Answer:
density should always be positive, you must have missed a sign somewhere
the volume of vessel is 6 litres. convert it into ml
Bones are composed of three main components, what are they? (Choose all that apply)
Answer:
funny bone and compact bone
Explanation:
your funny bone only reacts if you hit it against something the compact bone is the heaviest and strongest bone in your body and the bone marrow is soft sponge like tissue in the center if most bones that produces white and red blood cells
How is an ammeter connected in a circuit to measure current flowing through it?
Answer:
It is connected in series with the circuit
Explanation:
This is because to measure the current in the circuit, the current in the circuit has to flow through the ammeter. As such, the ammeter must be connected in series with the circuit so as to measure the current flowing through the circuit.
So, to measure the current flowing through a circuit with an ammeter, the ammeter must be connected in series with the circuit.
how does energy change ? explain with example . how does bulb generate ? write with it's part.
Answer:
According to the law of conservation of energy, energy is neither created nor destroyed but changes from one form to another
The energy in the light bulb comes from the movement of electrons through the resistance of the coil of the bulb, therefore, the energy in the bulb is changed from electric energy to heat and light energy as follows;
The friction between the moving electrons and the resistive filament of the light bulb results in the slowing down of the rapidly moving electrons
The part change in the (kinetic) energy of the electrons moving through the filament of the bulb as they slow down is observed as sensible heat which causes the bulb to be hot
Another part of the change in energy is given seen as the light given off by the bulb filament in an incandescent bulb as the filament becomes very hot from the movement of the electrons which causes the bulb to glow (produce light), due to the incandescent characteristics of the filament
Explanation:
Waves break on a beach due to:
reducing depth of water near beach
increasing wavelength near beach
turbulence near the shoreline
Answer:
increasing wavelength near beach
Explanation:
When wavelength increases, frequency of these waves decreases and the waves suddenly stop.
This is also called damped oscillation.
a bell rings at a frequency of 75hz on a warm 25 degree evening. calculate the...
a. speed of the sound wave at this temperature.
b. wavelength of the sound wave
Answer:
Explanation:
We need 2 different equations for this problem: first the velocity of sound equation, then the frequency of the sound equation.
The velocity of sound is found in:
v = 331.5 + .606T
We need to find that first in order to fill it into the frequency equation which is
[tex]f=\frac{v}{\lambda}[/tex] where v is the velocity we will find the part a, f is frequency and lambda is the wavelength. Starting with the velocity of the sound:
v = 331.5 + .606(25) and
v = 331.5 + 15 and rounding correctly using the rules for sig fig when adding:
v = 347 m/s
Filling that into the frequency equation:
[tex]75=\frac{347}{\lambda}[/tex] and
[tex]\lambda=\frac{347}{75}[/tex] so
[tex]\lambda=4.6m[/tex]
1. Do you think that hand signals are important in officiating games? why?
Yeah, hand signals are important in officiating games. The hand signals are given by the referee who first signals the fault and then indicates which team has won the point. A point is indicated by one finger at the side of the court to indicate the winner of the rally.
A carpenter applies a force of 60N horizontally to push a plane 40 cm along a piece of wood, how much work does she do?
Answer:
W = 24 J
Explanation:
Given that,
Applied force, F = 60 N
Distance moved, d = 40 cm = 0.4 m
We need to find the work done by the carpenter. We know that,
Work done, W = Fd
Put all the values,
W = 60 N × 0.4 m
= 24 J
Hence, the required work done is equal to 24 J.
what is parking orbit?
Answer:
A temporary orbit in which a spacecraft awaits the next phase of its mission .
If you have a cube that is 2x2x2 and weighs 5.29 g. How do you find the density?
Answer:
0.66
Explanation:
Follow the Density Formul d = m/v
so
d = 5.29/8
= 0.66 Density
Just correct me if I'm wrong, I mean like literally :> Thank you! ^^
A sphere of diameter 3.0cm is mounted into a thin uniform wire of diameter 0.2mm calculate the length of the wire in meters
Answer:
Length of the wire in meters = 0.000628 meter (Approx.)
Explanation:
Given:
Diameter of wire = 0.2 mm
Find:
Length of the wire in meters
Computation:
Radius of wire = 0.2 / 2
Radius of wire = 0.1
Length of the wire = Circumference of circle
Circumference of circle = 2πr
Length of the wire = 2πr
Length of the wire = 2(3.14)(0.1)
Length of the wire = 0.628 mm (Approx.)
1 meter = 1,000 mm
So,
Length of the wire in meters = 0.000628 meter (Approx.)
A car with a mass of 500 kg is moving at a speed of 12 m/s. How much kinetic energy does it have?
someone please help me PLEASEEEE <3
Answer:
36000
Explanation:
1/2mv²=0.5×500×12²=36000j
If the rotation of a planet of radius 5.32 × 106 m and free-fall acceleration 7.45 m/s 2 increased to the point that the centripetal acceleration was equal to the gravitational acceleration at the equator, what would be the tangential speed of a person standing at the equator?
Answer:
v = 6295.55 m/s
Explanation:
Given that,
The radius of a planet, [tex]r=5.32\times 10^6\ m[/tex]
The free fall acceleration of the planet, a = 7.45 m/s²
We need to find the tangential speed of a person standing at the equator.
Also, the centripetal acceleration was equal to the gravitational acceleration at the equator.
We know that,
Centri[etal acceleration,
[tex]a=\dfrac{v^2}{r}\\\\v=\sqrt{ar}\\\\v=\sqrt{5.32\times10^6\times 7.45}\\\\v=6295.55\ m/s[/tex]
So, the tangential speed of the person is equal to 6295.55 m/s.
If you were testing materials to see whether they conduct electricity using a circuit and bulbs, what variable would you be changing?
A. The strength of the battery
B. The number of bulbs
C. The material
D. The time it takes the electricity to complete the circuit
Answer: C. The material
Explanation:
In order to check whether a material conducts electricity, the first thing to do would be to design a circuit. Connect a positive wire to the batteries and then another wire from the battery to the bulb and then a wire from the bulb as well.
Then bring different materials to test for conductivity by connecting the wires to the material. If the bulb lights then it is a conductor and if it doesn't the material is not a conductor. The material is therefore the changing variable.
A skier of weight 700 N is pointed down a ski hill that has a slope angle of 25° above horizontal.
What is the component of his weight pulling him down the slope.
O 634N
O 326N
O 296N
O 700N
Answer:
O 296N
Explanation:
F_y = F*sin(x)
F_y = 700N*sin(25°)
F_y = 295.83N or 296N
[tex]what \: is \: matter \: \: \: {?} [/tex]
Answer:
matter is any substance that has mass and takes up space by having volume.
Explanation:
Matter is anything that has a mass and it takes up space or has a volume .
matters are made up many atoms or molecules .
hope it is helpful to you
stay safe, happy and healthy
a man runs 1200m on a straight line in 4 min . find his velocity.
Answer:
5m/sec^2
Explanation:
Distance=1200m
Time=4 min
1=60sec
4=4 x 60
=240sec
Velocity=Distance/Time
Velocity=1200/240
Velocity=5m/sec^2
Mark me as brainliest
10 points
Calculate the force of attraction between the moon and the earth, if their masses and distance apart are 10^22Kg, 10^24kg and 6.4x10^6m. Take g = 6.67x10^-11Nm^2Kg^-2
a) 0.63x10^24N
b) 1.63x10^22N
c) 2.63x10^20N
d) 3.63x10^18N
Answer:
Explanation:
You didn't fill in the proper masses which is why you never got an answer to this. But that's ok...I got you. I happen to know what they are! We will use the universal law of gravitation and the gravitational constant to solve this.
[tex]F_g=\frac{Gm_1m_2}{r^2}[/tex] and filling in:
[tex]F_g=\frac{(6.67*10^{-11})(5.98*10^{24})(7.36*10^{22})}{(3.84*10^8)^2}[/tex] The denominator is the radius of the earth plus the radius of the moon plus the distance between their surfaces, just FYI.
That gives us that
[tex]F_g=1.99*10^{20}N[/tex] Not sure what your choices entail, but I'd have to say, taking into consideration that maybe your problem didn't figure in the distance between the surfaces, you'd be at choice B.
Compare and contrast mental health and emotional health.
Answer: hey, i hope this hlps!~~~ Part of mental health is how well your mind processes and understands information and experiences. In contrast, emotional health involves your ability to manage and express the emotions that arise from what you have learned and experienced.
Explanation:
As Courtney switches on the TV set to watch her favorite cartoon, the electron beam in the TV tube is steered across the screen by the field between two charged plates. If the electron experiences a force of 3.0 * 10^6 N, how large is the field between the deflection plates?
Answer:
Explanation:
Force= (q1q2)/(4/\Ęr2)
3×10^6= (1.602×10^-19)^2/(r^2)
r^2=(2.27×10^-33)/(3×10^6)
r^2=8.55×10^-45
r= 9.25×10^-23
(b) During one day, 250 kg of water is pumped through
the solar panel. The température of this
water rises from 16°C to 38°C.
The water absorbs 25% of the energy incident on the solar panel. The
specific heat capacity
of water is 4200J/(kg °C).
Calculate the energy incident on the solar panel during that day.
Please explain how to find the incident energy
Answer: The energy incident on the solar panel during that day is [tex]9.24 \times 10^{7} J[/tex].
Explanation:
Given: Mass = 250 kg
Initial temperature = [tex]16^{o}C[/tex]
Final temperature = [tex]38^{o}C[/tex]
Specific heat capacity = 4200 [tex]J/kg^{o}C[/tex]
Formula used to calculate the energy is as follows.
[tex]q = m \times C \times (T_{2} - T_{1})[/tex]
where,
q = heat energy
m = mass of substance
C = specific heat capacity
[tex]T_{1}[/tex] = initial temperature
[tex]T_{2}[/tex] = final temperature
Substitute the values into above formula as follows.
[tex]q = 250 kg \times 4200 J/kg^{o}C \times (38 - 16)^{o}C\\= 250 kg \times 4200 J/kg^{o}C \times 22^{o}C[/tex]
As it is given that water absorbs 25% of the energy incident on the solar panel. Hence, energy incident on the solar panel can be calculated as follows.
[tex]\frac{25}{100} \times q = 250 kg \times 4200 J/kg^{o}C \times 22^{o}C\\q = 9.24 \times 10^{7} J[/tex]
Thus, we can conclude that the energy incident on the solar panel during that day is [tex]9.24 \times 10^{7} J[/tex].
There is a bell at the top of a tower that is 45m high. The bell weighs 190N. The bell has ___________________ energy. Calculate it.
I NEED THE ANSWER PLEASE
Answer:
250mn
Explanation:
A gas in a sealed container has a pressure of 50 kPa at 27°C. What will the pressure of the gas be if the temperature rises to 87°C?
Answer:
the final pressure of the gas is 60 kPa.
Explanation:
Given;
initial pressure of the gas, P₁ = 50 kPa = 50,000 Pa
initial temperature of the gas, T₁ = 27⁰ C = 27 + 273 = 300 k
final temperature of the gas, T₂ = 87⁰ C = 87 + 273 = 360 K
Let the final pressure of the gas = P₂
Apply pressure law;
[tex]\frac{P_1}{T_1} = \frac{P_2}{T_2} \\\\P_2 = \frac{P_1T_2}{T_1} = \frac{50,000 \times 360}{300} = 60,000 \ Pa = 60 \ kPa[/tex]
Therefore, the final pressure of the gas is 60 kPa.
Multiplying a vector with another vector results in what type of answer.
A) a direction
B) a vector
C) either a vector or a scalar
D) a scalar
multiplication of two vectors yields a vector oroduy
A container of gas is at a pressure of 3.7 x 10^5 Pa. How much work is done by the gas if its volume expands by 1.6 m^3 ?
Answer:
592000 J
Explanation:
We'll begin by converting 3.7×10⁵ Pa to Kg/ms². This can be obtained as follow:
1 Pa = 1 Kg/ms²
Therefore,
3.7×10⁵ Pa = 3.7×10⁵ Kg/ms²
Next, we shall determine the workdone.
Workdone is given by the following equation:
Workdone (Wd) = pressure (P) × change in volume (ΔV)
Wd = PΔV
With the above formula, the work done can be obtained as follow:
Pressure (P) = 3.7×10⁵ Kg/ms²
Change in volume (ΔV) = 1.6 m³
Workdone (Wd) =?
Wd = PΔV
Wd = 3.7×10⁵ × 1.6
Wd = 592000 Kgm²/s²
Finally, we shall convert 592000 Kgm²/s² to Joule (J). This can be obtained as follow:
1 Kgm²/s² = 1 J
Therefore,
592000 Kgm²/s² = 592000 J
Therefore, the Workdone is 592000 J.
A 2 kg hammer is used to nail a 0.002 kg nail with a force of 10 N. How much force is applied to the hammer?
Answer:
10 N
Explanation:
Given that,
A 2 kg hammer is used to nail a 0.002 kg nail with a force of 10 N.
We need to find how much force is applied to the hammer.
We know that, every action has an equal and opposite reaction. Both the action and reaction occurs in two different objects.
Hence, the force applied to the hammer is equal to 10 N.
6.05 Infections and Health
Plese don't report me i am trying to get the assigment done
Introduction
Contaminated water is a health risk, and not all populations have access to clean water. You are going to use household items to design, test and revise a water filtration system. New technologies undergo testing and revision before they are released to the public. This lab will simulate how the scientific process is used to solve problems.
Purpose
The Purpose of your design is to filter dirt, sand and other sediment from “swamp” water. You do not need to make it drinkable during this design. You will begin with a water sample that has visible dirt, mud or other contaminants. You will design a way to filter the water and evaluate your design. You will not be able to test for microorganisms or to filter them out during this design process. Do not test the water by drinking it.
Important: Do NOT drink the water in your experiment.
Materials
“Swamp” water (You can get this from an outside source like a hole in the ground, puddle, lake, river or swamp. Or, you may add dirt and sediment to tap water.) The starting sample should have visible dirt or sediment.
You may use any household materials for your water filtration system. Here are some suggestions:
Cheesecloth
OId t-shirt
Coffee filters
Pantyhose
Cotton balls
Sock
Funnel
Water bottle
Data for Design One (6 points)
Describe the appearance and smell of the “swamp” water before and after filtration. Use complete sentences and detailed examples.
Skilled Scientist level from Rubric: Student gives thorough details about the appearance and smell of the water before and after the filtration for Design One and Design Two.
Water before filtration
Water after filtration
Description of appearance
Description of smell or other physical characteristics
Rate the visible cleanliness of the water on a scale of 1 to 10 with 10 being the cleanest.
Feedback ( 5 points)
Consulat a peer or a family member about ways your design could be improved. Describe the feedback and provide the name of the reviewer. These are only suggestions that you can use to plan for Design Two. Use complete sentences and detailed examples.
Skilled Scientist level from Rubric: Student thoroughly describes the feedback received from peer/family member, and it is clear a meaningful exchange about ways to improve the design took place.
List the name of peer/family member and relationship:
Describe the feedback given by your peer/family member. What changes do they suggest you make to your design in order to clean the water better?
Planning for DesignTwo (8 points)
Use this space to plan out how to improve your water filter. Based on the feedback you received, what part are you trying to improve? Why did you make the changes that you did? Use complete sentences and detailed examples. You may include sketches or diagrams.
Skilled Scientist level from Rubric: Student thoroughly explains the changes for the design and gives ample details about any improvements that were made.
List materials used:
Describe how Design Two will work:
What part of your design are you trying to improve?
Why did you make the changes you did?
Data for Design Two (6 points)
Use the data and feedback from your first design to make changes to your water filtration system. Test your new design. Record the appearance and smell of the “swamp” water before and after filtration. Use complete sentences and detailed examples.
Skilled Scientist level from Rubric: Student gives thorough details about the appearance and smell of the water before and after the filtration for Design One and Design Two.
Water before filtration
Water after filtration
Description of appearance
Description of smell or other physical characteristics
Rate the visible cleanliness of the water on a scale of 1 to 10 with 10 being the cleanest.
Conclusion (10 points)
Use your data from Design One and Design Two to answer the following questions. Use complete sentences and detailed examples.
Skilled Scientist level from Rubric: Student answers all questions using ample details and showing critical thinking skills to reflect on the design process.
Summarize the appearance and smell of the “swamp” water before and after the filtering process using Design One.
2. Describe the changes you made to your water filtration system.
3. What feedback helped you make changes to your water filtration system?
4. Summarize the appearance and smell of the “swamp” water before and after the filtering process using Design Two.
5. What did you learn about the process of planning, testing and revising a design?
The process of filtration of swamp water using a filtering material such as neat clothes will make the water clearer and remove any bad smell.
What is filtration?Filtration is a separation technique used to separate insoluble solids from a liquid.
Filtration is employed in water purification.
Water purification is done in water purification plants.
A locally designed purification process for swamp water will involve using materials such as:
A T-shirt Funnel Water bottleThe T-shirt is used filter out mud and sediments.
Repeated filtrations will make the water clearer and remove any bad smell.
Learn more about filtration at: https://brainly.com/question/552187
Si un movil parte del reposo logrando una aceleracion de 5 metros por segundo al cuadrado durante 8 segundos calcular la velocidad final
Answer:
Velocidad final, V = 40 m/s
Explanation:
Dados los siguientes datos;
Aceleración = 5 m/s²
Velocidad inicial = 0 m/s (ya que comienza desde el reposo)
Tiempo = 8 segundos
Para encontrar la velocidad final, usaríamos la primera ecuación de movimiento;
[tex] V = U + at[/tex]
Dónde;
V es la velocidad final. U es la velocidad inicial. a es la aceleración. t es el tiempo medido en segundos.Sustituyendo en la fórmula, tenemos;
[tex] V = 0 + 5*8 [/tex]
[tex] V = 0 + 40 [/tex]
[tex] V = 40 [/tex]
Velocidad final, V = 40 m/s
1 Ten (10) ml aqueous solutions of drug A (10% w/v) and drug B (25% w/v) are stored in two identical test tubes under identical storage conditions at 37°C for 3 months. If both drugs degrade by first-order, which drug will retain the highest percentage of initial concentration?
Answer:
YOUR answer is given below:
Explanation:
Drug B will retain the highest percentage of initial concentration.
First order degradation means that both solution will degrade by same amount in same time because first order is directly proportional relationship between given both aqueous solution.
Given that Ten (10) ml aqueous solutions of drug A (10% w/v) and drug B (25% w/v) are stored in two identical test tubes.
Since, initially concentration of Drug B is more. Therefore, at all instant concentration of Drug will be highest.
Learn more:
brainly.com/question/17029235
A certain capacitor, in series with a resistor, is being charged. At the end of 25 ms its charge is half the final value. The time constant for the process is about:
Answer:
τ = 36 10⁻³ s
Explanation:
The charge of a circuit Rc is given by the expression
q = q₀ (1 - [tex]e^{-t/ \tau }[/tex])
q / q₀ = 1 - e^{-t/ \tau }
in this exercise they indicate that
q / q₀ = ½
for a time t = 25 10⁻³ s
we substitute
½ = 1 - [tex]e^{- 25 \ 10^{-3} / \tau}[/tex]
e^{- 25 \ 10^{-3} / \tau} = 1 -½
- 25 10⁻³ /τ = ln 0.5
-25 10⁻³ / ln 0.5 = τ
τ = 36 10⁻³ s