Is sucrose classified as aldose or ketose?
Answer:
Because sucrose is a complex disaccharide, it is not classified as either an aldose or a ketone. Instead, it is a compound that contains both. glucose is aldose sugar and fructose is a ketose sugar.
A ligand is a molecule or ion that acts as a
Answer:
Lewis base/electron pair donors
Explanation:
Ligands are ions or neutral molecules which bond together with a central ion. They act as election pair donors, also known as Lewis bases, while the central ion they are connected to acts as the acceptor.
Therefore, a ligand is a molecule or ion that acts as a Lewis base/electron pair donors
3. At 35 C, a sample of gas has a volume of 256 ml and a pressure of 720.torr. What would the volume
be if the temperature were changed to 22 C and the pressure to 1.25 atmospheres
Answer:
The volume will be 185.83 mL.
Explanation:
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. Gay-Lussac's law can be expressed mathematically as follows:
[tex]\frac{P}{T} =k[/tex]
Where P = pressure, T = temperature, k = Constant
Boyle's law says that the volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure. Boyle's law is expressed mathematically as:
P*V=k
Where P = pressure, V = volume, k = Constant
Finally, Charles's Law consists of the relationship that exists between the volume and the temperature of a certain quantity of ideal gas, which is kept at a constant pressure. For a given sum of gas at a constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases because the temperature is directly related to the energy of the movement of the gas molecules. .
In summary, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:
[tex]\frac{V}{T} =k[/tex]
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:
[tex]\frac{P*V}{T} =k[/tex]
Studying two different states, an initial state 1 and a final state 2, it is satisfied:
[tex]\frac{P1*V1}{T1} =\frac{P2*V2}{T2}[/tex]
In this case:
P1= 720 torr V1= 256 mLT1= 35 C= 308 K (being 0 C= 273 K)P2= 1.25 atm= 950 torr (being 1 atm= 760 torr)V2= ?T2= 22 C= 295 KReplacing:
[tex]\frac{720 torr*256 mL}{308 K} =\frac{950 torr*V2}{295 K}[/tex]
Solving:
[tex]V2= \frac{295K}{950 torr} *\frac{720 torr*256 mL}{308 K}[/tex]
V2= 185.83 mL
The volume will be 185.83 mL.
If you reacted 88.9 g of ammonia with excess oxygen, what mass of water would you expect to make? You will need to balance the equation first.
NH3(g) + O2(g) -> NO(g) + H2O(g)
Explanation:
here's the answer to your question
2) If a brick has a length of 13.77 cm, a width of 8.50 cm, and a height of 5.12 cm:
a) What is the volume of the brick?
b) If the brick has a mass of 895.3 g, what is its density?
Answer:
a. 599 cm³
b. 1.49 g/cm³
Explanation:
A. VolumeVolume is the amount of space an object occupies. Since this is a brick, the object is a rectangular prism. The formula for the volume of a rectangular prism is the product of length, width, and height.
[tex]V= l *w*h[/tex]
The brick's length (l) is 13.77 centimeters, the width (w) is 8.50 centimeters, and the height (h) is 5.12 centimeters. Substitute these values into the formula.
[tex]V= 13.77 \ cm * 8.50 \ cm * 5.12 \ cm[/tex]
Multiply the numbers together.
[tex]V= 117.045 \ cm^ 2* 5.12 \ cm[/tex]
[tex]V= 599.2704 \ cm^3[/tex]
The original measurements have at least 3 significant figures, so our answer must have 3. For the number we calculated, that is the ones place. The 2 in the tenths place tells us to leave the 9 in the ones place.
[tex]V \approx 599 \ cm^3[/tex]
[tex]\bold {The \ volume \ of \ the \ brick \ is \ approximately \ 599 \ cubic \ centimeters}}[/tex]
2. DensityDensity is the amount of matter in a specified space. The formula for density is mass over volume.
[tex]d= \frac{m}{v}[/tex]
The mass of the brick is 895.3 grams and we just found the volume to be 599.2704 cubic centimeters. Substitute the values into the formula.
[tex]d= \frac{895.3 \ g}{599 \ cm^3}[/tex]
Divide.
[tex]d= 1.494657763 \ g/cm^3[/tex]
Round to three significant figures. For the number we calculated, that is the hundredth place. The 4 in the thousandth place tells us to leave the 9 in the hundredth place.
[tex]d \approx 1.49 \ g/cm^3[/tex]
[tex]\bold {The \ density\ of \ the \ brick \ is \ approximately \ 1.49 \ grams /cubic \ centimeters}}[/tex]
What type of intermolecular force exist between H2O and Br2
Answer:
welcome to mobile legends
Explanation:
ml ka muna maya kana mag module
The following list of properties is most descriptive of a(n) ______________. Low melting point, non-conductor of electric current. Group of answer choices
Answer:
This question is incomplete
Explanation:
This question is incomplete but the completed question is below;
"The following list of properties is most descriptive of a(n) ______
1. High melting point, conductor of electricity when dissolved in water
2. Low melting point, non-conductor of electric current
3. Malleable, ductile, insoluble in water.
The choices for all 3 are: a) metallic solid b) molecular solid c) ionic solid d) all of these e) none of these f) more than one of these"
1. Ionic solid: Ionic solids are solids that have ionic/electrovalent bonds holding it's constituent molecules together. These bonds are strong bonds that involve the transfer of electrons from one constituent atom (the metal) to another constituent atom (the nonmetal). This strong bond causes the solid to have a high melting and boiling point. Also, when dissolved in water, the constituent atoms (involved in the electron transfer) dissociate to form ions (become charged) and thus easily carry electric charges (i.e conduct electricity).
Examples are Sodium Chloride and Potassium Iodide
2. Molecular solids: These are solids whose constituent molecules are held together by a weak bond/force known as Van der Waal forces. This forces are easily broken down when subjected to heat and thus the molecular solids have a low melting point. Also, these solids do not have carriers of heat or electric charges in them and are thus non-conductors of electric current.
Examples are Ice (frozen water) and sucrose
3. Metallic solids: These of solids made from constituent metal atoms only. The nuclei of these constituent metal atoms have the ability to move past one another without disrupting there metallic bonding; it is for this reason they are malleable and ductile. There constituent atoms however do not dissociate in water and are thus insoluble in water.
Examples are aluminium and copper crystal.
Plastic is a polymer
-True
-False
TRUE
Explanation:
*not sure about this answer
Use dimensional analysis to solve the following problems. Pay attention to correct use of units and correct use of significant figures in calculations. Please show work!
3) Convert 0.250 moles of aluminum sulfate to grams.
4) Convert 2.70 grams of ammonia to moles.
Answer:
0.000731 grams aluminium sulfate
46.0 mols ammonia
Explanation:
ALS = shorthand for aluminium sulfate which has a molar mass of 342.15 g/mol
[tex]ALS: \frac{0.250mols}{1} *\frac{1g}{342.15mols} = \frac{0.250g}{342.15}=0.0007307 g[/tex]
NH3 has a molar mass of 17.031 g/mol
[tex]NH3: \frac{2.70g}{1} *\frac{17.031mols}{1g} = \frac{0.250g}{342.15}=45.9837 mols[/tex]
Aluminium sulphate (AlS) whose molar mass is= [tex]\sf{ 342.15\dfrac{g}{mol} }[/tex]
we have to find the 0.250 moles of aluminum sulphate.
[tex]\implies AlS=\dfrac{1g}{342.15~mole}×0.250~mole \\\\\implies AlS=\dfrac{0.250}{342.15}\\\\\implies \dfrac{\frac{250}{1000}}{\frac{34215}{100}}\\\\\implies \dfrac{250}{1000}×\dfrac{100}{34215}\\\\=0.00073067\approx{0.0007307~g}[/tex]
[tex]\\\\\\[/tex]
Ammonia(NH3) whose molar mass is =[tex]\sf{17.031\dfrac{mol}{g} }[/tex]
We have to find 2.70 grams of ammonia
[tex]\implies NH_{3}=\dfrac{17.031~mol}{1g}×2.70g\\\\ 17.031×2.70\\\\\dfrac{17031}{1000}×\dfrac{270}{100}\\\\ \dfrac{4598370}{100000}\\\\=45.9837\approx{46~mole}[/tex]
How many molecules of Iron(II)oxide are present in 35.2*10^-23 g of Iron (II)oxide?
Answer:
R.F.M of Iron (II) oxide :
[tex]{ \tt{ = (56 \times 2) + (16 \times 3)}} \\ = 160 \: g[/tex]
Moles :
[tex]{ \tt{ \frac{35.2 \times {10}^{ - 23} }{160} }} \\ = 2.2 \times {10}^{ - 24} \: moles[/tex]
Molecules :
[tex]{ \tt{ = 2.2 \times {10}^{ - 24} \times 6.02 \times {10}^{23} }} \\ = 1.3244 \: molecules[/tex]
The number of molecules of Iron(II) oxide present in 35.2 ×10⁻²³ g of Iron(II) oxide is equal to 2.95.
What is Avogadro's number?Avogadro’s number can be described as the proportionality constant that is used to represent the number of entities or particles in one mole of any substance. Generally, it is used to count atoms, molecules, ions, electrons, or protons, depending upon the chemical reaction or reactant and product.
The value of Avogadro’s constant can be represented as numerically approximately equal to 6.022 × 10²³ mol⁻¹.
Given, the mass of the iron oxide = 35.2 ×10⁻²³ g
The molar mass of the Iron(II) oxide, FeO = 71.84 g/mol
71.84 g of Iron (II) oxide have molecules = 6.022 × 10²³
35.2 ×10⁻²³ g of FeO have molecules = 6.022 × 10²³ × (35.2 ×10⁻²³ /71.84)
The number of molecules of FeO in a given mass = 2.95 molecules
Learn more about Avogadro's number, here:
brainly.com/question/11907018
#SPJ5
Which acid or base (along with its corresponding salt) should be used to generate a buffer solution with pH around 3.5
Answer:
Formic acid
Sodium formiate
Explanation:
To determine acid or base that can generate a buffer solution with pH around 3.5, we have to think in the acid whose pKa = pH.
Although we have to also think in buffer capacity, a measure which can cause a change of 1 pH unit in 1 L of solution.
Buffer capacity does not only depend on the concentration of its components but also of the relationship between that concentrations.
When pH = pKa, buffer capacity is maximum which means that the concentration of conjugated species is the same and the ability to oppose pH changes is maximum.
One example with pH = pKa or nearly if:
COOH⁻ + Na⁺ → NaCOOH
HCOOH + H₂O → COOH⁻ + H₃O⁺ Ka: 1.8×10⁻⁴
pKa = 3.74
complete the following steps.
Remember to follow lower numbered rules first.
K2S(aq) + CO(NO3)2(aq) COS (?) + KNO3 (?)
a. Write a balanced chemical equation. (1 pt)
b. If a reaction occurs, write the balanced
chemical equation with the proper states of matter
(i.e. solid, liquid, aqueous) filled in. If no reaction
occurs, write “No reaction.” (1 pt)
c. If a reaction occurs, write the net ionic equatibn
for the reaction. If no reaction occurs, write “no
reaction.” (1 pt)
Answer:
See explanation
Explanation:
a) The balanced reaction equation is;
K2S + CO(NO3)2 ------> COS + 2 KNO3
b) When we include the states of matter, we have;
K2S(aq) + CO(NO3)2(aq) ----> COS(s) + 2 KNO3(aq)
c) The complete ionic equation is;
2K^+(aq) + S^2-(aq) + Co^2+(aq) + 2NO3^-(aq) ----> CoS(s) + 2K^+(aq) + 2NO3^-(aq)
Net ionic equation;
Co^2+(aq) + S^2-(aq) ----> CoS(s)
Assuming tea leaves contain 5.0% caffeine by weight what is the maximum weight of caffeine you could isolate from 10.g of tea leaves? Show your work.
Answer:
0.50 g Caffeine
Explanation:
Step 1: Given data
Concentration of caffeine by weight in tea leaves: 5.0%
Mass of tea leaves: 10. g
Step 2: Calculate the maximum weight of caffeine that can be isolated
The concentration of caffeine by weight in tea leaves is 5.0%, that is, there are 5.0 g of caffeine per 100 g of tea leaves. The maximum weight of caffeine in 10. g of tea leaves is:
10. g Tea leaves × 5.0 g Caffeine/100 g Tea leaves = 0.50 g Caffeine
办理教留服学位学历认证Q/微29304199英属哥伦比亚UBC毕业证文凭学位证书offer操办英属哥伦比亚留信认证成绩单
Answer:
please translate in english
Part A
If the theoretical yield of a reaction is 23.5 g and the actual yield is 14.8 g, what is the percent yield?
Answer:
[tex]\boxed {\boxed {\sf 63.0 \%}}[/tex]
Explanation:
The percent yield is the ratio of the actual yield to the theoretical yield.
[tex]percent \ yield = \frac{actual \ yield}{theoretical \ yield} * 100[/tex]
The actual yield is the amount obtained from performing a chemical reaction. For this problem, it is 14.8 grams. The theoretical yield is the potential amount from performing a chemical reaction at maximum performance. For this problem, it is 23.5 grams.We can substitute the known values into the formula.
[tex]percent \ yield= \frac{ 14.8 \ g}{23.5 \ g}*100[/tex]
Divide.
[tex]percent \ yield = 0.629787234043*100[/tex]
Multiply.
[tex]percent \ yield = 62.9787234043[/tex]
The original measurements for the theoretical and actual yields have 3 significant figures, so our answer must have the same. For the number we calculated, that is the tenths place.
The 7 to the right, in the hundredths place, tells us to round the 9 up to a 0. Since we rounded up to 0, we have to move to the next place to the left and round the 2 up to a 3.
[tex]percent \ yield \approx 63.0[/tex]
The percent yield is approximately 63.0 percent.
which molecule has 9 carbon atoms
Answer:
c9h8o2
Explanation:
The molecule which has 9 carbon atom is [tex]C_{9} H_{8} O[/tex](cinnamaldehyde).
What is molecule?More than one atoms make up a molecule. If they have more than one atom, atoms could be the same for example, an oxygen molecule contains two oxygen atoms) as well as different (for example, a hydrogen molecule contains two hydrogen atoms.
What is cinnamaldehyde?Cinnamaldehyde is a kind of organic chemical with the formula C6H5CH=CHCHO and the formula C6H5CH=CHCHO. It's mostly the trans isomer that's found in nature.
It is known that the number of carbon atom is 9 hence molecule will be cinnamaldehyde
To know more about cinnamaldehyde and molecule.
https://brainly.com/question/14897941
#SPJ2
Calculate the concentration of ammonium nitrate in a solution prepared by dissolving 3.20 g of the salt in enough water to make 100. mL of solution, then diluting 2.00 mL of this solution to a volume of 25.00 mL.
Answer:
.032 M .
Explanation:
Molecular weight of ammonium nitrate is 80 .
3.2 g = 3.2 / 80 moles
= .04 moles
volume = 100 mL = 0.1 L
Molarity of 100 mL solution = .04 moles / 0.1 L
= 0.4 M solution.
Now 2 mL solution of 0.4 M is diluted to a volume of 25 mL .
Using the formula S₁ V₁ = S₂V₂
0.4 M x 2 mL = S₂ x 25 mL
S₂ = .4 x 2 / 25
= .032 M
Hence required concentration is .032 M .
net ionic equation for 2AgF(aq) + k2S = Ag2S (s) + 2KF(aq)
Answer:
The net ionic equation shows the actual reaction more clearly and closer to reality because it writes soluble ionic compounds as the ions and then cancel the spectator ions not involved in the chemical reaction . The net ionic equation results shows the actual chemical reaction taking place.
The net ionic equation for for 2AgF(aq) + k₂S = Ag₂S (s) + 2KF(aq) will be; 2 Ag⁺(aq) + S²⁻(aq) → Ag₂S(s).
To write the net ionic equation for the reaction, we first need to write the balanced molecular equation and then convert it into the ionic equation before finally identifying the net ionic equation.
Write the balanced molecular equation:
2 AgF(aq) + K₂S(aq) → Ag₂S(s) + 2 KF(aq)
In this reaction, silver fluoride (AgF) reacts with potassium sulfide (K₂S) to produce silver sulfide (Ag₂S) and potassium fluoride (KF).
Write the complete ionic equation:
In the complete ionic equation, we separate all the aqueous species (dissociated ions) into their individual ions. Only the solid (s) and gas (g) compounds remain unchanged.
2 Ag⁺(aq) + 2 F⁻(aq) + 2 K⁺(aq) + S²⁻(aq) → Ag₂S(s) + 2 K⁺(aq) + 2 F⁻(aq)
Identify the spectator ions and then write the net ionic equation:
The spectator ions are the ions that do not participate in the actual chemical reaction and remain the same on both sides of the equation. In this reaction, the potassium ions (K⁺) and fluoride ions (F⁻) are spectator ions because they appear on both sides of the equation unchanged.
Net ionic equation:
2 Ag⁺(aq) + S²⁻(aq) → Ag₂S(s)
The net ionic equation shows only the species that actively participate in the chemical reaction. In this case, the silver ions (Ag⁺) and sulfide ions (S²⁻) are the ones involved in forming the silver sulfide (Ag₂S) precipitate.
To know more about net ionic equation here
https://brainly.com/question/34257815
#SPJ3
--The given question is incomplete, the complete question is
"Write the net ionic equation for this reaction. 2AgF(aq) + k₂S = Ag₂S (s) + 2KF(aq)."--
What is the molecular geometry of CIO3F as predicted by the VSEPR model?
Multiple Choice
trigonal pyramidal
square planar
square pyramidal
tetrahedral
octahedral
Explanation:
since there are no lone pairs on the central atom, the shape will be tetrahedral
The compound chromium(II) chloride is a strong electrolyte. Write the transformation that occurs when solid chromium(II) chloride dissolves in water. Be sure to specify states such as (aq) or (s).
Answer:
CrCl₂(s) ⇒ Cr²⁺(aq) + 2 Cl⁻(aq)
Explanation:
Chromium (II) chloride is a strong electrolyte, that is, when dissolved in water, it completely dissociates into the ions. The cation is chromium (II) and the anion is chloride. The balanced equation for the solution of chromium (II) chloride is:
CrCl₂(s) ⇒ Cr²⁺(aq) + 2 Cl⁻(aq)
What is the direct function of the energy released from the nuclear chain reaction in a nuclear power plant? turning the blades of the turbine heating water to produce steam powering the condenser carrying electricity from the plant to consumers
Answer:
the energy released is to make steam to create electricity. yes you are right i just didnt feel like being super technical
In a nuclear reaction, the direct function of the energy released from the nuclear chain reaction in a nuclear power plant is turning the blades of the turbine heating water to produce steam .
What are nuclear reactions?There are two types of nuclear reactions which are nuclear fusion and nuclear fission .They involve the combination and disintegration of the element's nucleus respectively.
In nuclear fission, the nucleus of the atom is bombarded with electrons of low energy which splits the nucleus in to two parts .Large amount of energy is released in the process.It is used in nuclear power reactors as it produces large amount of energy.
In nuclear fusion,on the other hand, is a reaction which occurs when two or more atoms combine to form a heavy nucleus.Large amount of energy is released in the process which is greater than that of the energy which is released in nuclear fission process.
Learn more about nuclear reactions,here:
https://brainly.com/question/12786977
#SPJ7
A gas occupies a volume of 202 ml at a pressure of 505 torr. To what pressure must the gas be subject in order to change the volume to 65.0 ml
Answer:
1569 torr
Explanation:
Assuming ideal behaviour and constant temperature, we can solve this problem by using Boyle's law, which states:
V₁P₁ = V₂P₂Where in this case:
V₁ = 202 mLP₁ = 505 torrV₂ = 65.0 mLP₂ = ?We input the data given by the problem:
202 mL * 505 torr = 65.0 mL * P₂And solve for P₂:
P₂ = 1569 torrExplain the term global warming
Answer: A gradual increase in the overall temperature of the earth's atmosphere generally attributed to the greenhouse effect caused by increased levels of carbon dioxide, chlorofluorocarbons, and other pollutants.
Explanation:
Question 2 10
10 Points
Which of the following chemical equations depicts a balanced chemical equation?
O A. AgNO, Kcro > KNO, Agro,
OB. AgNO3 + Kycro, » 2K NO; + Agro,
C.3AgNO3 + 2K,Cro--> 3KNO3 + 249900,
D. 2AgNO, K Cro-> 2KNO; 1Cro,
Resol Selection
Answer:
2AgNO, K Cro-> 2KNO; 1Cro,
what is Lewis acid and Lewis base? give examples
Explanation:
example is copper iron...........
Curium – 245 is an alpha emitter. Write the equation for the nuclear reaction and identify the product nucleus.
Answer:
Please find the complete solution in the attached file.
Explanation:
Fructose is an example of a ketohexose. The -hexose part of the name indicates that fructose is a Choose... that contains Choose... carbons. The keto- part of the name indicates that fructose contains Choose... functional group. Fructose can combine with glucose to form sucrose. Therefore, sucrose is a Choose... .
Answer:
carbohydrate, 6, a carbonyl, disaccharide
Explanation:
Fructose is an example of a ketohexose. The -hexose part of the name indicates that fructose is a carbohydrate that contains 6 carbons. There are more isomers that are ketohexoses.
The keto- part of the name indicates that fructose contains a carbonyl functional group. In ketones, the carbonyl is in an inner carbon.
Fructose can combine with glucose to form sucrose. Therefore, sucrose is a disaccharide. Disaccharides are formed by the bonding of 2 monosaccharides.
Help naming this plzzzzzzzzzzzzz
Answer:
A. 3-chloro-1-methylcyclobutane.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to infer that the name of this compound is A. 3-chloro-1-methylcyclobutane because of the fact that the parent chain is a cyclobutane which starts by the methyl radical as it has the priority over the chlorine radical which is actually named first at the third carbon (clockwise).
Therefore the name is given in A, accordingly to the IUPAC rules of nomenclature.
Regards!
An example of a molecular compound that obeys the octet rule in which all atoms have a zero formal charge is:
Answer:
[tex]NCl_3[/tex]
Explanation:
An octet rule is a thumb rule in the chemical sciences in which there is a natural tendency for an atom to prefer eight electrons in the valence shell of the atom. When there are less than eight electrons in the atom, they react with other atoms and form more stable compounds.
In the context, nitrogen trichloride, [tex]NCl_3[/tex], is an example of molecular compound which obeys the octet rule having a zero formal charges on each atom of the compound.
The mass of a crucible and lid is 23.422 g. After adding a sample of hydrate compound the crucible, cover, and contents weigh 24.746 g. After heating with a Bunsen burner to remove the water of hydration, the mass of the crucible, cover, and sample was 24.213 g. How many moles of water did the hydrate compound contain
Answer:
0.030 mole
Explanation:
Mass of crucible + lid = 23.422 g
Mass of crucible + lid + compound = 24.746 g
Mass of crucible + lid + compound - water = 24.213
Mass of water = Mass of crucible + lid + compound + heat
= 24.746 - 24.213
= 0.533 g
Mole of water in the hydrated compound = mass of water in the compound/molar mass of water
= 0.533/18
= 0.0296 mole = 0.030 mole