C. Angle C is 90 degrees. Hypotenuse A B is 39, adjacent A C is 36, Opposite B C is 15. Find tan A.
Answer:
tanA = [tex]\frac{5}{12}[/tex]
Step-by-step explanation:
tanA = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{15}{36}[/tex] = [tex]\frac{5}{12}[/tex]
Which are the solutions of the quadratic equation?
x² = 7x + 4
Answer:
[tex]x = \frac{7 + \sqrt{65}}{2} \ , \ x = \frac{7 - \sqrt{65}}{2}[/tex]
Step-by-step explanation:
[tex]x^2 = 7x + 4 \\\\x^2 - 7x - 4 = 0\\\\ a = 1 \ , \ b = - 7 , \ c \ = \ - 4 \\\\x = \frac{-b \pm \sqt{b^2 - 4ac }}{2a}\\\\Substitute \ the \ values : \\\\x = \frac{7 \pm \sqrt{7^2 - (4 \times 1 \times -4)}}{2 \times 1}\\\\x = \frac{7 \pm \sqrt{49 + 16}}{2 }\\\\x = \frac{7 \pm \sqrt{65}}{2 }\\\\x = \frac{7 + \sqrt{65}}{2}\ , \ x = \frac{7 - \sqrt{65}}{2}[/tex]
if 2x + 3y = 12 and xy = 6, find the value of 8x^3 + 27y^3
Answer:
The value of [tex]8\cdot x^{3} + 27\cdot y^{3}[/tex] is 432.
Step-by-step explanation:
Let be the following system of equations:
[tex]2\cdot x + 3\cdot y = 12[/tex] (1)
[tex]x\cdot y = 6[/tex] (2)
Then, we solve both for [tex]x[/tex] and [tex]y[/tex]:
From (1):
[tex]2\cdot x + 3\cdot y = 12[/tex]
[tex]2\cdot x = 12- 3\cdot y[/tex]
[tex]x = 6 - \frac{3}{2}\cdot y[/tex]
(1) in (2):
[tex]\left(6-\frac{3}{2}\cdot y \right)\cdot y = 6[/tex]
[tex]6\cdot y-\frac{3}{2}\cdot y^{2} = 6[/tex]
[tex]\frac{3}{2}\cdot y^{2}-6\cdot y + 6 = 0[/tex]
The roots of the polynomial are determined by the Quadratic Formula:
[tex]y_{1} = y_{2} = 2[/tex]
By (1):
[tex]x = 6 - \frac{3}{2}\cdot (2)[/tex]
[tex]x = 3[/tex]
If we know that [tex]x = 3[/tex] and [tex]y = 2[/tex], then the final value is:
[tex]z = 8\cdot x^{3}+27\cdot y^{3}[/tex]
[tex]z = 8\cdot 3^{3}+27\cdot 2^{3}[/tex]
[tex]z = 432[/tex]
The value of [tex]8\cdot x^{3} + 27\cdot y^{3}[/tex] is 432.
The distance between the parallel lines x – 2y = 3 and 2x – 4y = 12 is
Answer:
???????????????????????
Step-by-step explanation:
sorry di ko po alam yung sagot pasensiya na po
Given :
Parallel lines are
x – 2y = 3 and 2x – 4y = 12
Step-by-step explanation:
Lets write the given lines in slope intercept form y=mx+b
[tex]x -2y = 3 \\-2y=-x+3\\Divide \; both \; sides \; by -2\\y=\frac{x}{2} -\frac{3}{2}[/tex]
From the above equation , y intercept of first line is [tex]\frac{-3}{2}[/tex]
Solve the second equation for y and find out y intercept
[tex]2x-4y=12\\-4y=-2x+12\\Divide \; by \; -4\\y=\frac{1}{2} x-3[/tex]
y intercept of second line is -3
To find the distance between parallel lines, we subtract the y intercepts
[tex]\frac{-3}{2} -(-3)=\frac{-3}{2} +\frac{6}{2} =\frac{3}{2} =1.5[/tex]
Answer:
The distance between the parallel lines = 1.5
Reference:
https://brainly.com/question/24145911
Help Please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
4/8 = 1/2
Step-by-step explanation:
hope it thepled u
HELP? I WILL MARK BRAINIEST!!! Yuson must complete 15 hours of community service. She does 3 hours each day. Which linear equation represents the hours Yuson still has to work after x days?
Answer: y = 3x – 15
For the graph of the equation you wrote in Part A, what does the y-intercept represent?
A. Hours of community service completed each day
B. Hours of community service still to complete
C. Total hours of community service that must be completed
D. Days it takes to complete 15 hours of community service
Answer: C
Step-by-step explanation:
Can someone
Please
Help
Me
Find the surface area of this sphere.
Round to the nearest tenth.
16 ft
Formulas for Spheres
S.A. = 4nr?
V = rer
[?] ft?
[tex]804.2\:ft^{2}[/tex]
Step-by-step explanation:
[tex]A=4 \pi r^{2}[/tex]
We are given D = 16 ft, which means that r = (1/2)D = 8 ft. Therefore, the surface area of the sphere is
[tex]A=4 \pi (8 ft)^{2} = 804.2\:ft^{2}[/tex]
The surface area of the sphere is approximately 804.2 square feet.
What is a sphere?It is a three-dimensional figure where the volume is given as:
The volume of a sphere = 4/3 πr³
We have,
The surface area of a sphere with diameter d is given by the formula:
SA = 4πr²
where r is the radius of the sphere, which is half the diameter. In this case, the diameter is 16 feet, so the radius is 8 feet.
Plugging in the value of r, we get:
SA = 4π(8²)
SA = 4π(64)
SA = 256π
Rounding to the nearest tenth gives:
SA ≈ 804.2 square feet
Therefore,
The surface area of the sphere is approximately 804.2 square feet.
Learn more about sphere here:
https://brainly.com/question/12390313
#SPJ7
A carnival game gives players a 25% chance of winning every time it has played a player plays the game four times let XP the number of times a player wins in for place what is the most probable value of X what is the probable that the player will win at least once
Answer:
0.6836 = 68.36% probability that the player will win at least once.
Step-by-step explanation:
For each game, there are only two possible outcomes. Either the player wins, or the player loses. The probability of winning a game is independent of any other game, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
25% chance of winning
This means that [tex]p = 0.25[/tex]
Plays the game four times
This means that [tex]n = 4[/tex]
What is the probability that the player will win at least once?
This is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.25)^{0}.(0.75)^{4} = 0.3164[/tex]
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.3164 = 0.6836[/tex]
0.6836 = 68.36% probability that the player will win at least once.
Which fraction converts to a repeating decimal number?
CA.
1
12
B.
718
C.
127
27
D.
E.
6
10
Reset
Answer: A.
Step-by-step explanation:
Data: Fraction that turning into a repeating decimal number=x
Only step: Divide all the fractions, 1/12, 7/8, 14/25, 17/20, 6/10
Explanation: The only way to find which fraction turns into a repeating decimal is by dividing all the fractions, this can be done in any order but for this problem, lets start with 1/12 which, when divided, turns into 0.083... which is a repeating decimal
With that being said, the answer would be A.(1/12)
I hope this helps(Mark brainliest if you'd like to)
joey is going shopping for a new pair of sneakers. He finds a pair that have an original price of $155. They are on sale today for 30% off. How much does Joey pay for the sneakers including 8% sales tax?
Answer:, Joey will pay $117.18 for sneakers.
Step-by-step explanation:
Given: original price = $155
Discount rate = 30%
Tax rate = 8%
Price after discount = Original price - (Discount) x (original price)
[tex]= 155-0.30\times 155\\\\=155-46.5\\\\=\$\ 108.5[/tex]
Tax = Tax rate x (Price after discount)
[tex]= 0.08 \times 108.5[/tex]
= $ 8.68
Final price for sneakers = Price after discount + Tax
= $ (108.5+8.68)
= $ 117.18
Hence
An object is experiencing an acceleration of 30 m/s2 while traveling in a
circle at a velocity of 3.7 m/s. What is the RADIUS of its motion?
Answer:
[tex]{ \tt{formular :}} \\ { \boxed{ \bf{centripental \: acceleration = \frac{ {v}^{2} }{r} }}} \\ \\ { \tt{30= \frac{ {3.7}^{2} }{r} }} \\ \\ { \tt{r = \frac{ {3.7}^{2} }{30} }} \\ \\ { \tt{radius = 0.456 \: meters}}[/tex]
HELP I HAVE 10 MINS
If AB and CD have endpoints at A(- 1,3), B(6,8), C(4, 10) and D(9,3), are AB and CD parallel,
perpendicular, or neither? Explain.
Answer:
perpendicular
Can someone please answer this I’ll give brainliest
Answer:
Step-by-step explanation:
If you look at the diagram, you notice there are two triangular bases and three rectangular faces.
Therefore, the surface area, or the total area of all the bases and faces, would be the area of one triangular base multiplied by 2 and the area of each rectangular face
area of triangle = (1/2)*height*base
area of triangular base = (1/2)*15*28 = 210 cm^2
area of rectangle = base*height
area of rectangular face #1 = 25*30 = 750 cm^2
area of rectangular face #2 = 17*30 = 510 cm^2
area of rectangular face #3 = 28*30 = 840 cm^2
total surface area = 2*210 + 750 + 510 + 840 = 2520 cm^2
(4p _ 2k)(3)
in distributive property
Answer:
12 p - 6k
Step-by-step explanation:
Let us assume that _ is meant to be minus sign.
( 4 p - 2k ) ( 3)
use the distributive property
3 × 4p - 3 × 2k
12 p - 6 k
What type of angel is 107 degrees
Answer:
[tex]\huge\boxed{\boxed{\underline{\textsf{\textbf{Answer}}}}}[/tex]
⏩ 107° angle will be an obtuse angle because its measurement is more than 90° but less than 180°.
⁺˚*・༓☾✧.* ☽༓・*˚⁺‧
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
Answer:
An obtuse angle
Step-by-step explanation:
Angles are classified by how large their degree measure is. Here is a list of the basic classifications of an angle,
acute: degree measure between (0) and (90) degrees
right: exactly (90) degrees,
obtuse: degree measure between (90) and (180) degrees
reflex: degree measure between (180) and (360) degrees