Answer:
1/2
Step-by-step explanation:
The largest value in fraction it is 1/2 because the fraction is small amount .while the 3/4 is least amount .and 3/5 is greatest amount fractions
find the squre of 17
[tex] \sqrt{17} [/tex]
please help.
find the missing side or angle and each problem .
Evaluate the expression when x = 12/7
The value of the expression when x equals is ???
PLEASE HELP!!
Answer:
82
Step-by-step explanation:
1/3( x+9/7) + 3^4
Let x = 12/7
1/3( 12/7+9/7) + 3^4
PEMDAS says parentheses first
1/3( 21/7) + 3^4
1/3(3) +3^4
Then exponents
1/3(3)+81
Then multiply
1+81
82
if x-y =2 and xy=15, find the value of x cube - y cube.
Answer:
5³ = 125 : -3³ = -27Step-by-step explanation:
let x= 5 and y= 3x - y = 25 - 3 = 2xy = 155 × 3 = 15x³ = ? : -y³ = ?5³ = 125 : -3³ = -27[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
You need 675 mL of a 90% alcohol solution. On hand, you have a 25% alcohol mixture. How much of the 25% alcohol mixture and pure alcohol will you need to obtain the desired solution?
Answer:
90 ml of the 25 percent mixture and 585 of pure alcohol
Step-by-step explanation:
Firstly, you should find the quantity of alcohol in the desired mixture.
675:100*90= 675*0.9= 607.5
Firstly, define all the 25 percents mixure as x, the pure alcohol weight is y.
1. x+y= 675 (because the first and the second liquid form a desired liquid).
Then find the equation for spirit
The first mixture contains 25 percents. It is x/100*25= 0.25x
When the second one consists of pure alcohol, it contains 100 percents of spirit, so it is x.
2. 0.25x+y=607.5
Then you have a system of equations ( 1.x+y= 675 and 2. 0.25x+y= 607.5)
try 2-1 to get rid of y
x+y- (0.25x+y)= 675-607.5
0.75x= 67.5
x= 90
y= 675-x= 675-90= 585
It means that you need90 ml of the 25percents mixture and 585 0f pure alcohol
find the number of permutations that can be formed from all letters in the word connecticut
At what rates did she invest?
$1400 invested at ____%
$900 invested at ____%
9514 1404 393
Answer:
$1400 at 8%$900 at 10%Step-by-step explanation:
The 1-year interest is simply the invested amount times the interest rate.
Let r represent the lower interest rate. Then r+0.02 is the higher rate, and the total interest earned is ...
1400r + 900(r +.02) = 202
2300r +18 = 202 . . . . . . . . . .simplify
2300r = 184 . . . . . . . . . .subtract 18
r = 184/2300 = 0.08 = 8% . . . . . . divide by the coefficient of r
$1400 was invested at 8%.
$900 was invested at 10%.
Write the inequality shown in this graph.
Answer:
y > -1/2 x + 4
Step-by-step explanation:
Equation of a line : (y-y1)/(y2-y1) = (x-x1)/(x2-x1)
(y-4)/(2-4)= (x-0)/(4-0)
(y-4)/-2 = x/4
(-y+4)/2 = x/4
-y+4 = 1/2 x
-y = 1/2 x - 4
y = -1/2 x + 4
the solutions of the inequality are the points above this line, so
y > -1/2 x + 4
Which values of x are solutions to this equation? -1/2x^2 + 5x = 8
A) -2
B) 2
C) -8
D) -1.5
E) 11.5
F) 8
Answer:
2, 8
Step-by-step explanation:
-1/2x^2 + 5x = 8
-x^2 + 10x = 16 (Multiplying both sides of the equation by 2)
-x^2 + 10x - 16 = 0
x^2 - 10x + 16 = 0 (changing the signs)
x^2 -2x -8x +16 = 0
x (x-2) -8 (x-2) = 0
(x-2) (x-8)
x-2 = 0
x = 2
or
x -8 = 0
x = 8
Answer from Gauthmath
The values of x are solutions to this equation that is 2, 8
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
We are given that the equation as;
-1/2x² + 5x = 8
-x² + 10x = 16
Now Multiplying both sides of the equation by 2;
-x² + 10x - 16 = 0
Or
x² - 10x + 16 = 0
x² -2x -8x +16 = 0
x (x-2) -8 (x-2) = 0
(x-2) (x-8)
The solution are;
x-2 = 0
x = 2
or
x -8 = 0
x = 8
Learn more about equations here;
https://brainly.com/question/25180086
#SPJ2
Please find the missing ? Explanation need it
Answer:
the answer is 3.162
Step-by-step explanation:
Solve each equation for the specified variable
Answer: Solve for the specified variables
Step-by-step explanation:
1. w= A/l
2. d=C/pi
3. s=v-gt
4. y= 5/2x-11/2
5. P^2= P^1V^1 / P^2 Put ^ as lowercase as shown, can't find symbol on my keboard T.T
6. W= Ke2g / V^2
7. h= V / 2/3 pi r^2
8. n=2S/a+k
9. S=A/pi r - r (not 100% sure on that one)
10. r= E/I-R
11. h= E-1/2mv^2/mg
12. a=K+5b/b+3
13. c=ab/b+a
Wooh, finally finished all that. Hope I didn't make any mistakes. Have a great day!
4) If the area of a square is 48cm²,
What is the length of each side?
Simplify your answer.
Answer:
4 sqrt(3) cm
Step-by-step explanation:
The area of a square is
A = s^2 where s is the side length
48 = s^2
Take the square root of each side
sqrt(48) = sqrt(s)
sqrt(16*3) = s
4 sqrt(3) =s
Answer:
4√3 cm
Step-by-step explanation:
The area of square = s²
s meaning side. Remember, by definition of a square, all the sides have equal measurements.
Set the equation:
Area of square = 48cm²
48cm² = s²
Isolate the variable, s. Note the equal sign, what you do to one side, you do to the other. Root both sides of the equation:
√48cm² = √s²
s = √48 = √(8 x 6) = √(2 x 2 x 2 x 3 x 2) = (2 x 2)√3 = 4√3
4√3 cm is your length for a side.
~
Exponents Properties Practice
Write an equation to model the situation and answer the question. Include units when applicable.
In a much happier economy, Mr. Demo earns 5% monthly interest on his savings. After a $300 withdrawal, he notices he has $2021 in his account. He has collected interest for 3 months. What amount did he start with?
we can use this equation to solve:
[tex]a = p(1 + \frac{r}{n} ) ^{nt} [/tex]
a = final amount
p = initial amount
r = percentage increment (in decimal form)
n = amount of time interest is compounded
t= time (in years)
Since the guy w withdrew $300 and saw that his account still has $2021 left, he must have had $2321 in total.
5% interest is .05 in decimal form
since the account is compounded monthly, n=12
Because the account has been collecting interest for 3 months and t is supposed to be in years, dividing 3 by 12 will yield 1/4, or . 25
Find the measure of ZJ, the smallest angle in a triangle
with sides measuring 11, 13, and 19. Round to the
nearest whole degree.
O 30°
O 34°
o 42°
O 47°
Help with any of the questions what be appreciated
Answer:
The answer is s = d/t
Step-by-step explanation:
For question 12, I think this is called a literal equation, I might be wrong but I believe so it is a literal equation. They are asking you to get s on one side. And they are asking you what s is in terms of d and t. So what you do is, d = s x t. You multiply the t with the s and get d = st. Then you will divide t from both sides so, d/t = s/t, this will eliminate t from the s, and add it on to the d (distance). Which will leave you s on one side and d and t on the other. The answer is s = d/t.
Section 3
12) a) Here, as we need that s or speed is the subject so speed should be in place of distance. So, we get
s = d/t
Here, s is speed, d is distance and t is the time
12) b) We know that :
Average Speed = Total Distance/Total Time
Here, total distance is given 748 km
total time 11.5 hrs
Avg. Speed = 748/11.5
Avg. Speed = 65.04 km/h
Hence, the answer is 65.04 km/h
13) a) We know that volume of a rabbit hutch is
Volume of rabbit hutch = ½ × b × h × l
Here,
b is the breadth, h is the height and l is the length
Volume= ½ × 50 cm × 50 cm × 2.5 m
Now, here Length is in metre so we need to convert to cm
1 m = 100 cm
2.5 m = 2.5 × 100 = 250 cm
So, now
Volume= ½ × 50 cm × 50 cm × 250 cm
Volume = 50 cm × 50 cm × 125 cm
Volume = 312,500 cm³
Hence, the volume of this hutch is 312,500 cm³
13) b) Let us assume that the orange be a sphere
So, volume of orange = 4/3πr³
Here, r is the radius and π is pi
radius is 4 cm
Volume = 4/3π(4)³
Volume = 4/3 × 64π
Volume = 85.33π cm³
Volume of the orange is 85.33π cm³
URGENT PLZ SAVE ME
If c varies directly as b and c = 6 when b = 2.
Find
a) the formula for c in terms of b
b) the value of c given b = 14
c) the value of b given c = 39
Answer:
Hello,
Are you still alive ?
Step-by-step explanation:
a)
c=k*b (c varies directly as b)
6=k*2 ==> k=3 ( c = 6 when b = 2.)
[tex]\boxed{c=3*b }\\[/tex]
b)
b=14 ==> c=3*14=42
c)
c=39
[tex]b=\dfrac{c}{3} =\dfrac{39}{3} =13\\[/tex]
x^{2} +y^{2} =?
cho mình hỏi với
Answer:
[tex]{ \sf{ {x}^{2} + {y}^{2} = {(x + y)}^{2} - 2xy }}[/tex]
Step-by-step explanation:
[tex]{ \tt{ {(x + y)}^{2} = (x + y)(x + y) }} \\ { \tt{ {(x + y)}^{2} = ( {x}^{2} + 2xy + {y}^{2}) }} \\ { \tt{( {x}^{2} + {y}^{2} ) = {(x + y)}^{2} - 2xy}}[/tex]
X ^2 + 2x + y’ + 6y = 15
Step-by-step explanation:
x^2+2x+7y=15
7y=15-x^2-2x
y=15/7-1/7x^2-2/7x , x ∈ all real numbers
A certain test preparation course is designed to help students improve their scores on the LSAT exam. A mock exam is given at the beginning and end of the course to determine the effectiveness of the course. The following measurements are the net change in 5 students' scores on the exam after completing the course: 16, 21, 22, 12, 22
Using these data, construct a 90% confidence interval for the average net change in a student's score after completing the course. Assume the population is approximately normal. Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
The critical value used is [tex]T_c = 2.132[/tex]
The 90% confidence interval for the average net change in a student's score after completing the course is (14.357, 22.843).
Step-by-step explanation:
Before building the confidence interval, we need to find the sample mean and the sample standard deviation.
Sample mean:
[tex]\overline{x} = \frac{16+21+22+12+22}{5} = 18.6[/tex]
Sample standard deviation:
[tex]s = \sqrt{\frac{(16-18.6)^2+(21-18.6)^2+(22-18.6)^2+(12-18.6)^2+(22-18.6)^2}{4}} = 4.45[/tex]
Confidence interval:
We have the standard deviation for the sample, so the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom,which is the sample size subtracted by 1. So
df = 5 - 1 = 4
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 4 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 2.132. The critical value used is [tex]T_c = 2.132[/tex]
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.132\frac{4.45}{\sqrt{5}} = 4.243[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 18.6 - 4.243 = 14.357
The upper end of the interval is the sample mean added to M. So it is 18.6 + 4.243 = 22.843.
The 90% confidence interval for the average net change in a student's score after completing the course is (14.357, 22.843).
A woman is 42years old. Her daughter is 1/3 of her age. Three years ago the sum of her age was
Answer:
50
Step-by-step explanation:
So we know that 42/3=14.
3 years before was:
14-3=11
42-3=39
The sum of 11+39 is 50
Which point on the number line shows the graph
Answer:
B
Step-by-step explanation:
What is the equation of the parabola shown in the graph?
Answer:
[tex]-\frac{x^{2} }{4}[/tex] -2x - 7
Step-by-step explanation:
Never seen a phone with 3 cameras before or something but ok.
Took a while to use brainly's insert character thingie since fractions and the exponent kinda threw me off.
I need this please pleaseeee nowww
Answer:
y = 3x - 5
Step-by-step explanation:
Slope = 3
x-intercept (what the value of y is when its 0) = -5 so y = 3x - 5
Answer:
y = 3x - 5
Step-by-step explanation:
Find the slope of the line between (0,−5)(0,-5) and (3,4)(3,4) using m=y2−y1x2−x1m=y2-y1x2-x1, which is the change of yy over the change of xx.
m=3m=3
Use the slope 33 and a given point (0,−5)(0,-5) to substitute for x1x1 and y1y1 in the point-slope form y−y1=m(x−x1)y-y1=m(x-x1), which is derived from the slope equation m=y2−y1x2−x1m=y2-y1x2-x1.
y−(−5)=3⋅(x−(0))y-(-5)=3⋅(x-(0))
Simplify the equation and keep it in point-slope form.
y+5=3⋅(x+0)
Add xx and 00.
y+5=3xy+5=3x
Subtract 55 from both sides of the equation.
y=3x−5
I need help figuring out this equation
270 degrees is at the bottom of the unit circle, and it splits the 3rd and 4th quadrants.
Its terminal point is (0, -1).
Hope this helps!
Answer:
A. (0, -1)
Step-by-step explanation:
This question requires a chart to answer. The chart is inserted in the answer.
270 degrees is all the way at the bottom, at South which shows that 270 degrees is at (0, -1).
Meaning, the answer is A, (0, -1).
Hope this helped.
please help me
no links or files
thank you !
Jane is saving to buy a cell phone. She is given a $100 gift to start and saves $35 a month from her allowance. So after one month, Jane has saved $135. Does it make sense to represent the relationship between the amount saved and the number of months with one constant rate? Why or why not? Explain your answer.
Jane is given a $100 gift to start and saves $35 a month from her allowance.
After 1 month, Jane has saved
After 2 months, Jane has saved
After three months, Jane has saved
and so on
In general, after x months Jane has saved
This means that it makes sense to represent the relationship between the amount saved and the number of months with one constant rate (in this case the constant rate is 35). It makes sense because the amount of money increases by $35 each month. Since the amount of increase is constant, we get constant rate. Also the initial amount is known ($100), so there is a possibility to write the equation of linear function representing this situation.
Step-by-step explanation:
18 Geometry question: Use an algebraic equation to find the measure of each angle that is representative in terms of X
Answer:
12x - 28° = 116°
7x + 32° = 116°
Step-by-step explanation:
12x - 28° and 7x + 32° are vertical angles. Vertical angles are congruent.
Therefore, to find the measure of each angle, we have to set each equation equal to each other as follows:
12x - 28° = 7x + 32°
Collect like terms
12x - 7x = 28 + 32
5x = 60
Divide both sides by 5
5x/5 = 60/5
x = 12
✔️12x - 28°
Plug in the value of x
12(12) - 28
= 144 - 28
= 116°
✔️7x + 32°
7(12) + 32
= 84 + 32
= 116°
Two professors are applying for grants. Professor Jane has a probability of 0.64 of being funded. Professor Joe has probability 0.28 of being funded. Since the grants are submitted to two different federal agencies, assume the outcomes for each grant are independent.
Required:
a. What is the probability that both professors get their grantsfunded?
b. What is the probability that at least one of the professors will befunded?
c. What is the probability that Professor Jane is funded but ProfessorJoe is not?
d. Given at least one of the professors is funded, what is theprobability that Professor Jane is funded but Professor Joe is not?
A square piece of cardboard of sides 15 cm is folded to make a cube of sides 5 cm.
Is there enough cardboard?
Answer:
Step-by-step explanation:
The 15 cm by 15 cm piece of cardboard area = 225 cm².
A cube has six congruent faces. If each edge is 5 cm, the surface area is 6×5² = 150 cm². So there is enough cardboard to make a cube, but not by folding. You'd have to do some cutting and taping.
You and your friends have tickets to attend a music concert. While standing in line, the promoter states he will give a gift card for a free album download to each person that is a multiple of 2. He will also give a backstage pass to each fourth person and floor seats to each fifth person. Which person will receive the free album download, backstage pass, and floor seats? Explain the process you used to determine your answer.
9514 1404 393
Answer:
20th
Step-by-step explanation:
The person will receive all gifts if the are all of a multiple of 2, a multiple of 4, and a multiple of 5. Since 4 is already a multiple of 2, the person who will receive all is the one who is a multiple of 4 and 5.
20 is 4×5, so is a multiple of both numbers. There is no smaller number that is a multiple of both 4 and 5.
The 20th person will receive all gifts.
_____
The value we have determined here is called the "least common multiple" (LCM). It is the product of the unique prime factors of the numbers of interest, raised to the highest power that appears in any of the numbers.
2 = 2¹
4 = 2²
5 = 5¹
LCM(2, 4 5) = 2² × 5¹ = 20
write your answer as an integer or as a decimal rounded to the nearest tenth.
Answer:
6.43
Step-by-step explanation:
Cosine: cos(θ) = Adjacent / Hypotenuse
cosine of 39 degrees = 5/x
.77714596145 = 5/x
x = 5/.77714596145
x= 6.43379782952