Please help it’s for tmr
Leo has a number of toy soldiers between 27 and 54. If you want to group them four by four, there are none left, seven by seven, 6 remain, five by five, 3 remain. How many toy soldiers are there?
The answer is 48 but I need step by step explanation
Hence, 28 toy soldiers are the correct answer.
In mathematics, how is a group defined?A group in mathematics is created by combining a set with a binary operation. For instance, a group is formed by a set of integers with an arithmetic operation and a group is also formed by a set of real numbers with a differential operator.
Let's refer to the quantity of toy soldiers as "x".
We are aware that x is within the range of 27 and 54 thanks to the problem.
x can be divided by 4 without any remainders.
The residual is 6 when x is divided by 7.
The leftover after dividing x by five is three.
These criteria allow us to construct an equation system and find x.
Firstly, we are aware that x can be divided by 4 without any residual. As a result, x needs to have a multiple of 4. We can phrase this as:
x = 4k, where k is some integer.
Secondly, we understand that the remaining is 6 when x is divided by 7. This can be stated as follows:
x ≡ 6 (mod 7)
This indicates that x is a multiple of 7 that is 6 more than. We can solve this problem by substituting x = 4k:
4k ≡ 6 (mod 7)
We can attempt several values of k until we discover one that makes sense for this equation in order to solve for k. We can enter k in to equation starting using k = 1, as follows:
4(1) ≡ 6 (mod 7)
4 ≡ 6 (mod 7)
It is not true; thus we need to attempt a next value for k. This procedure can be carried out repeatedly until the equation is satisfied for all values of k.
k = 2:
4(2) ≡ 6 (mod 7)
1 ≡ 6 (mod 7)
k = 3:
4(3) ≡ 6 (mod 7)
5 ≡ 6 (mod 7)
k = 4:
4(4) ≡ 6 (mod 7)
2 ≡ 6 (mod 7)
k = 5:
4(5) ≡ 6 (mod 7)
6 ≡ 6 (mod 7)
k = 6:
4(6) ≡ 6 (mod 7)
3 ≡ 6 (mod 7)
k = 7:
4(7) ≡ 6 (mod 7)
0 ≡ 6 (mod 7)
We have discovered that the equation 4k 6 (mod 7) is fulfilled when k = 7. Thus, we can change k = 7 to x = 4k to determine that:
x = 4(7) = 28
This indicates that there are 28 toy troops. Yet we also understand that the leftover is 3 when x is divided by 5. We don't need to take into account any other values of x because x = 28 satisfies this requirement.
28 toy soldiers are the correct response.
To know more about group visit:
https://brainly.com/question/28854364
#SPJ1
what is the value of y in the solution to the system of equations below.
y=-x+6
2x-y=-9
Answer:
I gave a couple solutions as I wasn't sure if you were asking for graphing purposes or substituting y=-x+6 into the second equation 2x-y=-9. So I gave both solutions just in case.
for the first equation y=-x+6, y intercept is (0,6)
for equation two 2x-y=-9, y intercept is (0,9)
In both of the equations the x value is 1.
Solving for y without graphing. Y=9+2x
and x=-1
Step-by-step explanation:substitute i
HOWEVER, if you are saying that the top equation is the value of y, then you substitute it into the bottom equation. 2x--x+6=-9 which would be x=-5
It really depends on what is expected of the question. I wasn't sure which one, so I gave a couple different approaches. If you could give more information, such as, are you graphing, that would be great. I'll keep an eye out for any comments.
Solve the system of equations shown below using graphing and substitution. y=2x+3 and y=15-x
Answer: -17x+3
Step-by-step explanation:
y=2x+3 and y=15-x
15x-2x+3
-17x+3
you can try this
what is the z-score for the 25th percentile of the standard normal distribution?A. -0.625
B. 0.50 C. 0.60 D. -0.50 E. 0.00
The z-score for the 25th percentile of a standard normal distribution is approximately -0.625. Here option A is the correct answer.
To find the z-score for the 25th percentile of a standard normal distribution, we need to use a standard normal distribution table or calculator. The 25th percentile corresponds to a cumulative area under the standard normal curve of 0.25.
Using a standard normal distribution table or calculator, we can find that the z-score corresponding to a cumulative area of 0.25 is about -0.68. This means that approximately 25% of the area under the standard normal curve lies to the left of -0.625.
So, among the given options, the correct answer is Option A, -0.625, Option D, -0.50, which is also incorrect. Option E, 0.00, is definitely incorrect because the 25th percentile is to the left of the mean.
To learn more about standard normal distribution
https://brainly.com/question/29509087
#SPJ4
Write an equation of the line that is parallel to y = 12
x + 3 and passes through the point (10, -5).
Answer:
y = 12x - 125
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 12x + 3 ← is in slope- intercept form
with slope m = 12
• Parallel lines have equal slopes , then
y = 12x + c ← is the partial equation
to fond c substitute (10, - 5 ) into the partial equation
- 5 = 12(10) + c = 120 + c ( subtract 120 from both sides )
- 125 = c
y = 12x - 125 ← equation of parallel line
suppose you start at the origin, move along the x-axis a distance of 7 units in the positive direction, and then move downward a distance of 6 units. what are the coordinates of your position? (x, y, z)
The coordinates of your position If we start at the origin, we are moving only along the x-axis of a distance of 7 units in positive direction and then only in the negative y-axis direction and z-coordinate is zero are (7,-6,0).
The origin is the point in space that has a position of (0, 0, 0), which represents the point where the x, y, and z axes intersect.
The first step is to move 7 units in the positive x direction. The positive x direction is the direction in which x values increase. Therefore, we move to the right along the x-axis to the point (7, 0). This means that we have moved 7 units along the x-axis, and our position is now (7, 0, 0).
The second step is to move downward a distance of 6 units. Since we are not moving in the x direction, we are only changing our position along the y-axis. Moving downward in the y direction means decreasing our y-coordinate. Therefore, we move 6 units downward from our current position to the point (7, -6, 0).
Therefore, the coordinates of our position are (7, -6, 0)
To practice more question about 'co-ordinates':
https://brainly.com/question/17206319
#SPJ11
A straw that is 15cm long leans against the inside of a glass. The diameter of a glass is
5cm, and has a height of 8cm. How far past the edge of the glass would the straw extend?
Round your answer to the nearest tenth.
The straw will extend past the edge of the glass in a straight line. To find the answer, subtract the diameter of the glass (5cm) from the length of the straw (15 cm): 15 cm - 5 cm = 10 cm. This is the distance the straw will extend past the edge of the glass. To round to the nearest tenth, round 10.0 up to 10.1. Therefore, the straw will extend past the edge of the glass 10.1 cm.
a data set consists of the data given below plus one more data point. when the additional point is included in the data set the sample mean of the resulting data set is 32.083. what is the value of the additional data point?
The value of the additional data point is [tex]$19.17$[/tex].
What is the value of the additional data point?Let us first find the mean of the given data:
[tex]Mean = \frac{\sum_{i=1}^{n} x_i}{n}=\frac{39 + 45 + 43 + 42 + 44}{5}= 42.6[/tex]
Now let's find the value of the additional data point. Let the value of the additional data point be x. Therefore, the new sum of data is
[tex]$(39+45+43+42+44+x)$[/tex].
Total numbers of data are 6 (five given in the set and one additional data point).So, the mean of the resulting data set is given by:
[tex]32.083 = \frac{(39+45+43+42+44+x)}{6}[/tex]
Multiplying both sides of the equation by 6 we get:
[tex]6 \times 32.083 = (39+45+43+42+44+x)[/tex]
We have the value of [tex]$39+45+43+42+44$[/tex] which is [tex]$213$[/tex].
Therefore, substituting all the values, we get:
[tex]193.83 + x = 213[/tex]
On subtracting [tex]$193.83$[/tex] from both sides, we get the value of
[tex]x. x = 213 - 193.83 = 19.17[/tex]
Therefore, the value of the additional data point is [tex]$19.17$[/tex]
See more about sample mean at: https://brainly.com/question/29441200
#SPJ11
What is the volume of the prism below?
Answer:30
Step-by-step explanation: the formula is base x height over 2, so (6x10)/2 is 30.
Find the particular solution of the first-order linear differential equation for x > 0 that satisfies the initial condition. Differential Equation Initial Condition y' + y tan x = sec X + 9 cos x y(0) = 9 y = sin x + 9x cos x +9
Previous question
Answer: Differential Equation Initial Condition y' + y tan x = sec X + 9 cos x y(0) ... linear differential equation for x > 0 that satisfies the initial condition.
Step-by-step explanation:
I need help on these!
The 1948 and 2018 temperatures at 197 random locations across the globe were compared and the mean difference for the number of days above 90 degrees was found to be 2.9 days with a standard deviation of 17.2 days. The difference in days at each location was found by subtracting 1948 days above 90 degrees from 2018 days above 90 degrees.
What is the lower limit of a 90% confidence interval for the average difference in number of days the temperature was above 90 degrees between 1948 and 2018?
What is the upper limit of a 90% confidence interval for the average difference in number of days the temperature was above 90 degrees between 1948 and 2018?
What is the margin of error for the 90% confidence interval?
Does the 90% confidence interval provide evidence that number of 90 degree days increased globally comparing 1948 to 2018?
Does the 99% confidence interval provide evidence that number of 90 degree days increased globally comparing 1948 to 2018?
If the mean difference and standard deviation stays relatively constant would decreasing the degrees of freedom make it easier or harder to conclude that there are more days above 90 degrees in 2018 versus 1948 globally.
If the mean difference and standard deviation stays relatively constant does lowering the confidence level make it easier or harder to conclude that there are more days above 90 degrees in 2018 versus 1948 globally.
The lower limit of a 90% confidence interval for the average difference in the number of days the temperature was above 90 degrees between 1948 and 2018 is -22.8 days and the upper limit is 28.6 days.
The margin of error for the 90% confidence interval is 25.4 days.
The 90% confidence interval does provide evidence that the number of 90-degree days increased globally comparing 1948 to 2018.
The 99% confidence interval also provides evidence that the number of 90-degree days increased globally comparing 1948 to 2018.
If the mean difference and standard deviation stay relatively constant, decreasing the degrees of freedom would make it harder to conclude that there are more days above 90 degrees in 2018 versus 1948 globally.
Lowering the confidence level would also make it harder to conclude that there are more days above 90 degrees in 2018 versus 1948 globally.
To learn more about “standard deviation” refer to the https://brainly.com/question/475676
#SPJ11
g a random sample of 100 automobile owners in the state of alabama shows that an automobile is driven on average 23,500 miles per year with a standard deviation of 3900 miles. assume the distribution of measurements to be approximately normal. a) construct a 99% confidence interval for the average number of miles an automobile is driven annually in alabama.
We can be 99% confident that the average number of miles an automobile is driven annually in Alabama is between 21,342.6 and 24,637.4 miles
To answer this question, we need to use the following formula for a confidence interval for the mean: CI = (μ - z*(σ/√n), μ + z*(σ/√n)), Where μ is the population mean, z is the z-score for the given confidence level, σ is the population standard deviation, and n is the sample size. Using the given information, we can calculate the confidence interval for the mean:CI = (23500 - 2.575*(3900/√100), 23500 + 2.575*(3900/√100)), CI = (21342.6, 24637.4)
To summarize, we used the formula for a confidence interval for the mean and the given information to calculate the confidence interval for the average number of miles an automobile is driven annually in Alabama. This confidence interval is (21342.6, 24637.4), which means we can be 99% confident that the average number of miles an automobile is driven annually in Alabama is between 21,342.6 and 24,637.4 miles.
Read more about Statistics at
https://brainly.com/question/30218856
#SPJ11
CAN SOMEBODY HELP ME FACTOR AS THE PRODUCT OF TWO BINOMIALS
x²- x- 42
Answer:
(x-7)(x+6)
factor and see what works
Use the following function to find d(0)
d(x)=-x+-3
d(0)=
Answer:
d(0) = -3
Step-by-step explanation:
d(x) = -x + -3 d(0)
d(0) = 0 - 3
d(0) = -3
So, the answer is d(0) = -3
Guidance Missile System A missile guidance system has seven fail-safe components. The probability of each failing is 0.2. Assume the variable is binomial. Find the following probabilities. Do not round intermediate values. Round the final answer to three decimal places, Part: 0 / 4 Part 1 of 4 (a) Exactly two will fail. Plexactly two will fail) = Part: 1/4 Part 2 of 4 (b) More than two will fail. P(more than two will fail) = Part: 214 Part: 2/4 Part 3 of 4 (c) All will fail. P(all will fail) = Part: 3/4 Part 4 of 4 (d) Compare the answers for parts a, b, and c, and explain why these results are reasonable. Since the probability of each event becomes less likely, the probabilities become (Choose one smaller larger Х 5
The probability of all will fail is the lowest.
The given problem states that a missile guidance system has seven fail-safe components, and the probability of each failing is 0.2. The given variable is binomial. We need to find the following probabilities:
(a) Exactly two will fail.
(b) More than two will fail.
(c) All will fail.
(d) Compare the answers for parts a, b, and c, and explain why these results are reasonable.
(a) Exactly two will fail.
The probability of exactly two will fail is given by;
P(exactly two will fail) = (7C2) × (0.2)2 × (0.8)5
= 21 × 0.04 × 0.32768
= 0.2713
Therefore, the probability of exactly two will fail is 0.2713.
(b) More than two will fail.
The probability of more than two will fail is given by;
P(more than two will fail) = P(X > 2)
= 1 - P(X ≤ 2)
= 1 - (P(X = 0) + P(X = 1) + P(X = 2))
= 1 - [(7C0) × (0.2)0 × (0.8)7 + (7C1) × (0.2)1 × (0.8)6 + (7C2) × (0.2)2 × (0.8)5]
= 1 - (0.8)7 × [1 + 7 × 0.2 + 21 × (0.2)2]
= 1 - 0.2097152 × 3.848
= 0.1967
Therefore, the probability of more than two will fail is 0.1967.
(c) All will fail.
The probability of all will fail is given by;
P(all will fail) = P(X = 7) = (7C7) × (0.2)7 × (0.8)0
= 0.00002
Therefore, the probability of all will fail is 0.00002.
(d) Compare the answers for parts a, b, and c, and explain why these results are reasonable.
The probability of exactly two will fail is the highest probability, followed by the probability of more than two will fail. And, the probability of all will fail is the lowest probability. These results are reasonable since the more the number of components that fail, the less likely it is to happen. Therefore, it is reasonable that the probability of exactly two will fail is higher than the probability of more than two will fail, and the probability of all will fail is the lowest.
Learn more about Probability
brainly.com/question/23017717
#SPJ11
Solve: 3√x-√9x-17 =1
The solution to the equation (3√x) - √(9x-17) = 1 is x = 9.
What is the solution to the given equation?Given the equation in the question (3√x) - √(9x-17) = 1.
To solve for x in the given equation:
(3√x) - √(9x-17) = 1
We can start by isolating the square root term on one side of the equation. Adding √(9x - 17) to both sides, we get:
(3√x) = √(9x - 17) + 1
Squaring both sides of the equation, we get:
(3√x)² = (√(9x - 17) + 1)²
9x = -16 + 2√(9x - 17) + 9x
Solve for 2√(9x - 17)
2√(9x - 17) = 16
36x - 68 = 256
Add 68 to both sides
36x - 68 + 68 = 256 + 68
36x = 324
x = 324/36
x = 9
Therefore, the solution is x = 9.
Learn more about square roots here: https://brainly.com/question/3120622
#SPJ1
LetR=[0, 4]×[−1, 2]R=[0, 4]×[−1, 2]. Create a Riemann sum by subdividing [0, 4][0, 4] into m=2m=2 intervals, and [−1, 2][−1, 2] into n=3n=3 subintervals then use it to estimate the value of ∬R (3−xy2) dA∬R (3−xy2) dA.Take the sample points to be the upper left corner of each rectangle
The Riemann sum is:Σ(3-xᵢₖ*yᵢₖ²)ΔA, where i=1,2 and k=1,2,3.
We can create a Riemann sum to estimate the value of the double integral ∬R (3-xy²) dA over the rectangular region R=[0, 4]×[-1, 2] by subdividing [0, 4] into m=2 intervals and [-1, 2] into n=3 intervals. Then we can evaluate the function at the upper left corner of each subrectangle, multiply by the area of the rectangle, and sum all the results.
The width of each subinterval in the x-direction is Δx=(4-0)/2=2, and the width of each subinterval in the y-direction is Δy=(2-(-1))/3=1. The area of each subrectangle is ΔA=ΔxΔy=2*1=2.
Therefore, the Riemann sum is:
Σ(3-xᵢₖ*yᵢₖ²)ΔA, where i=1,2 and k=1,2,3.
Evaluating the function at the upper left corner of each subrectangle, we get:
(3-0*(-1)²)2 + (3-20²)2 + (3-21²)2 + (3-41²)*2 = 2 + 6 + 2 + (-22) = -12.
Thus, the estimate for the double integral is -12.
For more questions like Riemann click the link below:
https://brainly.com/question/30404402
#SPJ11
What is the answer I keep getting 32
Answer:
2 9/14
Step-by-step explanation:
What’s -9.1 times 3.75
Find the distance between each pair of points.
a. M= (0,-11) and P=(0,2)
b. A= (0,0) and B= (-3,-4)
c. C= (8,0) and D=(0,-6)
Answer:
To calculate the distance between each pair of points given, we can use the distance formula which is derived from the Pythagorean theorem. The formula is:
distance = square root of [(x2 - x1)^2 + (y2 - y1)^2]
Using this formula, we can calculate the following distances:
a. Distance between M and P = 13 units
b. Distance between A and B = 5 units
c. Distance between C and D = 10 units
Smores, a Taste of Multivariate Normal Distribution Smores Company store makes chocolate (Xi), marshmallow (X2), and graham cracker (Xs). Assume that the profit (in millions) for selling these smores materials follow a multivariate uormal ditributim with parameters 1 0.3 0.3 and Σ= 0.31 0 0.3 01 What is the probability that 1. the profit for selling chocolate is greater than 6 millions? 2. the profit for selling chocolate is greater than 6 millions, given the sales of marshmallow is 5 million and the sales of graham cracker is 5 mllion? 3. P(3X1-1X2 + 3X3 > 20)?
The probability of [tex]3X1-1X2 + 3X3[/tex] being greater than 20 is given by[tex]P(3X1-1X2 + 3X3 > 20) = 1- Φ((20-3μ1+μ2-3μ3)/(√3σ11+σ22+3σ33))[/tex].
In this case, [tex]μ1=10, μ2=10, μ3=10, σ11=0.3, σ22=0.3, σ33=0.3,[/tex] so the probability of [tex]3X1-1X2 + 3X3[/tex] being greater than 20 is 1-Φ(-1.0).
1. To answer this question, we can use the formula for a multivariate normal distribution.
The probability of the profit for selling chocolate being greater than 6 million is given by P(X1 > 6) = 1- Φ(6-μ1)/(√σ11). In this case, μ1=10, σ11=0.3, so the probability of the profit being greater than 6 million is 1-Φ(2.667).
2. To answer this question, we need to use the formula for the conditional probability of a multivariate normal distribution.
The probability of the profit for selling chocolate being greater than 6 million, given the sales of marshmallow is 5 million and the sales of graham cracker is 5 million, is given by
[tex]P(X1>6 | X2=5, X3=5) = 1- Φ((6-μ1-Σ12*5-Σ13*5)/(√σ11-Σ12²-Σ13²))[/tex]. In this case,
[tex]μ1=10, σ11=0.3, Σ12=0.3, Σ13=0.3,[/tex]so the probability of the profit being greater than 6 million is 1-Φ(-0.1).
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
n+d=21
0.05n + 0.10d= 1.70
Answer:
To solve the system of equations:
n + d = 21 ---(1)
0.05n + 0.10d = 1.70 ---(2)
We can use the substitution method by solving for one variable in terms of the other from equation (1) and substituting it into equation (2).
Solving equation (1) for n:
n = 21 - d
Substituting this expression for n into equation (2):
0.05(21 - d) + 0.10d = 1.70
Distributing the 0.05:
1.05 - 0.05d + 0.10d = 1.70
Combining like terms:
0.05d = 0.65
Dividing both sides by 0.05:
d = 13
Substituting this value of d into equation (1):
n + 13 = 21
Solving for n:
n = 8
Therefore, the solution to the system of equations is n = 8 and d = 13.
-. If f(x) = x² + 3x-2, find f(x) when x = -2
Answer:
-4
Step-by-step explanation:
substitute -2 into the formula and solve
[tex]f(x)=(-2)^2+3(-2)-2\\f(x)=4+(-6)-2\\\boxed{f(x)=-4}[/tex]
One number is 13 less than another number. Let x represent the greater number. What is the sum of these two numbers?
Answer:
2x - 13
Step-by-step explanation:
If x represents the greater number, then the other number is x - 13. The sum of these two numbers is:
x + (x - 13) = 2x - 13
I NEED ANSWERS ASAP….
Answer:
Step-by-step explanation:
It is set up
7x+5x+2y=20
7x+5x=12x
12x+2y=20
x=0
y=10
12(0)+2(10)=20
Ok so maybe this was not the same type of equation i thought it was it is not that easy!
A student takes a multiple-choice test that has 10 questions. Each question has four choices. The student guesses randomly at each answer. Round the answers to three decimal places Part 1 of2 (a) Find P(5) P(5)- Part 2 of2 (b) Find P(More than 3) P(More than 3)
A student attempts a 10-question multiple-choice test where each question presents four options, and the student makes random guesses for each answer. So the probability of (a) P(5)= 0.058 and (b) P(More than 3)= 0.093.
Part 1: Calculation of probability of getting 5 questions correct
(a) P(5)The formula used to find the probability of getting a certain number of questions correct is:
P(k) = (nCk)pk(q(n−k))
Where, n = total number of questions
(10)k = number of questions that are answered correctly
p = probability of getting any question right = 1/4
q = probability of getting any question wrong = 3/4
P(5) = P(k = 5) = (10C5)(1/4)5(3/4)5= 252 × 0.0009765625 × 0.2373046875≈ 0.058
Part 2: Calculation of probability of getting more than 3 questions correct
(b) P(More than 3) = P(k > 3) = P(k = 4) + P(k = 5) + P(k = 6) + P(k = 7) + P(k = 8) + P(k = 9) + P(k = 10)
P(k = 4) = [tex]10\choose4[/tex](1/4)4(3/4)6 = 210 × 0.00390625 × 0.31640625 ≈ 0.02
P(k = 5) = [tex]10\choose5[/tex](1/4)5(3/4)5 = 252 × 0.0009765625 × 0.2373046875 ≈ 0.058
P(k = 6) = [tex]10\choose6[/tex](1/4)6(3/4)4 = 210 × 0.0002441406 × 0.31640625 ≈ 0.012
P(k = 7) = [tex]10\choose7[/tex](1/4)7(3/4)3 = 120 × 0.00006103516 × 0.421875 ≈ 0.002
P(k = 8) = [tex]10\choose8[/tex](1/4)8(3/4)2 = 45 × 0.00001525878 × 0.5625 ≈ 0.001
P(k = 9) = [tex]10\choose9[/tex](1/4)9(3/4)1 = 10 × 0.000003814697 × 0.75 ≈ 0.000
P(k = 10) = [tex]10\choose10[/tex](1/4)10(3/4)0 = 1 × 0.0000009536743 × 1 ≈ 0
P(More than 3) = 0.020 + 0.058 + 0.012 + 0.002 + 0.001 + 0.000 + 0≈ 0.093
Therefore, the probabilities of the given situations are: P(5) ≈ 0.058, P(More than 3) ≈ 0.093.
To know more about probability: https://brainly.com/question/251701
#SPJ11
Calculate the amount of interest on $4,000. 00 for 4 years, compounding daily at 4. 5 % APR. From the Monthly Interest Table use $1. 197204 in interest for each $1. 00 invested
The amount of interest earned on $4,000.00 for 4 years, compounding daily at 4.5% APR, is $1,064.08.
To calculate the amount of interest on $4,000.00 for 4 years, compounding daily at 4.5% APR, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
where A is the final amount, P is the principal, r is the annual interest rate as a decimal, n is the number of times the interest is compounded per year, and t is the time in years.
In this case, we have P = $4,000.00, r = 0.045, n = 365 (since interest is compounded daily), and t = 4. Plugging these values into the formula, we get:
A = $4,000.00(1 + 0.045/365)^(365*4)
A = $4,000.00(1.0001234)^1460
A = $4,889.68
The final amount is $4,889.68, which means that the interest earned is:
Interest = $4,889.68 - $4,000.00 = $889.68
We are given that the monthly interest table shows that $1.197204 in interest is earned for each $1.00 invested. Therefore, to find the interest earned on $4,000.00, we can multiply the interest earned by the factor:
$1.197204 / $1.00 = 1.197204
Interest earned = $889.68 x 1.197204 = $1,064.08
To learn more about interest click on,
https://brainly.com/question/28895435
#SPJ4
The ratio between two supplementary angle is 13:7. What are the measures of the angles?
Answer: The two angles are 117 degrees and 63 degrees.
Step-by-step explanation:
Supplementary angles are two angles whose sum is 180 degrees. Let the two angles be 13x and 7x, where x is a constant of proportionality.
We know that the sum of the angles is 180 degrees, so:
13x + 7x = 180
Combining like terms, we get:
20x = 180
Dividing both sides by 20, we get:
x = 9
So the measures of the angles are:
13x = 13(9) = 117 degrees
7x = 7(9) = 63 degrees
Therefore, the two angles are 117 degrees and 63 degrees.
Will make you brainlist!
Answer:
x = -2 , y = 2
Step-by-step explanation:
label your equations (1) and (2) the question mention to use elimination method and make x the same for both. To do that multiply equation (1) by 2. than label it (3)so 3x becomes 6x adding the equation (2)+(3) cancels out -6x and 6x so you can find value of yuse value of y to find xhope this helps :)