I hope this is help full to you
[tex]3) \: \: \: 4(2y + z) - 3(3y + z) \\ \\ = 8y + 4z - 9y + 3z \\ \\ = - y + 7z[/tex]
[tex]4) \: \: \: \: x(4x - 2) - 3x(x + 1) \\ \\ = 4x {}^{2} - 2x - 3 {x}^{2} - 3x \\ \\ = {x}^{2} - 5x[/tex]
[tex]5) a> \: \: 3(2 + c) \\ \\ = 6 + 3c[/tex]
[tex]b> \: \: \: 2a(b - 4) \\ \\ = 2ab - 8a[/tex]
[tex]c> \: \: \: ab(b + c) \\ \\ = ab {}^{2} + abc[/tex]
Hope This Helps You ❤️Find the distance between the points (6,5) and (4,-2). use of the graph is optional
Answer ? Anyone
Answer:
√53
Step-by-step explanation:
Distance between two points =
√(4−6)^2+(−2−5)^2
√(−2)^2+(−7)^2
= √4+49
=√53
= 7.2801
Hope this helps uwu
9514 1404 393
Answer:
option 2: √53
Step-by-step explanation:
The distance formula is useful for this:
d = √((x2 -x1)² +(y2 -y1)²)
d = √((4-6)² +(-2-5)²) = √((-2)² +(-7)²) = √(4+49)
d = √53
The distance between the given points is √53.
Simply the following ratio 1000:540:780
A person draws a card from a hat. Each card is one color, with the following probabilities of being drawn: 1/10 for blue, 1/20 for black, 1/15 for pink, and 1/5 for yellow. What is the probability of pulling a blue or yellow card, written as a reduced fraction?
Answer:
3/10
Step-by-step explanation:
1/10 + 1/5 = need to get common denominators to add.
1/10 + 2/10 = 3/10
Will mark Brainlest please answer. find the value of a,b.
,p,q from the equal order pairs
Step-by-step explanation:
Question-1:by order pair we obtain:
[tex] \displaystyle \begin{cases} \displaystyle 3p = 2p - 1 \dots \dots i\\2q - p = 1 \dots \dots ii\end{cases}[/tex]
cancel 2p from the i equation to get a certain value of p:
[tex] \displaystyle \begin{cases} \displaystyle p = - 1 \\2q - p = 1 \end{cases}[/tex]
now substitute the value of p to the second equation:
[tex] \displaystyle \begin{cases} \displaystyle p = - 1 \\2q - ( - 1) = 1 \end{cases}[/tex]
simplify parentheses:
[tex] \displaystyle \begin{cases} \displaystyle p = - 1 \\2q + 1= 1 \end{cases}[/tex]
cancel 1 from both sides:
[tex] \displaystyle \begin{cases} \displaystyle p = - 1 \\2q = 0\end{cases}[/tex]
divide both sides by 2:
[tex] \displaystyle \begin{cases} \displaystyle p = - 1 \\q = 0\end{cases}[/tex]
question-2:by order pair we obtain:
[tex] \displaystyle \begin{cases} \displaystyle 2x - y= 3 \dots \dots i\\3y= x + y \dots \dots ii\end{cases}[/tex]
cancel out y from the second equation:
[tex] \displaystyle \begin{cases} \displaystyle 2x - y= 3 \dots \dots i\\ x = 2y \dots \dots ii\end{cases}[/tex]
substitute the value of x to the first equation:
[tex] \displaystyle \begin{cases} \displaystyle 2.2y-y= 3 \\ x = 2y \end{cases}[/tex]
simplify:
[tex] \displaystyle \begin{cases} \displaystyle 3y= 3 \\ x = 2y \end{cases}[/tex]
divide both sides by 3:
[tex] \displaystyle \begin{cases} \displaystyle y= 1 \\ x = 2y \end{cases}[/tex]
substitute the value of y to the second equation which yields:
[tex] \displaystyle \begin{cases} \displaystyle y= 1 \\ x = 2 \end{cases}[/tex]
Question-3:by order pair we obtain;
[tex] \displaystyle \begin{cases} \displaystyle 2p + q = 2 \dots \dots i\\3q + 2p = 3 \dots \dots ii\end{cases}[/tex]
rearrange:
[tex] \displaystyle \begin{cases} \displaystyle 2p + q = 2 \\2p + 3q= 3 \end{cases}[/tex]
subtract and simplify
[tex] \displaystyle \begin{array}{ccc} \displaystyle 2p + q = 2 \\2p + 3q= 3 \\ \hline - 2q = - 1 \\ q = \dfrac{1}{2} \end{array}[/tex]
substitute the value of q to the first equation:
[tex] \displaystyle 2.p+ \frac{1}{2} = 2[/tex]
make q the subject of the equation:
[tex] \displaystyle p = \frac{3}{4} [/tex]
hence,
[tex] \displaystyle q = \frac{1}{2} \\ p = \frac{3}{4} [/tex]
Answer:
see above
............
a + b = 300 pls help i cant find out the answer
Answer:
a= 250
b= 50
250 + 50 = 300
Step-by-step explanation:
There's many solutions but this was the first one I could come up with.
Answer:
my opinion is seince a+b=300 then the sqaure of 300= 17.3?
Step-by-step explanation:
HELP ME PLEASE!!!!!
The 2 questions is down below with the picture; please let me know.
Given:
1. 60 is the sum of 15 and Mabel's age.
2. Given equation is
[tex]-8(x+1)=-40[/tex]
To find:
1. The equation for the given situation.
2. Complete the two column proof.
Solution:
1.
60 is the sum of 15 and Mabel's age.
Let m be the Mabel's age. Then,
[tex]15+m=60[/tex]
Therefore, the required equation for the given situation is [tex]15+m=60[/tex].
2.
The complete two column proof is:
Steps Reasons
[tex]-8(x+1)=-40[/tex] Given equation
[tex]\dfrac{-8(x+1)}{-8}=\dfrac{-40}{-8}[/tex] Division Property of Equality
[tex]x+1=5[/tex] Simplifying
[tex]x+1-1=5-1[/tex] Subtraction Property of Equality
[tex]x=4[/tex] Simplifying
96 sq meters
144 sq meters
84 sq meters
102 sq meters
Pls show work I get different answers from people every time
Answer:
84 sq meters
Step-by-step explanation:
First, divide the shape in 2 or more parts so that you can find it step by step
Divide this shape in three parts:
One part (blue): 2 m and 3 m rectangle
Second part (orange): 5 m and 12 m rectangle
Third part (red): 6 m and 3 m rectangle
(you can also see this below: in the pic there are three parts so you figure out that which is the correct value for the sides)
Now, find area of each shape by multiplying its values:
1st shape: 3 x 2 = 6
2nd shape: 5 x 12 = 60
3rd shape: 6 x 3 = 18
As you have the area of all the different shapes,
add all of them:
6 + 60 + 18 = 84 sq meters
I hope this helps :)
The rectangular ground floor of a building has a perimeter of 780 ft. The length is 200 ft more than the width. Find the length and the width.
The length is ___ and the width is ___
Answer:
perimeter of the rectangular ground floor
=2(length+width)
length=X+200
width=X
=2(X+200+X)
=4x+400
4x+400 =780
4x =780-400
4x =380
x =95
width=95 feet
length=95+200
=295 feet
find the smallest number by which 2925 should be divided to be a perfect square
Answer: 13
Step-by-step explanation:
Given
The number is 2925
The prime factorization of 2925 is
[tex]\Rightarrow 2925=3\times 3\times 5\times 5\times 13\\\Rightarrow 2925=3^2\times 5^2\times 13[/tex]
To make 2925 a perfect square, we have to eliminate 13 from it, so divide 2925 by 13 to make it a perfect square
The perfect Sqaure becomes [tex](3\times 5)^2=225[/tex]
What is the volume of a rectangular prism
8 inches long, 3 inches wide, and 5 inches high?
A
120 cubic inches
B
220 cubic inches
16 cubic inches
158 cubic inches
Answer:
A; 120 cubic inches
Step-by-step explanation:
Let us start with the formula of the volume of a rectangular prism,[tex]V=l*w*h[/tex], where l represents the length of the prism, w represents the width of the prism, and h represents the height of the prism. It is given to us that h =5 inches, w =3 inches, and l =8 inches. Let's plug the values in:
[tex]V= 8*3*5\\V=120[/tex]
A. The volume of the rectangular prism is 120 cubic inches.
I hope this helps! Let me know if you have any questions :)
We want to construct a box with a square base and we currently only have 10m2 of material to use in construction of the box. Assuming that all material is used in the construction process, determine the maximum volume that the box can have.
Answer:
The maximum volume of the box is:
[tex]V =\frac{5}{3}\sqrt{\frac{5}{3}}[/tex]
Step-by-step explanation:
Given
[tex]Surface\ Area = 10m^2[/tex]
Required
The maximum volume of the box
Let
[tex]a \to base\ dimension[/tex]
[tex]b \to height[/tex]
The surface area of the box is:
[tex]Surface\ Area = 2(a*a + a*b + a*b)[/tex]
[tex]Surface\ Area = 2(a^2 + ab + ab)[/tex]
[tex]Surface\ Area = 2(a^2 + 2ab)[/tex]
So, we have:
[tex]2(a^2 + 2ab) = 10[/tex]
Divide both sides by 2
[tex]a^2 + 2ab = 5[/tex]
Make b the subject
[tex]2ab = 5 -a^2[/tex]
[tex]b = \frac{5 -a^2}{2a}[/tex]
The volume of the box is:
[tex]V = a*a*b[/tex]
[tex]V = a^2b[/tex]
Substitute: [tex]b = \frac{5 -a^2}{2a}[/tex]
[tex]V = a^2*\frac{5 - a^2}{2a}[/tex]
[tex]V = a*\frac{5 - a^2}{2}[/tex]
[tex]V = \frac{5a - a^3}{2}[/tex]
Spit
[tex]V = \frac{5a}{2} - \frac{a^3}{2}[/tex]
Differentiate V with respect to a
[tex]V' = \frac{5}{2} -3 * \frac{a^2}{2}[/tex]
[tex]V' = \frac{5}{2} -\frac{3a^2}{2}[/tex]
Set [tex]V' =0[/tex] to calculate a
[tex]0 = \frac{5}{2} -\frac{3a^2}{2}[/tex]
Collect like terms
[tex]\frac{3a^2}{2} = \frac{5}{2}[/tex]
Multiply both sides by 2
[tex]3a^2= 5[/tex]
Solve for a
[tex]a^2= \frac{5}{3}[/tex]
[tex]a= \sqrt{\frac{5}{3}}[/tex]
Recall that:
[tex]b = \frac{5 -a^2}{2a}[/tex]
[tex]b = \frac{5 -(\sqrt{\frac{5}{3}})^2}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{5 -\frac{5}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{15 - 5}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{10}{3}}{2*\sqrt{\frac{5}{3}}}[/tex]
[tex]b = \frac{\frac{5}{3}}{\sqrt{\frac{5}{3}}}[/tex]
Apply law of indices
[tex]b = (\frac{5}{3})^{1 - \frac{1}{2}}[/tex]
[tex]b = (\frac{5}{3})^{\frac{1}{2}}[/tex]
[tex]b = \sqrt{\frac{5}{3}}[/tex]
So:
[tex]V = a^2b[/tex]
[tex]V =\sqrt{(\frac{5}{3})^2} * \sqrt{\frac{5}{3}}[/tex]
[tex]V =\frac{5}{3} * \sqrt{\frac{5}{3}}[/tex]
[tex]V =\frac{5}{3}\sqrt{\frac{5}{3}}[/tex]
The maximum volume of the box which has a 10 m² surface area is given below.
[tex]\rm V_{max} = \dfrac{5}{3} *\sqrt{\dfrac{5}{2}}[/tex]
What is differentiation?The rate of change of a function with respect to the variable is called differentiation. It can be increasing or decreasing.
We want to construct a box with a square base and we currently only have 10 m² of material to use in the construction of the box.
The surface area = 10 m²
Let a be the base length and b be the height of the box.
Surface area = 2(a² + 2ab)
2(a² + 2ab) = 10
a² + 2ab = 5
Then the value of b will be
[tex]\rm b = \dfrac{5-a^2}{2a}[/tex]
The volume of the box is given as
V = a²b
Then we have
[tex]\rm V = \dfrac{5-a^2 }{2a}* a^2\\\\V = \dfrac{5a - a^3}{2}\\\\V = \dfrac{5a}{2} - \dfrac{a^3}{2}[/tex]
Differentiate the equation with respect to a, and put it equal to zero for the volume to be maximum.
[tex]\begin{aligned} \dfrac{dV}{da} &= \dfrac{d}{da} ( \dfrac{5a}{2} - \dfrac{a^3}{2} ) \\\\\dfrac{dV}{da} &= 0 \\\\\dfrac{5}{2} - \dfrac{3a^2 }{2} &= 0\\\\a &= \sqrt{\dfrac{5}{2}} \end{aligned}[/tex]
Then the value of b will be
[tex]b = \dfrac{5-\sqrt{\dfrac{5}{2}} }{2*\sqrt{\dfrac{5}{2}} }\\\\\\b = \sqrt{\dfrac{5}{2}}[/tex]
Then the volume will be
[tex]\rm V = (\sqrt{\dfrac{5}{2}} )^2*\sqrt{\dfrac{5}{2}} \\\\V = \dfrac{5}{3} *\sqrt{\dfrac{5}{2}}[/tex]
More about the differentiation link is given below.
https://brainly.com/question/24062595
A roundabout is a one-way circular intersection.
About how many feet would a car travel if it drove
once around the roundabout? Round to the
nearest foot.
Answer:
[tex]471\:\mathrm{ft}[/tex]
Step-by-step explanation:
In one full rotation around the roundabout, the car is travelling a distance equal to the circumference, or the perimeter, of the circle. The circumference of a circle with radius [tex]r[/tex] is given by [tex]C=2r\pi[/tex]. In the diagram, the diameter is labelled 150 feet. By definition, the radius of a circle is exactly half of the diameter of the circle. Therefore, the radius must be [tex]\frac{150}{2}=75[/tex] feet. Thus, the car would travel [tex]2\cdot 75\cdot \pi=471.238898038=\boxed{471\:\mathrm{ft}}[/tex]
how many terms are in the following expression 9c+2d-8
x^(2)+y^(2)+14x+18y+114=0
i will give u brainliest and my eternal love
Answer:
(x+7)^2+(y+9)^2=16
Step-by-step explanation:
This is the equation written in standard form, I'm not sure if that's what you wanted.
Rewrite the quadratic equation in the form y= a(x - h)2 + k.
y = 5x2 – 30.3 + 95
Y= ?
A jeweler purchases a necklace for $80. She will increase the cost by 50% to sell in her
store. What will the jeweler charge for the necklace to her customers?
Answer:
120
Step-by-step explanation:
First find the markup
80 * 50%
80*.5
40
Add this to the original cost
80+40
120
The price will now be 120
mary drinks 24 ounces of juice a day . lena drinks three times as much. how many ounces do they drink together?
Answer:
96 oz.
Step-by-step explanation:
Mary drinks 24 ounces a day Lena drinks 3 times a much
24 x 3 = 72
72 + 24 = 96
Answer:
They dinks ounces of juice together = 96 ounces.
Step-by-step explanation:
Given that :-
Mary drinks 24 ounces of juice a day.Lena drinks three times as much.To find :-
How many ounces do they drink together ?Solution :-
Mary drinks 24 ounces of juice a day = 24 ounces.
Lena drinks three times much than mary = 3 × 24 ounces = 72 ounces
They drinks ounces together = mary drinks ounces of juice + lena drinks ounces of juice
= 24 ounces + 72 ounces
Hence , They dinks ounces of juice together = 96 ounces.
A plumber and his assistant work together to replace the pipes in an old house. The plumber charges $30 an hour for his own labor and $20 an hour for his assistant's labor. The plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $2000. How long did the plumber and his assistant work on this job
Answer:
The plumber worked 50 hours, and his assistant worked 25 hours.
Step-by-step explanation:
Since a plumber and his assistant work together to replace the pipes in an old house, and the plumber charges $ 30 an hour for his own labor and $ 20 an hour for his assistant's labor, and the plumber works twice as long as his assistant on this job, and the labor charge on the final bill is $ 2000, to determine how long did the plumber and his assistant work on this job the following calculation must be performed:
40 x 30 + 20 x 20 = 1200 + 400 = 1600
50 x 30 + 25 x 20 = 1500 + 500 = 2000
Therefore, the plumber worked 50 hours, and his assistant worked 25 hours.
I’ll mark brainliest
Answer:
D
Step-by-step explanation:
Hi there!
We're given the equation y=-75x-50, which represents a submarine DESCENDING towards the ocean floor, where y is the depth in feet, and x is the number of minutes the submarine is descending
Since the submarine is DESCENDING, we can immediately eliminate A and C, which talk about the submarine ASCENDING
That leaves B and D
Looking at the given equation, y=-75x-50, -75 is the slope, or rate of change, and -50 is the y intercept, or the "beginning" (where the equation will "start")
Therefore, the submarine will start at -50 feet, or 50 feet below sea level
As x is the number of minutes the submarine is descending, that means that if the submarine travels 1 minute, it will descend 75 feet (-75*1=-75), at 2 minutes, it'll descend 150 feet (-75*2=-150), and so on
So that means the submarine must be descending at a rate of 75 feet per minute
Therefore D is the correct answer
Hope this helps! Good luck on your assignment :)
5/6+3/9 in the simplest form
HELP PLSS
Answer:
1 1/6
Step-by-step explanation:
5/6 + 3/9
Simplify 3/9 by dividing the top and bottom by 3
5/6 + 1/3
Get a common denominator of 6
5/6 + 1/3 *2/2
5/6 + 2/6
7/6
Rewriting
6/6 +1/6
1 1/6
The function of f(x) = 3x + 2 has a domain of -3 < x < 5. What is the domain of f-1(x)?
====================================================
Explanation:
Plug in the lower bound of the domain, which is x = -3
f(x) = 3x+2
f(-3) = 3(-3)+2
f(-3) = -9+2
f(-3) = -7
If x = -3, then the output is y = -7. Since f(x) is an increasing function (due to the positive slope), we know that y = -7 is the lower bound of the range.
If you plugged in x = 5, you should find that f(5) = 17 making this the upper bound of the range.
The range of f(x) is -7 < y < 17
Recall that the domain and range swap places when going from the original function f(x) to the inverse [tex]f^{-1}(x)[/tex]
This swap happens because how x and y change places when determining the inverse itself. In other words, you go from y = 3x+2 to x = 3y+2. Solving for y gets us y = (x-2)/3 which is the inverse.
-----------------------
In short, we found the range of f(x) is -7 < y < 17.
That means the domain of the inverse is -7 < x < 17 since the domain and range swap roles when going from original to inverse.
The domain of the resulting function exists on all real values that is the domain is -∞ < f-1(x) < ∞
How to find the domain of an inverse function?The domain of a function are the independent values of the function for Which it exists.
Given the function f(x) = 3x + 2
Find its inverse
y = 3x + 2
Replace x with y
x = 3y + 2
Make y the subject of the formula:
3y = x - 2
y = (x-2)/3
The domain of the resulting function exists on all real values that is the domain is -∞ < f-1(x) < ∞
Learn more on domain here: https://brainly.com/question/26098895
Which trig ratio can be used to find the measure of angle A?
Answer:
arc cosine (4/5)
(the third answer)
Step-by-step explanation:
Abigail is using blocks to build a tower. The blocks are 3 inches, 4 inches, and 8 inches tall. She has stack 3 blocks. How many different heights are possible for the tower?
9514 1404 393
Answer:
10
Step-by-step explanation:
Possible tower heights using 3 blocks are ...
{9, 10, 11, 12, 14, 15, 16, 19, 20, 24}
There are 10 different heights possible.
_____
Each block can be used 1, 2, or 3 times.
Using a 3 in block as the smallest, we have ...
3+3+3 = 9
3+3+4 = 10
3+3+8 = 14
3+4+4 = 11
3+4+8 = 15
3+8+8 = 19
Using a 4-in block as the smallest, we have ...
4+4+4 =12
4+4+8 = 16
4+8+8 = 20
And ...
8+8+8 = 24
what's the easiest way to answer how I know the answer pls?
buggy’s bugs buggles buuuugles
help plssssssssssssssssssssssssssssss
Answer:
285 mi
Step-by-step explanation:
We can see that for every gallon, Josh drives 30 more miles. This means that he will drive 30*9.5 mi.
30*9.5 = 285
Which point is the center of the circle that contains the vertices of a triangle?
The circumcenter is the center of the circle that contains the vertices of a triangle
How to determine the point?When a triangle is inscribed in a circle, the vertices of the triangle touch the circumference of the circle
A line drawn through the center of the circle and passes through each of the triangle vertex is its circumcenter.
Hence, the name of the required point is the circumcenter
Read more about circumcenter at:
https://brainly.com/question/14368399
#SPJ2
Answer:
B. The point of intersection of the perpendicular bisectors of the side
Step-by-step explanation:
definition of circumcenter as the previos question answered
I need help please asp !!!!
Question attached please answer brainliest to best answer
Answer:
B
Step-by-step explanation:
Have a nice day :)
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct
This question is incomplete, the complete question is;
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct.
In other words, how many 5-tuples of integers ( h, i , j , m ), are there with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1 ?
Answer:
the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Step-by-step explanation:
Given the data in the question;
Any quintuple ( h, i , j , m ), with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1
this can be represented as a string of ( n-1 ) vertical bars and 5 crosses.
So the positions of the crosses will indicate which 5 integers from 1 to n are indicated in the n-tuple'
Hence, the number of such quintuple is the same as the number of strings of ( n-1 ) vertical bars and 5 crosses such as;
[tex]\left[\begin{array}{ccccc}5&+&n&-&1\\&&5\\\end{array}\right] = \left[\begin{array}{ccc}n&+&4\\&5&\\\end{array}\right][/tex]
= [( n + 4 )! ] / [ 5!( n + 4 - 5 )! ]
= [( n + 4 )!] / [ 5!( n-1 )! ]
= [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120
Therefore, the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120