Cos(angle) = adjacent leg/ hypotenuse
Cos(61) = x/19
X = 19 * cos(61)
X = 9.2114
Rounded to the nearest tenth = 9.2
Type the equation used and answer for credit:
1) You bought a car that was $25500 and the value depreciates by 4.5% each year.
The general Population equation is modeled by: V(x) =
***
a. How much would the car be worth after 5 years?
the Evaluated equation I used to get the following answer is
and
the answer after 5 years the car is worth
dollars.
b. How much would the car be worth after 8 years?
the Evaluated equation I used to get the following answer is
and
After eight years the car is worth
dollars.
if there are 90 calories in 3/4 cup of yogurt, how many calories are in 3 cups of yogurt?
Answer:
360 calories: 90/(3/4)=120
Step-by-step explanation:
I think sorry if im wrong
peter paid $45 for 3 pizzas; victor paid 135 for 8 pizzas and george paid 32 for 2 pizzas. whose pizza cost more
Answer:
The answer is victor
peter paid : 15 for 1 pizza
victor paid : 16.875
George paid : 16
Hope it helps
Answer:
Victors pizza
Step-by-step explanation:
Peter paid 45 for 3 pizzas if we divide that it gives us 15 for each pizza
George paid 32 for 2 pizzas which if we divide it 16 for each pizza
Finally for Victor we just divide 135 by 8 and that gives us 16.875 for each pizza.
If we compare those values the highest is for sure Victors at 16.875 or 16.88 per pizza.
Hope this helps
:)
Consider U = {x|x is a real number}.
A = {x|x ∈ U and x + 2 > 10}
B = {x|x ∈ U and 2x > 10}
Which pair of statements is true?
5 ∉ A; 5 ∈ B
6 ∈ A; 6 ∉ B
8 ∉ A; 8 ∈ B
9 ∈ A; 9 ∉ B
=======================================================
Explanation:
Let's check choice A
If we plugged x = 5 into the inequality for set A, then,
x+2 > 10
5+2 > 10
7 > 10
which is false. So 5 ∉ A is a true statement. It means "5 is not in set A".
Let's plug x = 5 into the inequality for set B
2x > 10
2*5 > 10
10 > 10
Which is false. So x = 5 is not in set B. The statement 5 ∈ B is false. It should be 5 ∉ B instead.
We can cross choice A off the list.
---------------------------
Now onto choice B
Let's plug x = 6 into the inequality for set A
x+2 > 10
6+2 > 10
8 > 10
This is false, so saying 6 ∈ A is false.
Cross choice B off the list.
---------------------------
Choice C
If we plugged x = 8 into the inequality for set A, then x+2 > 10 would turn into 10 > 10, but that's false. So saying 8 ∉ A is a true statement.
If we plugged x = 8 into the inequality for set B, then we'd go from 2x > 10 to 16 > 10. That being true leads to 8 ∈ B being true.
We conclude that choice C is the final answer since both 8 ∉ A and 8 ∈ B are true statements.
---------------------------
We could stop at choice C, as we already found the answer, but let's check choice D.
Plug x = 9 into the inequality for set A
x+2 > 10
9+2 > 10
11 > 10
So saying 9 ∈ A is true, since x = 9 makes x+2 > 10 true.
Now try x = 9 into set B
2x > 10
2*9 > 10
18 > 10
We see that x = 9 is also in set B. So it should be 9 ∈ B and not 9 ∉ B
In other words, the first part of D is correct, but the second part is not.
We can cross choice D off the list.
Answer:
C. 8 ∉ A; 8 ∈ B
Step-by-step explanation:
What is value of x if 20x-10*110=50
Answer:
57.5
Step-by-step explanation:
20x - (10 x 110) = 50
=> 20x - 1100 = 50
=> 20x = 1150
=> x = 1150/20
=> x = 115/2
=> x = 57.5
as part of a weight loss plan, Levi's average calories consumed per day, denoted by c, subject to a maximum of 15 calories, is measured to calculate the amount of weight he will lose. if he is losing weight consistently, what is the domain of the function
Answer:
The domain is;
0 < c ≤ 15
Step-by-step explanation:
We are told that Levi's average calories consumed per day is denoted by c.
Now, we are told it is subject to a maximum of 15 calories.
Thus; c ≤ 15
Now,if he is losing weight consistently, then c must be greater than 0.
Thus,the domain is;
0 < c ≤ 15
Find AB, given that line AD is the perpendicular bisector of BC
Answer:
11
Step-by-step explanation:
because line AD divided the triangle ABC into two equal halves
B
A
8 cm
4cm
Two solid shapes, A and B, are mathematically similar.
The base of shape A is a circle with radius 4 cm
The base of shape B is a circle with radius 8 cm.
The surface area of shape A is 80 cm”,
(a)
Work out the surface area of shape B.
Answer:
(a) 320 cm²
(b) 75 cm³
Step-by-step explanation:
The scale factor from A to B is 8/4 = 2.
The scale factor of the areas is 2² = 4.
The scale factor of the volumes is 2³ = 8.
(a)
80 cm² * 4 = 320 cm²
(b)
600 cm / 8 = 75 cm³
The required surface area of shape B is 320 cm² and the volume of shape A is 75 cm³.
Given that,
The base of shape A is a circle with a radius of 4 cm
The base of shape B is a circle with a radius of 8 cm.
Surface area is defined as the area of the surface that is uncovered.
Here,
1)
The scale factor of area = 8²/4² = 4
The surface area of shape B = 4 surface area of shape A.
The surface area of shape B = 4 * 80
= 320 cm²
2)
The scale factor of volume = 8³ / 4³ = 8
The volume of shape B = 8 * the volume of shape A.
The volume of shape A = 600 / 8
The volume of shape A = 75 cm³
Thus, the required surface area of shape B is 320 cm² and the volume of shape A is 75 cm³.
Learn more about the surface area here: https://brainly.com/question/2835293
#SPJ2
A dilation maps (8, 12) to (2, 3). What are the coordinates of the image of (9, 3) under
the same dilation?
Answer:
(9/4,3/4) or (2.25, 0.75)
Step-by-step explanation:
The dilation is 1/4. We can tell this by looking at (8,12) and (2,3). 8*1/4=2 and 12*1/4=3. So therefore we just need to times 9 and 3 by 1/4. 9*1/4=2.25 or 9/4 and 3*1/4=0.75 or 3/4. so the dilation (9/4, 3/4). I believe this is correct but if I am not please tell me.
In the function, g(x) = -2x , the independent variable has a value of 6. Find the value of the dependent variable.
Answer:
-12
Step-by-step explanation:
x=6
g(6)=-2*6=-12. Answered by Gauthmath
Find the surface area of the composite figure. Round to the nearest square centimeter
Answer:
Surface area = 726 cm²
None of the options is correct.
Step-by-step explanation:
Surface area of the composite figure = surface area of cone + surface area of cylinder - 2(area of base of cone)
✔️Surface area of cone = πr(r + l)
Where,
Radius (r) = 5 cm
Slant height (l) = √(10² + 5²) (Pythagorean theorem)
Slant height (l) = 11.2 cm
Plug in the values
= π*5(5 + 11.2)
= 254.5 cm²
✔️Surface area of the cylinder = 2πr(h + r)
r = 5 cm
h = 15 cm
Plug in the values into the formula
S.A = 2*π*5(15 + 5)
S.A = 628.3 cm²
✔️area of base of cone = πr²
r = 5 cm
Area = π*5² = 78.5 cm²
✅Surface area of the composite figure = 254.5 + 628.3 - 2(78.5)
= 882.8 - 157
= 726 cm² (nearest square meter)
None of the options is correct.
Least common factor how to do in 121,99
Answer:
Step-by-step explanation:
Prime factorize 121 and 99
121 = 11 * 11
99 = 11 * 3 * 3
Common factor = 11
The dimensions of a garden are 300' by 200'. If a model garden with the
scale of 10' = 1" is to be made, find the dimensions of the model.
A.) 3" by 1"
B.) 30" by 20"
C.) 45" by 10"
D.) 60" by 20"
Answer:
B
Step-by-step explanation:
We know that 10' = 1". We want to find a x and y for 300' = x" and 200' = y". We can do this by figuring out ratios between similar values. For the numbers ending in ', we can say that 300/10 = 30 and 200/10 = 20. Therefore, to get x and y, we can multiply
10' = 1" by 30 on both sides to get
300' = 30"
and multiply by 20 on both sides to get
200' = 20"
Therefore, we can say that 300' by 200' = 30" by 20"
On a coordinate plane, a triangle has points A (negative 2, negative 2), B (1, negative 5), and C (negative 5, negative 5).
If a translation of T2, –7(x, y) is applied to ΔABC, what are the coordinates of B'?
Answer:
The answer is number 2. hope that helps
Answer:
(3,-12)
Step-by-step explanation:
the triangle has points A(-2,-2) B(1,-5) and C(-5,-5) the translation of (2 horizontally,-7 vertically) will cause B to translate to coordinates (3, -12)
Can someone help me with this math homework please!
Answer:
C
Step-by-step explanation:
In which quadrants could the terminal arm of θ lie?
Answer:
Quadrant 2 and 3
Approximately, 113 and 247 degrees.
Step-by-step explanation:
I just used Desmos and graphed the equation. The values of theta are 113 and 247.
A line segment has one endpoint of A (2,5) and a slope of (2/3). Find coordinates for B
Answer:
B could be (4,8), (6,11), (8,14), (10,17), (12,20), etc.
Step-by-step explanation:
quick mafhs
4. (03.05)
The graph shows the production of cars per day at a factory during a certain period of time. What is the domain of this function during this period? (1 point)
The domain is all real numbers o through 9.
The domain is all integers o through 9.
The domain is positive real numbers.
The domain is all positive integers.
Answer:
B. domain is all integers 0 through 9
Step-by-step explanation:
Domain values area usually plotted along the horizontal axis. In this case, the number of days is the domain of the of the function.
The domain of the function that is plotted on the graph ranges from 0, 1, 2 to 9.
1, 2, 3 to 9 are all integers. Therefore, we can conclude that the "domain is all integers 0 through 9."
2. When shipping ice cream, melting is understandably a big concern. You will notice that ice cream is not generally packaged in a cube-shaped container. A standard container of ice cream contains 1 L, or 1000 cm3 of ice cream, a) What would be the optimal dimensions (radius and height) to minimize surface area? B) What would the surface area be? C) Suggest at least two reasons why this is different from the ice cream packaging that you see in the stores.
Answer:
a) 10:10:10
b)[tex]A_s=600m^2[/tex]
Step-by-step explanation:
From the question we are told that:
Volume [tex]V=1000cm^3[/tex]
a) .
Generally for optimal dimensions
[tex]A=L*B*H[/tex]
Where
[tex]L=B=H[/tex]
Therefore
[tex]L=^3\sqrt{1000}\\L=10[/tex]
Therefore the optimal dimensions will be
10:10:10
b)
Generally the equation for surface area of a cube is mathematically given by
[tex]A_s=6l^2[/tex]
[tex]A_s=6*10^2[/tex]
[tex]A_s=600m^2[/tex]
HELP I WILL GIVE BRAINLIEST
Answer:
A.) 6.4 units
Step-by-step explanation:
We can use the Pythagorean theorem to find the length of AB.
If we find the horizontal and vertical distance of A and B, we form a triangle, with leg lengths of 5 and 4.
Now, we just solve using the Pythagorean theorem.
5^2 = 25
4^2 = 16
25 + 16 = 41
sqrt 41 ≈ 6.4 units.
Hope this helps!
If there is something wrong, just let me know.
For problems 1 - 4, write a two-column proof.
Answer:
Solution given:
1:
<5=<6
<5+<4=180°[co interior angle]
Substituting value of<5
<6+<4=180°[it shows a property of co interior angle]
So
l || m
2:
<1=90°[ l is perpendicular to t]
<2=90°[m is perpendicular to t]
since
<1=<2[shows property of corresponding angle]
:.
l || m.
3:
<1=<2
<1=<3
substituting value of<1 in second one
<2=<3[which shows property of alternate Angel]
So
Segment ST || segment UV.
4:
<RSP=<PQR......[I]
<QRS+<PQR=180°.....[ii]
from equation I and ii we get
<RSP+<QRS=180°[which shows property of co interior angle ]
So
Segment PS || segment QR
These pictures are the questions given in the pdf, let's get the solutions.
1) Solution
It is given that,
→ <5 = <6
Then the co interior angles,
→ <5+ <4 = 180°
Now substituting value of <5,
→ <6+ <4 = 180°
This shows property of co interior angle.
Therefore, L II m.
2) Solution
Take it as,
→ <1= 90°
In above eq. L is perpendicular to t.
→ <2 = 90°
In above eq. m is perpendicular to t.
Then it will be,
→ <1 = <2
It shows property of corresponding angle.
Therefore, L II m.
3) Solution
It is given that,
→ <1 = <2 and <1 = <3
Now substitute,
The value of <1 in second one,
→ <2 = <3
This shows property of alternate angle.
Therefore, ST II UV.
4) Solution
It is given that,
→ <RSP = <PQR --- (1)
→ <QRS + <PQR = 180° --- (2)
Now from the equation (1) and (2),
→ <RSP + <QRS = 180°
It shows property of co interior angle.
Therefore, PS II QR.
Jamar has 90 cents in his pocket. One coin is a quarter, and the others are
nickels. How many nickels does he have?
A. 23
B. 65
C. 13
D. 15
Answer:
C. 13
Step-by-step explanation:
Quarters are worth 25 cents each
Nickels are worth 5 cents each
Let n be the number of nickels that Jamar as in his pocket.
We already know that he only has 1 quarter in his pocket which is worth 25 cents, so we can form this equation:
5n + 25 = 90
5 meaning that each nickel is worth 5 cents, 25 meaning that he has only 1 quarter in his pocket (25 cents) and 90 meaning that he has a total of 25 cents in his pocket.
We have to isolate the n so we can subtract 25 from both sides to get:
5n = 65
After that we can get n by dividing 5 from both sides:
n = 13
Therefore there are 13 nickels in his pocket.
Let me know if I did anything incorrectly.
The number of nickels he has is 13. The correct option is C.
What is an expression?Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
Given that quarters are worth 25 cents each and nickels are worth 5 cents each.
Let n be the number of nickels that Jamar has in his pocket.
We already know that he only has 1 quarter in his pocket which is worth 25 cents, so we can form this equation:
5n + 25 = 90
5 meaning that each nickel is worth 5 cents, 25 meaning that he has only 1 quarter in his pocket (25 cents), and 90 meaning that he has a total of 25 cents in his pocket.
We have to isolate the n so we can subtract 25 from both sides to get:
5n = 65
After that we can get n by dividing 5 from both sides:
n = 13
Therefore, the number of nickels he has is 13. The correct option is C.
To know more about expression follow
brainly.com/question/723406
#SPJ2
Please help, I will give brainliest if you explain.
Answer:
A.
Step-by-step explanation:
Basically.. when you draw a line from the vertex of a right triangle's 90 degree angle to its hypotenuse, it'll make two triangles with the same angles. Then you can use ratios to discern the size of said rectangles. I hope that helps.
6. What is the area of APQRbelow?
a) 15.8 m
b) 31.2m
c) 66.4m
d) 16.6m
Answer:
its letter c
Step-by-step explanation:
I hope this help
14. The following solution contains errors. Identify the errors and explain why they are incorrect.
Explain what should have been done to answer the question properly.
What is the probability that a random sample of 12 second grade students from the city in a mean reading rate of more than 96 words per minute?
Complete Question
The reading speed of second grade students in a large city is approximately normal, with a mean of 90 words per minute (wpm) and a standard deviation of 10 wpm.
What is the probability that a random sample of 12 second grade students from the city in a mean reading rate of more than 96 words per minute?
Answer:
[tex]P(\=x >96 )=0.01884[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=12[/tex]
Sample mean [tex]\=x =90[/tex]
Standard Deviation [tex]\sigma=10[/tex]
Generally
[tex]\sigma_x=\frac{\sigma}{\sqrt{10}}[/tex]
[tex]\sigma_x=\frac{10}{\sqrt{12}}[/tex]
[tex]\sigma_x=2.887[/tex]
Generally the equation for P(\=x >96 ) is mathematically given by
[tex]P(\=x >96 )=P(Z>\frac{\=x-\mu_x}{\sigma_x})[/tex]
[tex]P(\=x >96 )=P*(Z>\frac{90-96}{2.887})[/tex]
[tex]P(\=x >96 )=1-P(Z<2.08)[/tex]
[tex]P(\=x >96 )=1-0.98116[/tex]
[tex]P(\=x >96 )=0.01884[/tex]
Las dimensiones de un paquete de galletas son 2 cm x 0.75 cm x 25 cm. Cuántos paquetes de galletas caben en una caja cuyas dimensiones son 2 cm de ancho, 75 cm de largo y 2.5 cm de alto?
This trapezium is drawn on a centimetre grid.
Find the area of the trapezium.
Answer:
20 unit²
Step-by-step explanation:
A trapezium is given to us on the grid and we need to find out the area of the trapezium . In order to find the area , we need to find the measure of the parallel sides and the distance between the parallel sides.
From the grid :-
[tex]\rm\implies Side_1 = 7 \ units [/tex]
[tex]\rm\implies Side_2 = 3 \ units [/tex]
[tex]\rm\implies \perp \ Distance =4 \ units [/tex]
Now here we got the two parallel sides of the trapezium and the distance between the two parallel sides. Now we can find the area as ,
[tex]\rm\implies Area_{Trapezium}= \dfrac{1}{2}\times ( s_1 + s_2) \times \perp \ Distance \\\\\rm\implies Area = \dfrac{1}{2} \times ( 7 + 3 ) \times 4 \ unit^2 \\\\\rm\implies Area = \dfrac{1}{2} \times ( 10) \times 4 \ unit^2 \\\\\rm\implies\boxed{\rm Area = 20 \ unit^2}[/tex]
A house has increased in value by 28% since it was purchased. If the current value is $288,000, what was the value when it
was purchased?
Answer:
$368,640
Step-by-step explanation:
288,000 * .28 = 80640
288,000 + 80640 = 368640
Options are
Y-X-values: coefficients , inputs, and outputs
The missing value :-2,4,and 6
Answer:
the answer is -2 place x value in equation it gonna be y = 2-4 = -2