Answer:
6?Step-by-step explanation:
..........................
Rewrite the equation by completing the square.
x^2 + 7x + 12 = 0
Answer:
x^2 + 7x + 12 = 0
x^2 + 7x = -12
(+3)(+4)=0
=−3
=−4
I also love r o blox
Hope This Helps!!!
Answer:
(x + [tex]\frac{7}{2}[/tex] )² - [tex]\frac{1}{4}[/tex] = 0
Step-by-step explanation:
Given
x² + 7x + 12 = 0
To complete the square
add/subtract ( half the coefficient of the x- term)² to x² + 7x
x² + 2([tex]\frac{7}{2}[/tex] )x + [tex]\frac{49}{4}[/tex] - [tex]\frac{49}{4}[/tex] + 12 = 0
(x + [tex]\frac{7}{2}[/tex] )² - [tex]\frac{49}{4}[/tex] + [tex]\frac{48}{4}[/tex] = 0 , that is
(x + [tex]\frac{7}{2}[/tex] )² - [tex]\frac{1}{4}[/tex] = 0
which equation is the inverse of 5y+4=(×+3)^2+1/2?
Answer:
The inverse is -3 ±sqrt(5x+7/2)
Step-by-step explanation:
5y+4=(x+3)^2+1/2?
To find the inverse, exchange x and y
5x+4=(y+3)^2+1/2
Solve for y
Subtract 1/2
5x+4 -1/2=(y+3)^2+1/2-1/2
5x+8/2 -1/2=(y+3)^2+1/2-1/2
5x+7/2 = (y+3)^2
Take the square root of each side
±sqrt(5x+7/2) =sqrt( (y+3)^2)
±sqrt(5x+7/2) = (y+3)
Subtract 3 from each side
-3 ±sqrt(5x+7/2) = y+3-3
-3 ±sqrt(5x+7/2) = y
The inverse is -3 ±sqrt(5x+7/2)
brainliest answer po yung tama
nk tym for nega NEED HELP PK TALAG
A
A
B
C
A
D
B
C
May choices po yan saamen
Step-by-step explanation:
Love you
The manufacturer claims the mean bursting pressure for a certain type and size of PVC irrigation pipe to be at least 350 psi. A sample of 10 such pipes were experimentally determined to have the following bursting pressures: 401 359 383 427 414 415 389 463 394 428 State the null and alternative hypotheses:
Answer:
H0 : μ ≥ 350
H1 : μ < 350
Step-by-step explanation:
It is claimed that the mean is atleast 350 psi ;
10 such pipes were experimentally sampled ;
Here, the null hypothesis is the claim ; this means that the alternative hypothesis will be the opposite of the claim.
The hypothesis
H0 : μ ≥ 350
H1 : μ < 350
If f(x) = - 2x +5 and g(x)=x2-1, then f(-3)+g(2) =
Answer:
[tex]{ \tt{f(x) = - 2x + 5}} \\ { \boxed{ \bf{f( - 3) = - 2( - 3) + 5 = 11}}} \\ \\ { \tt{g(x) = {x}^{2} - 1}} \\ { \boxed{ \bf{g(2) = {2}^{2} - 1 = 3}}} \\ f( - 3) + g(2) = 11 + 3 \\ = 14[/tex]
100° - y А (x+2) units Match the values based on parallelogram ABCD, shown in the figure. length of BC value of y mZDAB value of I 56 4 44 2
Answer:
BC = 4 units
Value fo y = 44
∠DAB = 56°
Value of x = 2
Step-by-step explanation:
100 - y = 12 + y (opposite angles of parallelogram are equal)
2y = 88
y = 44
Similarly,
6-x = x+2 (opposite sides of parallelogram are equal)
2x = 4
x = 2
Consider the graph below: Point T(-2; 3) is a point on the Cartesian Plane such that B is the angle of inclination of OT. T(-2;3) у х 2.1 Calculate the following without the use of a calculator: a) tanſ b) 13 sin B.cosB (2)
Answer:
(a) - 3/2
(b) - 78/25
Step-by-step explanation:
According to the trigonometry, the tangent of any angle is the ratio of rise to the run of the right angle triangle .
The sine of an angle is the ratio of rise to the hypotenuse of the right angle triangle.
The cosine of an angle is the ratio of run to the hypotenuse of the right angle triangle.
(a)
[tex]tan\beta = \frac{3}{-2} = \frac{-3}{2}[/tex]
(b)
[tex]13 sin\beta cos \beta = 13\times \frac{3}{\sqrt{3^2+2^2}}\times\frac{-2}{\sqrt{3^2+2^2}}\\\\13 sin\beta cos\beta = \frac{- 78}{25}[/tex]
Joseph borrows $10000 from his sister Katie at an annual interest rate of 10%. If the
interest is compounded twice a year, how much does he owe after 12 months? Give your answer in dollars.
Answer:
A = P ( 1 + r / n) ^( t * n)
where
A = the amt owed
P = amt borrowed
r = the interest rate as a decimal
n = the number of compoundings per year
t = the number of years
A = 10000 ( 1 + .10 / 2)^(2 *1) = 10000 ( 1.05)^2 = $11025
Step-by-step explanation:
Solve for T: 10t-4x=3S Explanation plz
3 3/4 × 2 2/9 please
Help ♀️♀️♀️
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: 8 \frac{1}{3}\:(or) \:8.333}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {Step-by-step\:explanation:}}}[/tex]
[tex]3 \frac{3}{4} \times 2 \frac{2}{9} [/tex]
➺[tex] \: \frac{15}{4} \times \frac{20}{9} [/tex]
➺[tex] \: \frac{300}{36} [/tex]
➺[tex] \: \frac{25}{3} [/tex]
➺[tex] \: 8 \frac{1}{3} [/tex]
➺[tex] \: 8.333[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\pink{Mystique35 }}{\orange{❦}}}}}[/tex]
Gỉaỉ pt
2x^2×(2x^2+3)=2-x^2 ai giải giúp vs
2x²×(2x²+3)=2-x²
[tex]x = \frac{1}{2} , - \frac{1}{2} ,i \sqrt{2} , - i \sqrt{2} [/tex]
6
Which expression is equivalent
Answer:
I thimk it is B
Step-by-step explanation:
Simplify the expression
Answer:
6
Step-by-step explanation:
3 sqrt(20) / sqrt(5)
We know that sqrt(a) /sqrt(b) = sqrt(a/b)
3 sqrt(20/5)
3 sqrt(4)
3 *2
6
differentiate loge(x/x^2+7)
Answer:
1+1=11 2+2=22 ok na yan kuya or ate
A trinomial is a perfect square when two terms are
a. Positive
b.negative
c. Neither positve
d. Either negative
Answer:
a trinomial is a perfect square trinomial if it can be factorized into a binomial multiplies to itself. In a perfect square trinomial, two of your terms will be perfect squares.
(View attachment)
a) Write ordered pairs.
b) Write the domain and range.
c) Why isn't the relation a function?
d) Which ordered pair should be removed to make the relation a function?
Answer:
in a relationship that maps elements from one set (the inputs) into elements from another set (the outputs), the usual notation for the ordered pairs is:
(x, y), where x is the input and y is the output.
In this case, the point where the arrow starts is the input, and where the arrow ends is the output.
a)
The ordered pairs are:
(28, 93)
(17, 126)
(52, 187)
(34, 108)
(34, 187)
b) The domain is the set of the inputs, in this case the domain is the set where all the arrows start, then the domain is:
{17, 28, 34, 52}
And the range is the set of the outputs, in this case the range is:
{93, 108, 126, 187}
c) A function is a relationship where the elements from the domain, the inputs, can be mapped into only one element from the range.
In this case, we can see that the input {34} is being mapped into two different outputs, then this is not a function.
d) We can remove one of the two ordered pairs where the input is {34},
So for example, we could remove:
(34, 108)
And then the relation would be a function.
what number must you add to complete the square? x^2+24x=50
Answer:
144
Step-by-step explanation:
Divide the b term which is 24 by 2
Gives you 12, then square it.
that's 144
formula for completing squares is [tex](b/2)^{2}[/tex]
Paige and her family went to the movies. They bought 4 tickets and paid $12 for popcorn. They spent $40. How much did each ticket cost?
I need equation and cost :)
Answer:
Cost of tickets: $7. Equation: 40 = 4x + 12.
Step-by-step explanation:
Answer:
4*t +12 = 40
Each ticket cost 7 dollars
Step-by-step explanation:
tickets + popcorn = total cost
4*t +12 = 40
Subtract 12 from each side
4t +12-12 = 40-12
4t = 28
Divide by 4
4t/4 = 28/4
t = 7
Each ticket cost 7 dollars
4. Steven drove from place A to place B at an average speed of 50 km/h. At the same
time, Joseph drove from place B to place A at an average speed of 60 km/h using
the same route. If the distance between A and B were 300 km, what is the distance
between Steven and Joseph after one and one half hours?
5.An owner jeep traveling at an average speed of 70 km/h left the town at 2:00 pm
If it arrived in another town at 6:00 p.m., how far are the two towns?
Answer:
1. 10 km
2.280 km
please mark my answer as brainliest answer.
the answer is surely correct
Find an equation for the line parallel to 3x-5y=2 with y-intercept (0,1/5). Write the answer in slope-intercept form.
The perimeter of a parallelogram must be no less than 40 feet. The length of the rectangle is 6 feet. What are the possible measurements of the width? Write an inequality to represent this problem. Use w to represent the width of the parallelogram. [Hint: The formula for finding the perimeter of a parallelogram is P = 2 l + 2 w . What is the smallest possible measurement of the width? Justify your answer by showing all your work.
Answer: [tex]14\ ft[/tex]
Step-by-step explanation:
Given
Length of rectangle is [tex]6\ ft[/tex]
Perimeter must be greater than 40 ft
Suppose l and w be the length and width of the rectangle
[tex]\Rightarrow \text{Perimeter P=}2(l+w)\\\Rightarrow P\geq 40\\\Rightarrow 2(l+w)\geq40\\\Rightarrow l+w\geq20\\\Rightarrow w\geq20-6\\\Rightarrow w\geq14\ ft[/tex]
So, the smallest width can be [tex]14\ ft[/tex]
Solve for y.
r/3-2/y=s/5
Answer:
y = 2 / (r/3 - s/5)
Step-by-step explanation:
r/3 - 2/y = s/5
add 2/y to both sides
r/3 = s/5 + 2/y
Subtract s/5 from both sides
r/3 - s/5 = 2/y
multiply both sides by y
y(r/3 - s/5) = 2
Divide both sides by r/3 - s/5
y = 2 / (r/3 - s/5)
Help me pls I don’t know how to do this
Answer:
[tex]radius=6.68cm[/tex]
Step-by-step explanation:
Formula to find radius:
[tex]r=\frac{C}{2\pi }[/tex]
[tex]r=42/2\pi[/tex]
[tex]r=42/2(3.14)[/tex]
[tex]r=6.68cm[/tex]
hope this helps......
Differentiate the function. y = (2x - 5)^2 (5 - x)?
Answer:
[tex]\displaystyle y' = -(2x - 5)(6x - 25)[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightDistributive Property
Algebra I
Terms/CoefficientsFactoringCalculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
y = (2x - 5)²(5 - x)
Step 2: Differentiate
Derivative Rule [Product Rule]: [tex]\displaystyle y' = \frac{d}{dx}[(2x - 5)^2](5 - x) + (2x - 5)^2\frac{d}{dx}[(5 - x)][/tex]Chain Rule [Basic Power Rule]: [tex]\displaystyle y' = [2(2x - 5)^{2 - 1} \cdot \frac{d}{dx}[2x]](5 - x) + (2x - 5)^2\frac{d}{dx}[(5 - x)][/tex]Simplify: [tex]\displaystyle y' = [2(2x - 5) \cdot \frac{d}{dx}[2x]](5 - x) + (2x - 5)^2\frac{d}{dx}[(5 - x)][/tex]Basic Power Rule: [tex]\displaystyle y' = [2(2x - 5) \cdot 1 \cdot 2x^{1 - 1}](5 - x) + (2x - 5)^2(1 \cdot -x^{1 - 1})][/tex]Simplify: [tex]\displaystyle y' = [2(2x - 5) \cdot 2](5 - x) + (2x - 5)^2(-1)[/tex]Multiply: [tex]\displaystyle y' = 4(2x - 5)(5 - x) - (2x - 5)^2[/tex]Factor: [tex]\displaystyle y' = (2x - 5)[4(5 - x) - (2x - 5)][/tex][Distributive Property] Distribute 4: [tex]\displaystyle y' = (2x - 5)[20 - 4x - (2x - 5)][/tex][Distributive Property] Distribute negative: [tex]\displaystyle y' = (2x - 5)[20 - 4x - 2x + 5][/tex][Subtraction] Combine like terms (x): [tex]\displaystyle y' = (2x - 5)[20 - 6x + 5][/tex][Addition] Combine like terms: [tex]\displaystyle y' = (2x - 5)(25 - 6x)[/tex]Factor: [tex]\displaystyle y' = -(2x - 5)(6x - 25)[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
1/6 of ______ equals 9
What is the blank?
Answer:
54
Step-by-step explanation:
1/6 × y = 9
y ÷ 6 = 9
y ÷ 6 × 6 = 9 × 6
y = 54
Sketch the region enclosed by the given curves and calculate its area.
y=4-x^2 ,y=0
The answer is 32/3. But how do I get to that answer?
Answer:
Step-by-step explanation:
1.) we need to find the bounds of integration which is just the points of intersection
here is it (-2,0) and (2,0)
which means we will integrate from -2 to 2
next, we take the upper equation and subtract that from the lower one
kind of confusing but it would look like (sketch it out if you're not sure)
(4-x²)-0= 4-x²
then we can integrate
[tex]\int\limits^2_{-2} {4-x^2} \, dx =4x-\frac{x^3}{3}|_{-2}^{2}=(4*(2)-\frac{2^3}{3})-(4(-2)-\frac{-2^3}{3})=5.333333-(-5.3333333)= 10.666666667=\frac{32}{3}[/tex]
Answer fast please and thanks!
Answer:
tan 30 = x / 15
General Formulas and Concepts:
Trigonometry
[Right Triangles Only] SOHCAHTOA[Right Triangles Only] tanθ = opposite over adjacentStep-by-step explanation:
Step 1: Define
Identify variables
Angle θ = 30°
Opposite Leg = x
Adjacent Leg = 15
Step 2: Solve for x
Substitute in variables [tangent]: tan 30 = x / 15Answer:
3rd one
Step-by-step explanation:
Recall that
Sin = opposite over hypotenuse
Cos = adjacent over hypotenuse
Tan = opposite over adjacent
For the angle with a measure of 30 degrees we are given it's adjacent side length and need to find it's opposite side length
When dealing with opposite and adjacent we use tangent
If tan = opposite over adjacent
Then tan30 = x / 15 and the correct answer choice is the third one
A right rectangular container is 10 cm wide and 24 cm long and contains water to a depth of 7cm. A stone is placed in the water and the water rises 2.7 cm. Find the volume of the stone.
Answer:
The volume of the rock is 648 cm^3
Step-by-step explanation:
Likely the only dimension that is free to move is the depth of 7 cm.
Volume of the Rock = L * W * h1
L = 24
W = 10
h1 = 2.7
V = 24 * 10 * 2.7
V = 648 cm^3
please help me please help me please help me please help me please help me please help me please
Answer:
Q3. 9
Q4. 6
Step-by-step explanation:
At the beginning of a population study, a city had 320,000 people. Each year since, the population has grown by 2.1%. Lett be the number of years since start of the study. Let y be the city's population. Write an exponential function showing the relationship between y and t.
Answer:
y = 320,000(2.1)^t
Step-by-step explanation:
uhm, im not very good at explaining, but everytime the year increases, the population will exponentially increase, that's why 't' is an exponent
Answer:
[tex]y=320000(1.021)^t[/tex]
Step-by-step explanation:
To increase something by x% mulitply it by (1+x)
in other words, to increase sometihng by 2.1% mulitply it by
(1+.021) or 1.021
because we are mulitplying 320000 by 1.021 each year we can write the equation as
y=320000(1.021)^t