Answer:
The problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.
Explanation:
Fun facts:
In the process of energy transfer between two groups of particles both processes operate simultaneously, and if the lower energy part of plasma distribution gives energy to the wave while the higher‐energy part absorbs the wave enrgy, then the wave‐mediated energy transfer from lower energy particles to higher‐energy ...
Consider these two cases.
Case 1: An electron jumps from energy level 1 to energy level 2 in an atom.
Case 2: An electron jumps from energy level 1 to energy level 3 in an atom.
For case 1, what happens when an electron jumps from energy level 1 to energy level 3 in an atom?
A. A photon is absorbed by the atom.
B. A photon is emitted by the atom.
C. A proton is absorbed by the atom.
D. A proton is emitted by the atom.
Assuming that both cases describe Hydrogen-like atoms with one electron, for which case is more energy emitted or absorbed?
A. The energy is the same for both cases.
B. More energy is emitted or absorbed for case 2
C. It is impossible to tell.
D. More energy is emitted or absorbed for case 1
Answer:
A photon is absorbed by the atom.
More energy is emitted or absorbed for case 2
Explanation:
According to the Bohr model of the atom, electrons occur in energy levels. The energy of each level is fixed. However, electrons can absorb photons and move from a lower to higher energy level or emit photons and move from a higher to a lower energy level.
In each case, the energy absorbed or emitted is equal to the difference in energy between the two energy levels.
Since energy level 3 is much higher than energy level 2, the electron absorbs more energy in moving from energy level 1 to energy level 3 than it absorbs when moving from energy level 1 to energy level 2.
Which best describes how the total mass of the substances that go into
photosynthesis compares to the mass of substances that are present
afterward?
O A. The mass increases because the molecules that are produced are
larger than those that are used.
B. The mass increases because some light energy changes into
mass.
O C. The mass stays the same because the total number of atoms
does not change
O D. The mass decreases because plants destroy some of the atoms
during photosynthesis.
Answer:
C. The mass stays the same because the total number of atoms does not change
Explanation:
According to the law of conservation of matter/mass, matter cannot be created nor destroyed, hence, the amount of matter in the reactants must be the same amount in the products.
Using the photosynthetic reaction as a case study, carbon dioxide (CO2) and water (H2O) are the compounds that go into the reaction (reactants) while glucose and oxygen (O2) are the products of the reaction.
Using the law of conservation of matter to explain, the total mass of both the reactants and products stays the same because the total number of atoms does not change i.e. if 6 atoms of Carbon starts the reaction, 6 atoms of carbon will end it.
After mixing the solutions in a separatory funnel, the stopper should be ______ and the liquid should be _______ and the layers allowed to separate. When you get close to the interface between the layers, ______ the funnel and turn over _______ heat up until the first layer is collected get eye level with to collect the second layer. _______
Answer:
Hence,
1) removed
2) drained through the stopcock
3) get eye level with
4) slow the draining
5) switch to a new flask
Explanation:
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be drained through the stopcock, and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and turn over to slow the draining heat up until the first layer is collected. Switch to a new flask get eye level with it to collect the second layer.
When H2S(g) reacts with O2(g) to form H2O(g) and SO2(g), 124 kcal of energy are evolved for each mole of H2S(g) that reacts. Write a balanced equation for the reaction with an energy term in kcal as part of the equation.
Answer:
2H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g) + 248kcal
Explanation:
The reaction of the problem occurs as follows:
H2S(g) + O2(g) → H2O(g) + SO2(g)
To balance the reaction we must balance oxygens:
H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g)
To balance the complete reaction:
2H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g)
As the energy is evolved, 124kcal are as product in the reactio per mole of H2S. As the balanced reaction contains 2 moles of H2S, the heat evolved is:
124kcal*2 = 248kcal:
2H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g) + 248kcal
And this is the balanced equation
What are some of the reasons why the United States did not adopt the metric system of measure?
at the time most of its trade was with France who did not use the metric system
the House of Representatives defeated the bill calling for conversion to metrics in 1974
the US was waiting for all other industrialized countries to adopt it before proceeding
at the time most of its trade was with England and Canada who did not use the metric system
Answer: in 1975, the United States passed the Metric Conversion Act. The legislation was meant to slowly transition its units of measurement from feet and pounds to meters and kilograms, bringing the US up to speed with the rest of the world. There was only one issue: the law was completely voluntary. Of course, that meant it pretty much never took off
Explanation:
they passed the metric act
According to the equation 2K(s) + CI2(g) 2kCI(s), potassium reacts with chlorine to form potassium chlorine. If 100 atoms of potassium react with chlorine gas, how many chlorine molecules will be needed to completely react?
Answer:
50 CI₂ molecules
Explanation:
2K(s) + CI₂(g) → 2KCI(s)By looking at the stoichiometric coefficients, we can tell that if 2 atoms of potassium (K) react with chlorine gas (CI₂), 1 chlorine molecule would react.
With that in mind we can calculate how many CI₂ molecules would react with 100 K atoms:
100 atoms K *[tex]\frac{1Cl_2Molecule}{2KAtom}[/tex] = 50 CI₂ moleculesHelp for both questions please and thanks
Answer:
hey can you re post this and zoom in i can see what it say its not allowing me to zoom thx
Explanation:
Select the statement(s) that describe the characteristics of transition metals. a. Transition metals have partially filled d subshells. b. Transition metals give rise to cations that have completely filled d subshells. c. Group 2B elements are not transition metals because they neither have nor readily acquire partially filled d orbitals.
Answer: The correct option is A,
--> a.) Transition metals have partially filled d subshells.
Explanation:
Transition elements are all metals of economic importance. They are found in the d- lock of the periodic table between group 2 and 3. They occupy three rows, with ten elements in each row. The term 'transition metals' refers only to an element which has PARTIALLY filled d orbitals. Typical example of transition metals include iron (Fe).
They have partially filled 3d orbitals which are responsible for the special properties of the metals. These include:
--> Physical properties: the transition metals have high boiling and melting points. They are hard, dense and lustrous. They are also good conductors of heat and electricity.
--> Chemical reactivity: In the s- block and p-block, the chemical properties of the elements in the same period vary, often quite markedly, from left to right. This does not happen with the transition metals because electrons are added progressively to the inner d-orbitals.
--> Variable oxidation states: they have variable oxidation states because 3d electrons are available for bond formation.
What is the pH of a solution with a 7.8 × 10−13 M hydronium ion concentration?
A) 1.9
B) 2.8
C) 11
D) 12
Answer:
12Explanation:
The pH of a solution can be found by using the formula
[tex]pH = - log [ { H_3O}^{+}][/tex]
From the question we have
[tex]ph = - log(7.8 \times {10}^{ - 13} ) \\ = 12.1079...[/tex]
We have the final answer as
12Hope this helps you
The pH of this solution with a 7.8 × 10⁻¹³ M concentration of hydronium ion is equal to: D. 12.
Given the following data:
Concentration of hydronium ion = 7.8 × 10⁻¹³ M.
What is pH?pH is literally the power of hydrogen ions and it can be defined as a measure of the molar concentration of hydrogen ions in a given solution.
How to calculate the pH of a solution?We would determine the pH of this solution by using this formula;
pH = -log[H⁺]
pH = -log(7.8 × 10⁻¹³).
pH = -(-12.1)
pH = 12.1 ≈ 12.
Read more on pH here: brainly.com/question/24233266
#SJP2
convert 12nanometer to centimeter
Answer:
1x10^-6
Explanation:
I am holding a balloon containing 439 mL of gas over my fireplace. The temperature and pressure of the gas inside the balloon is 317.15 K and 0.959 atm, respectively. Suppose I don't want the pressure to change, but I want to the volume to go down to 0.378 L. What is the temperature that I need to reach when I cool down the balloon?
To what temperature (in Celsius) must the balloon be cooled to reduce its volume to 0.378 L if the pressure doesn't change (remained constant)?
Answer:
-0.08 °C
Explanation:
We can solve this problem by using Charles' law, which states that at constant pressure:
V₁T₂ = V₂T₁Where in this case:
V₁ = 439 mLT₂ = ?V₂ = 0.378 L ⇒ 0.378 * 1000 = 378 mLT₁ = 317.15 KWe input the data:
439 mL * T₂ = 378 mL * 317.15 KAnd solve for T₂:
T₂ = 273.08 KFinally we convert 273.08 K to Celsius:
273.08 K - 273.16 = -0.08 °CJax designs an experiment to determine how the amount of sodium chloride affects the boiling point of water. He adds 1 g, 5 g, and 10 g of sodium chloride to three different beakers, each containing 100 mL of water. There is a fourth beaker that contains 100 mL water without any sodium chloride. He heats each of the samples on a Bunsen burner and measures the boiling point with the same thermometer. Which of the following is/are the control(s) in the experiment? (Choose all that apply)
Answer:
Amount of water
The thermometer
Explanation
In an experiment, there is always a dependent variable and an independent variable. The independent variable is manipulated and its effect on the dependent variable is observed.
The control is that factor in the experiment that must remain constant so that effect of the independent variable on the dependent variable can be observed.
In this case, the independent variable is the amount of sodium chloride while the dependent variable is the temperature at which the solution boils.
The controls must be the amount of water which must be held constant and the same thermometer used to measure the temperature so that the effect of the amount of sodium chloride on the temperature of the solution can be studied.
The following are the controls in the experiment:
The beaker with 100 mL of water without any sodium chloride.
The temperature of the Bunsen burner.
The type of thermometer used.
The control(s) in the experiment are the beaker with 100 mL of water without any sodium chloride. This beaker is used to compare the boiling points of the other beakers, which have different amounts of sodium chloride added.
The control beaker ensures that any differences in boiling point are due to the amount of sodium chloride added, and not to other factors, such as the temperature of the Bunsen burner or the type of thermometer used.
The other factors that could affect the boiling point of water, such as the humidity of the air or the altitude, are kept constant in the experiment.
To learn more about experiment, follow the link:
https://brainly.com/question/15088897
#SPJ3
Sodium fluoroacetate (NaO₂C₂H₂F) is a common poison used in New Zealand to control invasive species, such as rats. It can be prepared by the substitution of a C-Cl bond in sodium chloroacetate (NaO₂C₂H₂Cl) for a C-F bond. What is the approximate enthalpy change for this substitution reaction on a 1.500 mole sample, based on the following bond energies?
C-Cl = 339.0 kJ/mol
C-F = 485.0 kJ/mol
Answer:
-219
Explanation:
1.5(339) - 1.5(485) = -219
The approximate enthalpy change for this substitution reaction is -219 kJ.
In the case of this substitution reaction, we need to find the enthalpy change when NaO₂C₂H₂Cl is converted to NaO₂C₂H₂F.
This reaction involves the breaking of the C-Cl bond and the formation of the C-F bond.
We have to subtract the bond energy of the C-F bond from that of the C-Cl bond and multiply by the number of moles involved.
So we will have;
ΔH= 1.500 mole [339.0 kJ/mol - 485.0 kJ/mol]
ΔH= -219 kJ
Learn more: https://brainly.com/question/1301642
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple _______. Then, plot ln(Ksp) vs. ______. The slope of the plotted line relates to the _______ of dissolving and the intercept of the plotted line relates to the ______ of dissolving.
Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:
[tex]\Delta G=-RTln(Ksp)\\\\\Delta G=\Delta H-T\Delta S[/tex]
Thus, by combining them, we obtain:
[tex]-RTln(Ksp)=\Delta H-T\Delta S\\\\ln(Ksp)=-\frac{\Delta H}{RT} +\frac{T\Delta S}{RT} \\\\ln(Ksp)=-\frac{\Delta H}{RT} +\frac{\Delta S}{R}[/tex]
Which is related to the general line equation:
[tex]y=mx+b[/tex]
Whereas:
[tex]y=ln(Ksp)\\\\m=-\frac{\Delta H}{R} \\\\x=\frac{1}{T} \\\\b=\frac{\Delta S}{R}[/tex]
It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!
điện phân nóng chảy hoàn toàn 14,9 gam muối clorua của 1 kim loại kềm R thu đc 2,24 lít khí . R là kim loại gì ?
Answer:
d
Explanation:
nCl2 = 0,1 -> nRCI = 0,2
M muéi = R + 35,5 = 14,9/0,2
-> R = 39: R la K
Answer:
d
Explanation:
nCl2 = 0,1 -> nRCI = 0,2
M muéi = R + 35,5 = 14,9 / 0,2
-> R = 39: R la K
Name the following ketone:
여 o
A. cyclohexyne
B. cyclohexanal
C. cyclohexanol
D. cyclohexanone
Answer:
It is D).cyclohexanone ( in acellus)
Explanation:
Ch3-ch2-o-ch2-ch2-och3
Explanation:
ethoxypropane
Ch3-ch2-o-ch2-ch2-och3
g The most stable nucleon in terms of binding energy per nucleon is 56Fe. If the atomic mass of Fe-56 is 55.9349 amu, calculate the binding energy in J/nucleon and in Mev/nucleon for Fe-56. The atomic mass of a proton is 1.00782 amu and the atomic mass of a neutron is 1.00866 amu. Would the binding energy per nucleon for U-235 be larger or smaller than that of Fe-56
Answer:
The binding energy per nucleon of U-235 is lesser than that Fe-56
Explanation:
The binding energy refers to the energy required to hold the nucleons together in the nucleus of an atom.
It also corresponds to the energy that must be supplied in order to disintegrate the nucleus of an atom.
The binding energy per nucleon of elements depends on the number of nucleons present in the nucleus of the atom of that element. It is defined as the binding energy of the nucleus divided by the number of nucleons.
U-235 contains more nucleons than Fe-56, the binding energy per nucleon of U-235 is less than that of Fe-56. This is further confirmed by the fact that the greater the number of protons in the nucleus, the greater the coulumbic repulsion in the nucleus and the lesser the nuclear force of attraction between nucleons.
Guide Questions:
1. How do you compare the distance travelled by the object
when you pushed it with a weak/gentle, strong and
strongest?
Refle
2. Which amount of force applied made the materials travelled
the farthest from the starting point. Nearest the starting
point?
3. What factors do you think affected the movement of the
materials?
Answer:
Kindly check explanation
Explanation:
The force applied is directly proportional to the distance moved by an object, the larger the applied force, the greater the distance moved.
a = f/m
a = acceleration ; f = applied force ; m = mass
From the relation, we can see that acceleration is directly proportional to force applied.
The ball will travel farthest with the greatest applied force while, nearest distance will be attained with the smallest applied force.
The distance covered is affected by both the mass of the object and the applied force
the total pressure in a mixture of gases is equal to the partial pressures of
Answer:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Explanation:
Dalton's law of partial pressures state that, in a mixture of gases, the total pressure is equal to the sum of the partial pressure exerted by each gas of the mixture. The equation is:
Total pressure = Partial pressure Gas 1 + Partial pressure Gas 2 + .... + Partial pressure Gas n
To complete the sentence we can say:
"The total pressure in a mixture of gases is equal to the sum of partial pressures of each gas"
Considering the Dalton's partial pressure, the total pressure in a mixture of gases is equal to the sum of partial pressures of each gas.
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
[tex]P_{T} =P_{A} +P_{B}[/tex]
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
[tex]P_{A} =x_{A} P_{T}[/tex]
In summary, the total pressure in a mixture of gases is equal to the sum of partial pressures of each gas.
Learn more:
https://brainly.com/question/14239096?referrer=searchResultshttps://brainly.com/question/25181467?referrer=searchResultshttps://brainly.com/question/14119417Taxol is a potent chemotherapeutic agent (isolated from the Pacific Yew tree) which is especially effective against ovarian cancer. Which functional groups is not contained in taxol?
Answer:
Amine
Explanation:
The functional groups contained in Taxol are :
Ketone , Ester, Amide and Alcohol
while the functional group that is not contained in the Taxol is Amine
Taxol is a very potent anti-cancer chemotherapeutic, and it is also groped into a class called Taxanes and this makes it effective in the treatment of breast and ovarian cancer.
A TLC plate showed 2 spots with Rf values of 0.25 and 0.26. The plate was removed from the developing chamber, the residual solvent was allowed to evaporate from the plate, and then the plate was returned to the developing chamber. What would you expect to see after the second development was complete
Answer:
See explanation
Explanation:
TLC is a chromatographic method in which the solute is spotted on a plate and the plate is placed in an air tight chamber containing a solvent. The solvent is maintained below the level of the spot. The capillary movement of the solvent through the plate achieves the required separation.
If two spots have Rf values of 0.25 and 0.26 respectively and then the plate was removed from the developing chamber, subsequently, the residual solvent was allowed to evaporate from the plate, and then the plate was returned to the developing chamber.
It will be observed after the second development is complete that the new Rf values will be 0.50 and 0.52 respectively. It will just be as though the second chromatogram picked up from where the first chromatogram stopped.
GC-mass spectrometry is used to find the ________ of each compound in a ________. Group of answer choices none of these molecular formula, mixture of compounds molecular weight, mixture of compounds B and C molecular formula, mixture of alkanes
Answer:
mixture of compounds molecular weight
Explanation:
Gas Chromatography-mass spectrometry is used to find the mixture of compounds of each compound in a molecular weight. The Gas Chromatography also known as Mass Spectrometry (GC/MS) is an instrument that is used to separate chemical mixtures and identifies the components at a molecular level. It is one of the most accurate tools used for analyzing samples of the environment.
What mass of hydrochloric acid that reacted with zinc will produced 0.15dm3 of hydrogen at st.p? Equation for this reaction:
Zn + 2HCl ------> ZnCl2 + H2
Answer:
[tex]{ \tt{22.4 \: dm {}^{3} \: contains \: 1 \: mole \: of \: hydrogen }} \\ { \tt{0.15 \: {dm}^{3} \: will \: contain \: ( \frac{0.15}{22.4} \times 1) \: moles }} \\ = 0.0067 \: moles \\ { \bf{mole \: ratio = 1 :1 }} \\ { \tt{1 \: mole \: weighs \: 65.38 \: g}} \\ { \tt{0.0067 \: moles \: weighs \: (0.0067 \times 65.38) \: g}} \\ = 0.44 \: g[/tex]
Suppose a piece of silver jewelry contains 7.49x10^22 atoms of silver (Ag). how many moles of silver are in the jewelry?
Answer:
0.124 mol Ag
General Formulas and Concepts:
Atomic Structure
MolesStoichiometry
Using Dimensional AnalysisExplanation:
Step 1: Define
[Given] 7.49 × 10²² atoms Ag
[Solve] mol Ag
Step 2: Identify Conversions
Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Step 3: Convert
[DA] Set up: [tex]\displaystyle 7.49 \cdot 10^{22} \ atoms \ Ag(\frac{1 \ mol \ Ag}{6.022 \cdot 10^{23} \ atoms \ Ag})[/tex][DA] Divide [Cancel out units]: [tex]\displaystyle 0.124377 \ mol \ Ag[/tex]Step 4: Check
Follow sig fig rules and round. We are given 3 sig figs.
0.124377 mol Ag ≈ 0.124 mol Ag
Topic: AP Chemistry
Classify each structure according to its functional class.
Compound A contains a carbonyl bonded to two alkyl groups.
Compound B contains an oxygen bonded to two alkyl groups.
Compound C contains a carbonyl bonded to propyl and N H C H 3.
Compound D is a nitrogen bonded to three alkyl groups.
Classify structure A according to its functional class.
Classify structure B according to its functional class.
Classify structure C according to its functional class.
Classify structure D according to its functional class.
Answer:
Classify each structure according to its functional class.
Compound A contains a carbonyl bonded to two alkyl groups.
Compound B contains an oxygen bonded to two alkyl groups.
Compound C contains a carbonyl bonded to propyl and N H C H 3.
Compound D is a nitrogen bonded to three alkyl groups.
Explanation:
Compound A contains a carbonyl bonded to two alkyl groups.
-C=O group is called a carbonyl group.
If it is present between two alkyl groups then, it is a ketone.
Compound B contains oxygen bonded to two alkyl groups.
Compound B is an example of an ether molecule.
Compound C contains a carbonyl bonded to propyl and N H C H 3.
Compound C is C3H7-CO-NHCH3 which is an amide molecule.
Compound D is nitrogen bonded to three alkyl groups.
This is an example of a tertiary amine group.
Write any two drawbacks of the octet theory.
Answer:
Octet rule fails to explain the following:
(1) The stability of incomplete octet molecules, i.e., the molecules with the central atom containing less than eight electrons. (2) The stability of expanded octet molecules, i.e., the molecules with the central atom containing more than eight electrons.
Stomach acid is approximately 0.10 M HCl. How many mL of stomach acid can be neutralized by one regular antacid tablet that contains 500 mg of solid CaCO3 (100.09 g/mol)?
Answer:
100 mL
Explanation:
The reaction that takes place is:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂First we convert 500 mg of CaCO₃ into mmoles, using its molar mass:
500 mg ÷ 100 mg/mmol = 5 mmol CaCO₃Then we convert 5 mmoles of CaCO₃ into HCl mmoles, using the stoichiometric coefficients of the balanced reaction:
5 mmol CaCO₃ * [tex]\frac{2mmolHCl}{1mmolCaCO_3}[/tex] = 10 mmol HClFinally we calculate the volume of a 0.10 M HCl solution (such as stomach acid) that would contain 10 mmoles:
10 mmol / 0.10 M = 100 mL4. After reaching the final titration endpoint the solution will be cloudy white. As time goes on the solution will turn back to a cloudy dark purple color. Why does this occur if you have already reached the endpoint
Answer: hello some part of your question is missing below is the missing part
In an experiment to determine the % of ascorbic acid in Vitamin C Tablets by Titration with Potassium Bromate,
answer:
Oxidation half reaction of Vitamin C
Explanation:
The solution will turn cloudy dark purple even after reaching endpoint when allowed to settle with time. because of the Oxidation half reaction of Vitamin C. also during the Titration process few drops of starch solution will be added to help determine the endpoint of the experiment .
What is the oxidation (charge) number of tin in Sno?
Ο Α. -2
OB. +4
O C. +2
O D. 4
Explanation:
+2
hope it helps................