Answer:
Segment XY congruent to Segment IJ is required.
Step-by-step explanation:
It's asking for Side-Angle-Side postulate and you already have a side and an angle. WX=HI and <x=<I. Order matters, so the angle should be directly between the first set of segments and the second.
Work out the area of this circle.
Give your answer in terms ofand state its units.
units:
Submit ANSWEI
6 mm
Plss help due in very soon
Answer:
36π mm²
Step-by-step explanation:
Formula: πr²
r=radius
r=6
π6²=36π
Jesse spends 1/2 of his pocket money on Monday.
On Tuesday, he spends 2/3 of what is left.
On Wednesday, he spends 1/4 of what remains.
What fraction of the pocket money does he have left? Choose the most
reasonable answer
Answer:
The fraction of the pocket money she left is 1/8.
Step-by-step explanation:
Let the total pocket money is p.
Spent on Monday = p/2
Amount left = p - p/2 = p/2
Spent on Tuesday = 2/3 of p/2 = p/3
Amount left = p/2 - p/3 = p/6
Spent on Wednesday = 1/4 of p/6 = p/24
Amount left = p/6 - p/24 = p/8
So, the fraction of the pocket money she left is 1/8.
PLEASE HELP ME SOMEONE I NEEDDDDDDD HELP PLEASE QUICK!!!!!!!!
Answer:
2/60 = 1/30 = 3.3%
Step-by-step explanation:
The polygons are similar, but not necessarily drawn to scale. Find the value of x. PLEASE HELPPPP
Answer:
x = 27.5.
Step-by-step explanation:
There are given numbers on each side. If the figures are similar, then they have a set ratio for each value.
So, 55:8 and x:4. If you want to, you can flip it, so that it is 8:55 and 4:x.
With that in mind, it is easy to see what the ratio is. Because 4 is half of 8, x is half of 55. 55 divided by 2 is 27.5.
Therefore, x = 27.5.
If 0 < f ≤ 90 and cos(22f − 1) = sin(7f + 4), what is the value of f?
Answer:
3
Step-by-step explanation:
We are going to be using cofunction identity cos(90-x)=sin(x).
Apply to either side but not both.
cos(22f − 1) = sin(7f + 4)
sin(90-[22f-1])=sin(7f+4)
90-[22f-1]=7f+4
Distribute
90-22f+1=7f+4
Combine like terms
91-22f=7f+4
Add 22f on both sides
91=29f+4
Subtract 4 on both sides
87=29f
Divide 29 on both sides
3=f
f=3 is between 0 and 90
Answer:
The answer is "3."
Step-by-step explanation:
Just submitted the test and got the answer correct!
Solve 2(1 – x) > 2x.
x < 2
x > 0.5
x < 0.5
x > 2
Answer:
x < 0.5
Step-by-step explanation:
Given
2(1 - x) > 2x ( divide both sides by 2 )
1 - x > x ( add x to both sides )
1 > 2x ( divide both sides by 2 )
[tex]\frac{1}{2}[/tex] > x , that is
x < [tex]\frac{1}{2}[/tex] OR x < 0.5
Find the measure of the missing angle using the exterior angle sum theorm
Answer:
160=130+x
x=160-130
x=30
Please help I don’t understand
Answer:
8/15
Step-by-step explanation:
The ratio of perpendicular to base is tan B .
Here ,
=> tan B = 8 ft/ 15ft
=> tan B = 8/15
Which inequality matches the graph?
X, Y graph. X range is negative 10 to 10, and y range is negative 10 to 10. Dotted line on graph has positive slope and runs through negative 3, negative 8 and 1, negative 2 and 9, 10. Above line is shaded.
−2x + 3y > 7
2x + 3y < 7
−3x + 2y > 7
3x − 2y < 7
Given:
The dotted boundary line passes through the points (-3,-8), (1,-2) and (9,10).
Above line is shaded.
To find:
The inequality for the given graph.
Solution:
Consider any two points on the line. Let the two points are (1,-2) and (9,10). So, the equation of the line is:
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-(-2)=\dfrac{10-(-2)}{9-1}(x-1)[/tex]
[tex]y+2=\dfrac{10+2}{8}(x-1)[/tex]
[tex]y+2=\dfrac{12}{8}(x-1)[/tex]
[tex]y+2=\dfrac{3}{2}(x-1)[/tex]
Multiply both sides by 2.
[tex]2(y+2)=3(x-1)[/tex]
[tex]2y+4=3x-3[/tex]
[tex]2y-3x=-3-4[/tex]
[tex]-3x+2y=-7[/tex]
Above line is shaded and the boundary line is a dotted line. So, the sign of inequality must be >.
[tex]-3x+2y>-7[/tex]
This inequality is not in the equations. So, multiply both sides by -1 and change the inequality sign.
[tex](-3x+2y)(-1)<-7(-1)[/tex]
[tex]3x-2y<7[/tex]
Therefore, the correct option is D.
can anyone help me here asapp,, I am in this question for nearly an hour
Answer:
See below
Step-by-step explanation:
Let side AB equal x. Since triangle ABC is equilateral, sides AB, BC, and Ac are all the same length, x. In any isosceles triangle(equilateral is a type of isosceles triangle) the median is the same as the altitude and angle bisector. This means we can say that AD is also a median. A median splits a side into two equal sections, so we can say BD = DC = x / 2. We are given that DC = CE, so we can also say CE = DC = x / 2. Now, we can use the pythagorean theorem to find the length of AD. So we get the equation:
AB^2 - BD^2 = AD^2
We have the values of AB and BD, so we can substitute them and solve for AD:
x^2 - (x/2)^2 = AD^2
x^2 - x^2 / 4 = AD^2
AD^2 = 3x^2 / 4
AD = x√3 / 2
DE is equal to the sum of DC and CE because of segment addition postulate, so we can say DE = DC + CE = x / 2 + x/ 2 = x. We can again use the pythagorean theorem to find the length of AE:
AD^2 + DE^2 = AE^2
(x√3 / 2)^2 + x^2 = AE^2
3x^2 / 4 + x^2 = AE^2
AE^2 = 7x^2 / 4
AE = x√7 / 2
Now, we know(from before) that AE squared is 7x^2 / 4. We can say EC squared is x^2 / 4 because EC is x / 2 and x / 2 squared is x^2 / 4. We can also notice that AE squared is 7 times EC squared because 7x^2 / 4 = 7 * x^2 / 4
Therefore, we can come to the conclusion AE^2 = 7 EC^2
The equation of line r is y = 1/2 * x + 1 line runs parallel to line r and passes through (2, 5) what would be the equation of line 8 ?help please
Answer:
x - 2y + 8 = 0
Step-by-step explanation:
that is the procedure above
A man invests $ 16800 in savings plan that pays simple interest at a rate of 5% per annum. Find the Tim’s taken for his investment to grow to $18900
Answer:
2.5 years
Step-by-step explanation:
The given amount invested, which is the principal, P = $16,800
The simple interest rate, R = 5% per annum
The intended total value of the investment, A = $18,900
The simple interest on the principal, I = A - P
∴ I = $18,900 - $16,800 = $2,100
The formula for the simple interest, I, is given as follows;
[tex]I = \dfrac{P \times R \times T}{100}[/tex]
Therefore, we have;
[tex]T = \dfrac{I \times 100}{P \times R}[/tex]
Plugging in the values, gives;
[tex]T = \dfrac{2,100 \times 100}{16,800 \times 5} =2.5[/tex]
The time it will take the investment to grow to $18,900 is T = 2.5 years
Find the equation of the line through point (2,2) and parallel to y=x+4. Use a forward slash (i.e.”/“) for fractions (e.g. 1/2 for
Answer:
The equation of the line is, y = x
Step-by-step explanation:
The constraints of the required linear equation are;
The point through which the line passes = (2, 2)
The line to which the required line is parallel = y = x + 4
Two lines are parallel if they have the same slope, therefore, we have;
The slope of the line, y = x + 4 is m = 1
Therefore, the slope of the required line = 1
The equation of the required lime in point and slope form becomes;
y - 2 = 1 × (x - 2)
∴ y = x - 2 + 2 = x
The equation of the required line is therefore, y = x
Find the values of x and y from the following equal ordered pairs. a) (x,-2) = (4,y) b) (3x, 4) = (6, 2y) c) (2x-1, y + 2) = (-1,2) d) (2x + 4, y + 5) = (3x + 3,6) e) (x + y,y + 3) = (6, 2y) f) (x + y, x - y) - (8,0)
Answer:
a)
x=4, y=-2
b)
x=2, y=2
c)
x=0, y=0
d)
x=1, y=1
e)
x=3, y=3
f)
x=4, y=4
Step-by-step explanation:
a) (x,-2) = (4,y)
x=4
y=-2
b) (3x, 4) = (6, 2y)
3x=6 => x=2
2y=4 => y=2
c) (2x-1, y + 2) = (-1,2)
2x-1 =-1 => x=0
y+2 = 2 => y=0
d) (2x + 4, y + 5) = (3x + 3,6)
2x+4 = 3x+3 => x=1
y+5 = 6 => y=1
e) (x + y,y + 3) = (6, 2y)
x+y = 6 => x+3 = 6 => x=3
y+3 = 2y => y=3
f) (x + y, x - y) - (8,0)
x+y = 8 => 2x=8 => x=4
x-y = 0 => x=y => y=4
Use a half angle identity to find the exact value of tan 5pi/12
a. 2+squared3/2
b. 2-squared3/2
C.2+squared 3
D.2-squared3. Please select the best answer from the choices provided
Observe that
5/12 = 1/4 + 1/6
so that
tan(5π/12) = tan(π/4 + π/6)
Then
tan(5π/12) = sin(π/4 + π/6) / cos(π/4 + π/6)
… = (sin(π/4) cos(π/6) + cos(π/4) sin(π/6)) / (cos(π/4) cos(π/6) - sin(π/4) sin(π/6))
… = (cos(π/6) + sin(π/6)) / (cos(π/6) - sin(π/6))
(since sin(π/4) = cos(π/4) = 1/√2)
… = (√3/2 + 1/2) / (√3/2 - 1/2)
… = (√3 + 1) / (√3 - 1)
… = (√3 + 1) / (√3 - 1) × (√3 + 1) / (√3 + 1)
… = (√3 + 1)² / ((√3)² - 1²)
… = ((√3)² + 2√3 + 1²) / (3 - 1)
… = (3 + 2√3 + 1) / 2
… = (4 + 2√3) / 2
… = 2 + √3 … … … (C)
If you insist on using the half-angle identity, recall that
sin²(x) = (1 - cos(2x))/2
cos²(x) = (1 + cos(2x))/2
==> tan²(x) = (1 - cos(2x)) / (1 + cos(2x))
Let x = 5π/12. The angle x lies in the first quadrant, so we know tan(x) is positive.
==> tan(x) = +√[(1 - cos(2x)) / (1 + cos(2x))]
We also know
cos(2x) = cos(5π/6) = -√3/2
which means
tan(x) = tan(5π/12) = √[(1 - (-√3/2)) / (1 + (-√3/2))]
… = √[(1 + √3/2) / (1 - √3/2)]
… = √[(2 + √3) / (2 - √3)]
… = √[(2 + √3) / (2 - √3) × (2 + √3) / (2 + √3)]
… = √[(2 + √3)² / (2² - (√3)²)]
… = √[(2 + √3)² / (4 - 3)]
… = √[(2 + √3)²]
… = 2 + √3
What should you substitute for y in the bottom equation to solve the system by the substitution method?
A. y=3x+15
B. y =-x-5
C. y=x+5
D. y=-3-15
If a = 5, b = 4, and c = 7, find the value for 3(b + a) = c.
10
15
34
20
Answer:
20
Step-by-step explanation:
3 (b + a) = c
3 (4 + 5) = 7
12 + 15 = 7
27 = 7
27 - 7
20
[tex]\huge\boxed{ \sf{Answer}} [/tex]
Given,
[tex]a = 5 \\ b = 4 \\ c = 7[/tex]
And the equation we need to solve is,
[tex]3(b + a) = c[/tex]
To find the answer, you need to substitute the values of a, b & c in the equation.
[tex]3(b + a) = c \\ 3b + 3a = c \\ ( 3 \times 4) +( 3 \times 5) = 7 \\ 12 + 15 = 7 \\ 12 + 15 - 7 = 0 \\ = 27 - 7 \\ = 20[/tex]
↦ The answer is 20.
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
PLS HELP I WILL GIVE BRAINLIEST
Kimberly will be riding her bike to school this year. The distance from her house to the end of the street is 1/6 mile. The distance from the end of the street to school is 3/8 mile. About how far is Kimberly's house from school?
Answer:
Step-by-step explanation:
The total distance = 1/6 + 3/8 miles Change the denominators to 24
D = 1/6 + 3/8 = 4*1/6*4 + 3*3 / 8 * 3
D = 4/24 + 9/24
D = 13/24 of mile.
Please help I will mark brainliest- I already know it’s not the last two- please help!
Answer:
Traversable because it has exactly two odd nodes
Step-by-step explanation:
There is a rule that says it is traversable if it has exactly 2 odd nodes. The are other rule where it can be traversable is if has no odd nodes.
Also if we let the starting point be D and the ending point be B we can travel the network in such way that each edge is only traveled once which is the definition that the network is traversable.
So I will do this by starting at D, then travel to A using the outside edge, then travel to back to D using inside edge, then travel to C, then travel to B, then travel to A using outside edge, and then back to B from A using inside edge.
Need help ASAP !!!!!!
answer:
to test whether agraph is linear
HURRY NEED ASAP TRYNA FINISH SUMMER SCHOOL LOL, I WILL MARK BRAINLIEST :)) PICTURE IS THERE FOR U
Answer:
B.
Step-by-step explanation:
Since the numbers in the root is all the same, lets say [tex]\sqrt{2}[/tex] is a variable.
7x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex] + x[tex]\sqrt{2}[/tex]
Group with like terms:
7x[tex]\sqrt{2}[/tex] + x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex]
Combine like terms:
8x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex]
There you have it! Since all the square roots are the same thing, we can treat them like variables.
the answer is B..................
I have a lot of algebra problems. Someone help me even with this one please!
Answer: Choice D
The graph will be discrete because there is no such thing as a partial person to sign up, and the booth is set up once each day for sign ups.
=========================================================
Explanation:
Let's start with the independent variable d. This acts as the variable x. It's the input. The value of d only takes on positive whole numbers (eg: d = 1, d = 2, d = 3, etc). We cannot have something like d = 2.718
So this bit of evidence shows that our function is discrete. Discrete input values (d) plug into the function to produce corresponding discrete output values (m).
Furthermore, we know that m is discrete because the number of people cannot be a fractional or decimal number. We can't have half a person for instance.
---------------
A quick way to see if a set is discrete or continuous is to ask the question: "is it possible to apply the midpoint formula for ANY two values, and have the output make sense?"
So a set like {1,2,3,4,5,...} is discrete because the midpoint of 2 and 3 is 2.5, but that value is not in the set mentioned.
In other words, discrete sets have "gaps" so to speak, while continuous ones do not.
---------------
Another useful property is that let's say that a < x < b, and x is drawn from the domain set. This reduced set will be finite if we're dealing with discrete data. Eg: The set {1,2,3,4,5,...} has the subset {2,3,4} which is finite and discrete.
In contrast, the subset of real numbers x such that [tex]2 \le x \le 4[/tex] is continuous and this subset is infinitely large (has infinitely many members) because we could have things like 2.718 or 3.14 etc
The manager of a grocery store has selected a random sample of 100 customers. The average length of time it took these 100 customers to check out was 3.0 minutes. It is known that the standard deviation of the checkout time is 1 minute. Refer to Exhibit 8-2. If the confidence coefficient is reduced to .80, the standard error of the mean _____. a. becomes negative b. remains unchanged c. will increase d. will decrease
Answer:
b. remains unchanged
Step-by-step explanation:
Formula for standard error of mean is;
SE = σ/√n
From the above, we can see that the standard error of mean is independent of the confidence coefficient as it doesn't affect the SE.
Now, we are given that;
random sample; n = 100
Standard deviation; σ = 1
Thus;
SE = 1/√100
SE = 1/10
Now, even if the confidence coefficient is reduced, we can see that it has no impact on the standard error of mean.
Thus, SE remains unchanged.
Determine the measure of ZA.
45.6°
57.7°
55.2°
32.3°
Step-by-step explanation:
Cos A = 40^2 + 25^2- 34^2 ÷ (2×40×25)
= 200+625-1156 ÷ (2000)
= 1069 ÷2000
Cos A = 0.5345
A= cos inverse 0.5345
A = 57.7
Answer:
57.7
Step-by-step explanation:
took the test
What is the measure of angle ABC of a circle
Answer:
the angle <ABC is equal to 65°
Which of these is an example of a literal equation?
A. 4x + 7 = 22
B. 5+ 20 = 52
C. ax - by = k
D. 2x + 7y
f equals to 2 f - 20
Answer:
20
Step-by-step explanation:
f = 2f - 20
f - 2f = - 20
- f = - 20
f = 20
Someone please help me with this math problem?
Answer:
(C) 0.3(10 + 4h) = 0.25(6h)
Step-by-step explanation:
Here's what we know about Fernando's fees:
$10 is the initial fee
$4 is the hourly fee (h)
Saves 30% (also written as 0.3) of the total cost (includes initial and hourly fee)
Here's what we know about Brenna's fees:
No initial fee
$6 is the hourly fee (h)
Saves 25% (also written as 0.25) of the total cost (just the hourly fee because she doesn't have an initial fee)
We want to find which hour Fernando and Brenna will have saved the same amount of money.
To do this, let's first set up an equation for Fernando and Brenna separately:
Fernando's equation:
0.3(10 + 4h) = how much money he saves from the total cost
Brenna's equation:
0.25(6h) = how much money she saves from the total cost
Now we set them equal to each other:
0.3(10 + 4h) = 0.25(6h)
There's your answer!
Hope it helps (●'◡'●)
Help me please
I will mark you as brainliest
Answer:
In picture
Step-by-step explanation:
Brainliest please~
[tex](0,3)[/tex] and [tex](1,-2)[/tex]
Equation: (refer the image below)
Slope:
[tex]m=\frac{3+2}{0-1}[/tex]
[tex]m=-5[/tex]
Equation:
[tex]y=5x-b[/tex]
[tex]3=b[/tex]
Substitute (0,3)
Point: [tex](1,-2)[/tex]
Every 24 hours, Earth makes a full rotation around its axis. Earth's speed of rotation at the equator is 1.670 km per hour. What is the
circumference of Earth's equator?
(Hint. Earth's circumference at the equator is equal to the distance that Earth rotates around the equator).
Answer:
The circumference of Earth's equator is 40,080 km.
Step-by-step explanation:
Given that every 24 hours, Earth makes a full rotation around its axis, and Earth's speed of rotation at the equator is 1,670 km per hour, to determine what is the circumference of Earth's equator the following calculation must be performed:
24 x 1,670 = X
40,080 = X
Therefore, the circumference of Earth's equator is 40,080 km.