Answer:
λ= 5.4379 10⁻⁷ m = 543.79 nm
Explanation:
The phenomenon of diffraction is described by the expression for destructive diffraction is
a sin θ = (m + 1/2) λ
λ = a sin θ / (m + 1/2)
let's reduce the magnitudes to the SI system
a = 15 um = 15 10⁻⁶ m
m = 2
θ = 5.2º
Let's calculate
λ = 15 10⁻⁶ sin 5.2 / (2 +1/2)
λ = 5.4379 10⁻⁷ m
Let's reduce to nm
λ= 5.4379 10⁻⁷ m = 543.79 nm
A charged capacitor and an inductor are connected in series. At time t = 0, the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time, after t = 0 that the energy stored in the magnetic field of the inductor is a maximum is
Answer:
t = T / 2 all energy is stored in the inductor
Explanation:
The circuit described is an oscillating circuit where the charge of the condensation stops the inductor and vice versa, in this system the angular velocity of the oscillation is
w = √1/LC
2π / T =√1 / LC
T = 2π √LC
The energy is constant and for the initial instant it is completely stored in the capacitor
Uc = Q₀² / 2C
In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor
U = L I² / 2
in the intermediate instant the energy is stored in the two elements.
Since the period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor
After t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation (t = T/2).
The given problem is based on the charging and discharging concepts of capacitor. An oscillating circuit is a circuit where the charge of the capacitor stops the inductor and vice versa, in this system the angular frequency of the oscillation is given as,
[tex]\omega =\dfrac{1}{\sqrt{LC}}\\\\\\\dfrac{2 \pi}{T} =\dfrac{1}{\sqrt{LC}}\\\\\\T = 2\pi \times \sqrt{LC}[/tex]
here, T is the period of oscillation.
Also, the energy stored in the capacitor is constant and for the initial instant it is completely stored in the capacitor. So, the energy stored is given as,
[tex]U =\dfrac{Q^{2}}{2C}[/tex]
here, C is the capacitance.
In the process, the capacitor is discharging and the energy is stored in the inductor until when the charge in the capacitors zero, all the energy is stored in the inductor. So, the expression for the energy stored in the inductor is,
[tex]U'=\dfrac{L I^{2}}{2}[/tex]
here, L is the inductance and I is the current.
Note :- The period of the system is T for time t = 0 all energy is stored in the capacitor and for t = T / 2 all energy is stored in the inductor.
Thus, we conclude that after t = 0 the maximum energy stored in the magnetic field of the inductor is equal to [tex]U'=\dfrac{L I^{2}}{2}[/tex] for the time period, half of period of oscillation (t = T/2).
Learn more about the capacitance here:
https://brainly.com/question/12644355
The switch on the electromagnet, initially open, is closed. What is the direction of the induced current in the wire loop (as seen from the left)?
Answer:
The induced current is clockwise
For exercise, an athlete lifts a barbell that weighs 400 N from the ground to a height of 2.0 m in a time of 1.6 s. Assume the efficiency of the human body is 25%, and that he lifts the barbell at a constant speed. Show all work and include proper unit for your final answer.
a) In applying the energy equation (ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W) to the system consisting of the earth, the barbell, and the athlete,
1. Which terms (if any) are positive?
2. Which terms (if any) are negative?
3. Which terms (if any) are zero?
b) Determine the energy output by the athlete in SI unit.
c) Determine his metabolic power in SI unit.
d) Another day he performs the same task in 1.2 s.
1. Is the metabolic energy that he expends more, less, or the same?
2. Is his metabolic power more, less, or the same?
Answer:
Explanation:
(ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W)
ΔK is increase in kinetic energy . As the athelete is lifting the barbell at constant speed change in kinetic energy is zero .
ΔK = 0
ΔUg is change in potential energy . It will be positive as weight is being lifted so its potential energy is increasing .
ΔUg = positive
ΔUs is change in the potential energy of sportsperson . It is zero since there is no change in the height of athlete .
ΔUs = 0
ΔEth is change in the energy of earth . Here earth is doing negative work . It is so because it is exerting force downwards and displacement is upwards . Hence it is doing negative work . Hence
ΔEth = negative .
b )
work done by athlete
= 400 x 2 = 800 J
energy output = 800 J
c )
It is 25% of metabolic energy output of his body
so metalic energy output of body
= 4x 800 J .
3200 J
power = energy output / time
= 3200 / 1.6
= 2000 W .
d )
1 ) Since he is doing same amount of work , his metabolic energy output is same as that in earlier case .
2 ) Since he is doing the same exercise in less time so his power is increased . Hence in the second day his power is more .
A) Applying the energy equation
The positive terms is : ΔUg The negative terms is : ΔEth The zero term are : ΔK and ΔUsB) The energy output by the athlete is ; 800 Joules
C) The metabolic power is : 2000 w
D) When he performs the task in 1.2 s
The metabolic energy he expends is : the same His metabolic power is : moreGiven data :
Weight of barbell = 400 N
Height = 2.0 m
Time = 1.6 secs
efficiency of the human body = 25%
Speed = constant
A) From the energy equation the ΔK is zero because the athlete is lifting the barbell at a constant speed. ΔUg is positive because as the weight is lifted its potential energy increases. ΔEth ( change in energy of earth ) is negative because it exerts a force in opposite direction to displacement
B) Determine the energy output of the athlete
weight of barbell * Height = 400 * 2 = 800 J
C) Determine the metabolic power
Metabolic power = energy output / Time
where ; energy output = 4 * 800 = 3200
∴ Metabolic power = 3200 / 1.6
= 2000 w
D) When performs same task at 1.2 s
The metabolic energy he expends is the same and His metabolic power is more
Hence we can conclude that the answers to your questions are as listed above
Learn more : https://brainly.com/question/17807740
The number of daylight hours, D, in the city of Worcester, Massachusetts, where x is the number of days after January 1 (), may be calculated by the function: What is the period of this function? N/A What is the amplitude of this function? 12 What is the horizontal shift? What is the phase shift? What is the vertical shift? How many hours of sunlight will there be on February 21st of any year?
Answer:
a. 365; b. 3; c. 78; d. 1.343 rad; e. 12; f. 10.66
Explanation:
Assume that the function is
[tex]D(x) = 3 \sin \left (\dfrac{2\pi}{365}(x - 78) \right ) + 12[/tex]
The general formula for a sinusoidal function is
y = A sin(B(x - C))+ D
|A| = amplitude
B = frequency
2π/B = period, P
C = horizontal shift (phase shift)
D = vertical shift
By comparing the two formulas, we find
|A| = 3
B = 2π/365
C = 78
D = 12
a. Period
P = 2π/B = 2π/(2π/365) = 2π × 365/2π = 365
The period is 365.
b. Amplitude
|A| = 3
The amplitude is 3.
c. Horizontal shift
C= 78
The horizontal shift is 78.
d. Phase shift (φ)
Ths phase shift is the horizontal shift expressed in radians.
φ = C × 2π/365 = 78 × 2π/365 ≈ 1.343
The phase shift is 1.343 rad.
e. Vertical shift
D = 12
The vertical shift is 12.
f. Hours of sunlight on Feb 21
Feb 21 is the 52nd day of the year, so x = 51 (the number of days after Jan 1),
[tex]\begin{array}{rcl}D(x) &=& 3 \sin \left (\dfrac{2\pi}{365}(x - 78) \right ) + 12\\\\&=& 3 \sin (0.01721(51 - 78) ) + 12\\&=& 3\sin(-0.4648) + 12\\&=& 3(-0.4482) + 12\\\&=& -1.345 + 12\\& = & \textbf{10.66 h}\\\end{array}[/tex]
There will be 10.66 h of sunlight on Feb 21 of any given year.
The figure below shows the graph of the function from 0 ≤ x ≤ 365.
Five wheels are connected as shown in the figure. Find the velocity of the block “Q”, if it is known that: RA= 5 [m], RB= 10 [m], RD= 6 [m], RE=12 [m].
Answer:
-5 m/s
Explanation:
The linear velocity of B is equal and opposite the linear velocity of E.
vB = -vE
vB = -ωE rE
10 m/s = -ωE (12 m)
ωE = -0.833 rad/s
The angular velocity of E is the same as the angular velocity of D.
ωE = ωD
ωD = -0.833 rad/s
The linear velocity of Q is the same as the linear velocity of D.
vQ = vD
vQ = ωD rD
vQ = (-0.833 rad/s) (6 m)
vQ = -5 m/s
A thick wire with a radius of 4.0 mm carries a uniform electric current of 1.0 A, distributed uniformly over its cross-section. At what distance from the axis of the wire, and greater than the radius of the wire, is the magnetic field strength equal to that at a distance 2.0 mm from the axis. distance
Answer:
8 mm
Explanation:
From the information given:
The Ampere circuital law can be used to estimate the magnetic field strength at two points when the distance is less than the radius and when the distance is greater than the radius.
when the distance is less than the radius ; we have:
[tex]B_1 = \dfrac{ \mu_o \times I \times r}{2 \times \pi \times \ d^2}[/tex]
when the distance is greater than the radius; we have:
[tex]B_2 = \dfrac{\mu_o \ \times I}{2 \ \times \pi \times R}[/tex]
Equating both equations together ; we have :
[tex]\dfrac{ \mu_o \times I \times r}{2 \times \pi \times \ d^2} = \dfrac{\mu_o \ \times I}{2 \ \times \pi \times R}[/tex]
[tex]\dfrac{1}{R}= \dfrac{r}{d^2}[/tex]
[tex]R= \dfrac{d^2}{r}[/tex]
where; d = radius of the wire and r = distance;
[tex]R =\dfrac{4^2}{2}[/tex]
[tex]R =\dfrac{16}{2}[/tex]
R = 8 mm
1. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling without slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height
2. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling with slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height
Answer:
The hoop
Explanation:
Because it has a smaller calculated inertia of 2/3mr² compares to the disc
In a double-slit experiment the distance between slits is 5.0 mm and the slits are 1.4 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 450 nm, and the other due to light of wavelength 590 nm. What is the separation in meters on the screen between the m = 5 bright fringes of the two interference patterns?
Answer:
Δy = 1 10⁻⁴ m
Explanation:
In double-slit experiments the constructive interference pattern is described by the equation
d sin θ = m λ
In this case we have two wavelengths, so two separate patterns are observed, let's use trigonometry to find the angle
tan θ = y / L
as the angles are small,
tan θ = sin θ / cos θ = sin θ
substituting
sin θ = y / L
d y / L = m λ
y = m λ / d L
let's apply this formula for each wavelength
λ = 450 nm = 450 10⁻⁹ m
m = 5
d = 5.0 mm = 5.0 10⁻³ m
y₁ = 5 450 10⁻⁹ / (5 10⁻³ 1.4)
y₁ = 3.21 10⁻⁴ m
we repeat the calculation for lam = 590 nm = 590 10⁻⁹ m
y₂ = 5 590 10⁻⁹ / (5 10⁻³ 1.4)
y₂= 4.21 10⁻⁴ m
the separation of these two lines is
Δy = y₂ - y₁
Δy = (4.21 - 3.21) 10⁻⁴ m
Δy = 1 10⁻⁴ m
an electromagnetic wave propagates in a vacuum in the x-direction. In what direction does the electric field oscilate
Answer:
The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.
Krishna and Seldon now try a homework problem. A policeman sitting in his unmarked police car sees an approaching motorcyclist go through a red light two blocks away. He turns on his siren at a frequency of 1000 Hz as the motorcyclist heads directly toward him at 61 mph (27.27 m/s). What frequency does the motorcyclist hear? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz What frequency does the motorcyclist hear when stopped with the police car approaching at 61 mph (27.27 m/s)? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz
Answer:
Explanation:
We shall apply formula of Doppler's effect
Here source is fixed and observer is approaching the source
f = f₀ x [(V + v ) / V ]
f₀ is original and f is apparent frequency , V is velocity of sound and v is velocity of motorcyclist .
f = 1000 x [(331 + 27.27 ) / 331 ]
= 1082 .4 Hz
This is the frequency heard by motorcyclist .
When police car is approaching him when he is stopped
f = f₀ x [V /(V - v ) ]
v is velocity of police car .
= 1000 x 331 / (331 - 27.27)
= 1090 Hz
A velocity selector can be used to measure the speed of a charged particle. A beam of particles is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field E which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by 3 mm and the value of the magnetic field is 0.3 T, what voltage between the plates will allow particles of speed 5 x 105 m/s to pass straight through without deflection? A. 70 V B. 140 V C. 450 V D. 1,400 V E. 2,800 V
Answer:
C. 450v
Explanation:
Using
Voltage= B*distance of separation*velocity
3mm x 0.3T x 5E5m/s
= 450v
If the magnetic field of an electromagnetic wave is in the +x-direction and the electric field of the wave is in the +y-direction, the wave is traveling in the
Answer:
The wave is travelling in the ±z-axis direction.
Explanation:
An electromagnetic wave has an oscillating magnetic and electric field. The electric and magnetic field both oscillate perpendicularly one to the other, and the wave travels perpendicularly to the direction of oscillation of the electric and magnetic field.
In this case, if the magnetic field is in the +x-axis direction, and the electric field is in the +y-axis direction, we can say with all assurance that the wave will be travelling in the ±z-axis direction.
A thermos bottle works well because:
a. its glass walls are thin
b. silvering reduces convection
c. vacuum reduces heat radiation
d. silver coating is a poor heat conductor
e. none of the above
Answer:
A thermos bottle works well because:
A) Its glass walls are thin
Answer:
A thermos bottle works well because:
C
Vacuum reduces heat radiation
When light of wavelength 233 nm shines on a metal surface the maximum kinetic energy of the photoelectrons is 1.98 eV. What is the maximum wavelength (in nm) of light that will produce photoelectrons from this surface
Answer:
λmax = 372 nm
Explanation:
First we find the energy of photon:
E = hc/λ
where,
E = Energy of Photon = ?
λ = Wavelength of Light = 233 nm = 2.33 x 10⁻⁷ m
c = speed of light = 3 x 10⁸ m/s
h = Planks Constant = 6.626 x 10⁻³⁴ J.s
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.33 x 10⁻⁷ m)
E = 8.5 x 10⁻¹⁹ J
Now, from Einstein's Photoelectric Equation:
E = Work Function + Kinetic Energy
8.5 x 10⁻¹⁹ J = Work Function + (1.98 eV)(1.6 x 10⁻¹⁹ J/1 eV)
Work Function = 8.5 x 10⁻¹⁹ J - 3.168 x 10⁻¹⁹ J
Work Function = 5.332 x 10⁻¹⁹ J
Since, work function is the minimum amount of energy required to emit electron. Therefore:
Work Function = hc/λmax
λmax = hc/Work Function
where,
λmax = maximum wavelength of light that will produce photoelectrons = ?
Therefore,
λmax = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(5.332 x 10⁻¹⁹ J)
λmax = 3.72 x 10⁻⁷ m
λmax = 372 nm
Light of wavelength 500 nm falls on two slits spaced 0.2 mm apart. If the spacing between the first and third dark fringes is to be 4.0 mm, what is the distance from the slits to a screen?
Answer:
L = 0.8 m
Explanation:
Since, the distance between first and third dark fringes is 4 mm. Therefore, the fringe spacing between consecutive dark fringes will be:
Δx = 4 mm/2 = 2 mm = 2 x 10⁻³ m
but,
Δx = λL/d
λ = wavelength of the light = 500 nm = 5 x 10⁻⁷ m
d = slit spacing = 0.2 mm = 0.2 x 10⁻³ m
L = Distance between slits and screen = ?
Therefore, using the values, we get:
2 x 10⁻³ m = (5 x 10⁻⁷ m)(L)/(0.2 x 10⁻³)
L = (2 x 10⁻³ m)(0.2 x 10⁻³ m)/(5 x 10⁻⁷ m)
L = 0.8 m
wo 10-cm-diameter charged rings face each other, 25.0 cm apart. Both rings are charged to + 20.0 nC . What is the electric field strength
Complete question:
Two 10-cm-diameter charged rings face each other, 25.0cm apart. Both rings are charged to +20.0nC. What is the electric field strength at:
a) the midpoint between the two rings?
b) the center of the left ring?
Answer:
a) the electric field strength at the midpoint between the two rings is 0
b) the electric field strength at the center of the left ring is 2712.44 N/C
Explanation:
Given;
distance between the two rings, d = 25 cm = 0.25 m
diameter of each ring, d = 10 cm = 0.1 m
radius of each ring, r = [tex]\frac{0.1}{2} = 0.05 \ m[/tex]
the charge on each ring, q = 20 nC
Electric field strength for a ring with radius r and distance x from the center of the ring is given as;
[tex]E = \frac{kxQ}{(x^2 +r^2)^{3/2}}[/tex]
The electric field strength at the midpoint;
the distance from the left ring to the mid point , x = 0.25 m / 2 = 0.125 m
[tex]E = \frac{kxQ}{(x^2 +r^2)^{3/2}} \\\\E = \frac{8.99*10^{9}*0.125*20*10^{-9}}{(0.125^2 + 0.05^2)^{3/2}} \\\\E = 9210.5 \ N/C[/tex]
[tex]E_{left} = 9210.5 \ N/C[/tex]
The electric field strength due to right ring is equal in magnitude to left ring but opposite in direction;
[tex]E_{right} = -9210.5 \ N/C[/tex]
The electric field strength at the midpoint;
[tex]E_{mid} = E_{left} + E_{right}\\\\E_{mid} = 9210.5 \ N/C - 9210.5 \ N/C\\\\E_{mid} = 0[/tex]
(b)
The distance from the right ring to center of the left ring, x = 0.25 m.
[tex]E = \frac{KxQ}{(x^2 +r^2)^{3/2}} \\\\E = \frac{8.99*10^{9} *0.25*20*10^{-9}}{(0.25^2 + 0.05^2)^{3/2}} \\\\E = 2712.44 \ N/C[/tex]
The linear density rho in a rod 3 m long is 8/ x + 1 kg/m, where x is measured in meters from one end of the rod. Find the average density rhoave of the rod.
Answer:
The average density of the rod is 1.605 kg/m.
Explanation:
The average density of the rod is given by:
[tex] \rho = \frac{m}{l} [/tex]
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, as follows:
[tex] \int_{0}^{3} \frac{8}{3(x + 1)}dx [/tex]
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{(x + 1)}dx [/tex] (1)
Using u = x+1 → du = dx → u₁= x₁+1 = 0+1 = 1 and u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{u}du [/tex]
[tex]\rho = \frac{8}{3}*log(u)|_{1}^{4} = \frac{8}{3}[log(4) - log(1)] = 1.605 kg/m[/tex]
Therefore, the average density of the rod is 1.605 kg/m.
I hope it helps you!
The average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Given data:
The length of rod is, L = 3 m.
The linear density of rod is, [tex]\rho=\dfrac{8}{x+1} \;\rm kg/m[/tex].
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, The expression for the average density is given as,
[tex]\rho' = \int\limits^3_0 { \rho} \, dx\\\\\\\rho' = \int\limits^3_0 { \dfrac{m}{L}} \, dx\\\\\\\rho' = \int\limits^3_0 {\dfrac{8}{3(x+1)}} \, dx[/tex]............................................................(1)
Using u = x+1
du = dx
u₁= x₁+1 = 0+1 = 1
and
u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex]\rho' =\dfrac{8}{3} \int\limits^3_0 {\dfrac{1}{u}} \, du\\\\\\\rho' =\dfrac{8}{3} \times [log(u)]^{4}_{1}\\\\\\\rho' =\dfrac{8}{3} \times [log(4)-log(1)]\\\\\\\rho' =1.605 \;\rm kg/m^{3}[/tex]
Thus, we can conclude that the average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Learn more about the average density here:
https://brainly.com/question/1371999
Object A, with heat capacity CA and initially at temperature TA, is placed in thermal contact with object B, with heat capacity CB and initially at temperature TB. The combination is thermally isolated. If the heat capacities are independent of the temperature and no phase changes occur, the final temperature of both objects is
Answer:
d) (CATA + CBTB) / (CA + CB)
Explanation:
According to the given situation, the final temperature of both objects is shown below:-
We assume T be the final temperature
while m be the mass
So it will be represent
m CA (TA - T) = m CB (T - TB)
or we can say that
CATA - CA T = CB T - CBTB
or
(CA + CB) T = CATA + CBTB
or
T = (CA TA + CBTB) ÷ (CA + CB)
Therefore the right answer is d
The final temperature of both objects is [tex]T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex].
The given parameters;
heat capacity of object A = CAinitial temperature of object A = TAheat capacity of object B = CBinitial temperature of object B = TBThe final temperature of both objects is calculated as follows;
heat lost by object A is equal to heat gained by object B
[tex]mC_A (T_A - T) = mC_B(T- T_B)\\\\C_AT_A-C_AT = C_BT - C_BT_B\\\\C_BT+C_AT = C_AT_A+ C_BT_B\\\\T(C_B + C_A) = C_AT_A+ C_BT_B \\\\T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex]
Thus, the final temperature of both objects is [tex]T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex].
Learn more here:https://brainly.com/question/17163987
A pair of narrow, parallel slits separated by 0.230 mm is illuminated by green light (λ = 546.1 nm). The interference pattern is observed on a screen 1.50 m away from the plane of the parallel slits.
A) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.
B) Calculate the distance between the first and second dark bands in the interference pattern.
Answer:
A) y = 3.56 mm
B) y = 3.56 mm
Explanation:
A) The distance from the central maximum to the first bright region can be found using Young's double-slit equation:
[tex] y = \frac{m\lambda L}{d} [/tex]
Where:
λ: is the wavelength = 546.1 nm
m: is first bright region = 1
L: is the distance between the screen and the plane of the parallel slits = 1.50 m
d: is the separation between the slits = 0.230 mm
[tex] y = \frac{m\lambda L}{d} = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]
B) The distance between the first and second dark bands is:
[tex] \Delta y = \frac{\Delta m*\lambda L}{d} [/tex]
Where:
[tex] \Delta m = m_{2} - m_{1} = 2 - 1 = 1 [/tex]
[tex] \Delta y = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]
I hope it helps you!
This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating strings. Assume that the rod is initially electrically neutral. For convenience we will refer to the left end of the rod as end A, and the right end of the rod as end B. In the answer options for this problem, "strongly attracted/repelled" means "attracted/repelled with a force of magnitude similar to that which would exist between two charged balls.A. A small metal ball is given a negative charge, then brought near (i.e., within about 1/10 the length of the rod) to end A of the rod. What happens to end A of the rod when the ball approaches it closely this first time?
What happens to end A of the rod when the ball approaches it closely this first time?a. It is strongly repelled.b. It is strongly attracted.c. It is weakly attracted.d. It is weakly repelled.e. It is neither attracted nor repelled.
Answer:
e. It is neither attracted nor repelled.
Explanation:
Electrostatic attraction or repulsion occurs between two or more charged particles or conductors. In this case, if the negatively charged ball is brought close to the neutral end A of the rod, there would be no attraction or repulsion between the rod end A and the negatively charged ball. This is because a charged particle or conductor has no attraction or repulsion to a neutral particle or conductor.
Rank the following types of electromagnetic waves by the wavelength of the wave.
a. Microwaves
b. X-rays
c. Radio waves
d. Visible light
Explanation:
In order of Increasing Wavelength of the Electromagnetic Spectrum :
B) X rays
D) Visible light
A) Microwave
C) Radio Waves
Electromagnetic waves in order of decreasing wavelength is X-rays,visible light,microwaves and radio waves.
What are electromagnetic waves?The electromagnetic radiation consists of waves made up of electromagnetic field which are capable of propogating through space and carry the radiant electromagnetic energy.
The radiation are composed of electromagnetic waves which are synchronized oscillations of electric and magnetic fields . They are created due to change which is periodic in electric as well as magnetic fields.
In vacuum ,all the electromagnetic waves travel at the same speed that is with the speed of air.The position of an electromagnetic wave in an electromagnetic spectrum is characterized by it's frequency or wavelength.They are emitted by electrically charged particles which undergo acceleration and subsequently interact with other charged particles.
Learn more about electromagnetic waves,here:
https://brainly.com/question/3001269
#SPJ2
A simple arrangement by means of which e.m.f,s. are compared is known
Answer:
A simple arrangement by means of which e.m.f,s. are compared is known as?
(a)Voltmeter
(b)Potentiometer
(c)Ammeter
(d)None of the above
Explanation:
A single-slit diffraction pattern is formed on a distant screen. Assume the angles involved are small. Part A By what factor will the width of the central bright spot on the screen change if the wavelength is doubled
Answer:
If the wavelength is doubled, the width of the central bright spot on the screen will increase by a factor of 2 (that is, it will also double).
Explanation:
For a single-slit diffraction, diffraction patterns are found at angles θ for which
w sinθ = mλ
where w is the width
λ is wavelength
m is an integer, m = 1,2,3, ....
From the equation, w sinθ = mλ
For the first case, where nothing was changed
w₁ = mλ₁ / sinθ
Now, If the wavelength is doubled, that is, λ₂ = 2λ₁
The equation becomes
w₂ = mλ₂ / sinθ
Then, w₂ = m(2λ₁) / sinθ
w₂ = 2(mλ₁) / sinθ
Recall that, w₁ = mλ₁ / sinθ
Therefore, w₂ = 2w₁
Hence, If the wavelength is doubled, the width of the central bright spot on the screen will increase by a factor of 2 (that is, it will also double).
If Superman really had x-ray vision at 0.12 nm wavelength and a 4.1 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.4 cm to do this?
Answer:
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Explanation:
Given:
wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m
Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m
Separation distance (D) = 5.4 cm = 0.054 m
Find:
Maximum altitude to see(L)
Computation:
Resolving power = 1.22(λ / d)
D / L = 1.22(λ / d)
0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]
0.054 / L = 1.22 [0.03 × 10⁻⁶]
L = 0.054 / 1.22 [0.03 × 10⁻⁶]
L = 0.054 / [0.0366 × 10⁻⁶]
L = 1.47 × 10⁶
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Coherent light with wavelength 601 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringe. For what wavelength of light will thefirst-order dark fringe be observed at this same point on the screen?
Answer:
The wavelength is [tex]\lambda = 1805 nm[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 601 \ nm = 601 *10^{-9} \ m[/tex]
The distance of the screen is D = 3.0 m
The fringe width is [tex]y = 4.84 \ mm = 4.84 *10^{-3} \ m[/tex]
Generally the fringe width for a bright fringe is mathematically represented as
[tex]y = \frac{ \lambda * D }{d }[/tex]
=> [tex]d = \frac{ \lambda * D }{ y }[/tex]
=> [tex]d = \frac{ 601 *10^{-9} * 3}{ 4.84 *10^{-3 }}[/tex]
=> [tex]d = 0.000373 \ m[/tex]
Generally the fringe width for a dark fringe is mathematically represented as
[tex]y_d = [m + \frac{1}{2} ] * \frac{\lambda D }{d }[/tex]
Here m = 0 for first order dark fringe
So
[tex]y_d = [0 + \frac{1}{2} ] * \frac{\lambda D }{d }[/tex]
looking at which we see that [tex]y_d = y[/tex]
[tex]4.84 *10^{-3} = [0 + \frac{1}{2} ] * \frac{\lambda * 3 }{ 0.000373 }[/tex]
=> [tex]\lambda = 1805 *10^{-9} \ m[/tex]
=> [tex]\lambda = 1805 nm[/tex]
Describe and name the different types of collision. In which are the linear momentum and kinetic energy conserved
Answer:
1. Elastic collision
2. Inelastic collision
Explanation:
Elastic collision: collision is said to be elastic if total kinetic energy is not conserved and if there is a rebound after collision
the collision is described by the equation bellow
[tex]m1U1+ m2U2= m1V1+m2V2[/tex]
Inelastic collision: this type of collision occurs when the total kinetic energy of a body is conserved or when the bodies sticks together and move with a common velocity
the collision is described by the equation bellow
[tex]m1U1+ m2U2= V(m1+m2)[/tex]
g In the atmosphere, the shortest wavelength electromagnetic waves are called A. infrared waves. B. ultraviolet waves. C. X-rays. D. gamma rays. E.
Answer:gamma ray
Explanation:
A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m 5, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction to the right when the driver turns on the motor. The boat speeds up for 6.0\,\text s6.0s6, point, 0, start text, s, end text with an acceleration of 4.0\,\dfrac{\text m}{\text s^2}4.0 s 2 m 4, point, 0, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction leftward.
The question is incomplete. Here is the entire question.
A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?
Answer: Δx = - 42m
Explanation: The jetboat is moving with an acceleration during the time interval, so it is a linear motion with constant acceleration.
For this "type" of motion, displacement (Δx) can be determined by:
[tex]\Delta x = v_{i}.t + \frac{a}{2}.t^{2}[/tex]
[tex]v_{i}[/tex] is the initial velocity
a is acceleration and can be positive or negative, according to the referential.
For Referential, let's assume rightward is positive.
Calculating displacement:
[tex]\Delta x = 5(6) - \frac{4}{2}.6^{2}[/tex]
[tex]\Delta x = 30 - 2.36[/tex]
[tex]\Delta x[/tex] = - 42
Displacement of the boat for t=6.0s interval is [tex]\Delta x[/tex] = - 42m, i.e., 42 m to the left.
Ellen says that whenever the acceleration is directly proportional to the displacement of an object from its equilibrium position, the motion of the object is simple harmonic motion. Mary says this is true only if the acceleration is opposite in direction to the displacement. Which one, if either, is correct
Answer:
Both Ellen and Mary are correct.
Explanation:
Both are correct, it's just different ways of saying the same thing.
When the acceleration is always opposite in direction to the displacement, then, the acceleration is directly proportional to the displacement of an object from its equilibrium position
Light with an intensity of 1 kW/m2 falls normally on a surface and is completely absorbed. The radiation pressure is
Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;
[tex]Radiation \ Pressure = \frac{Flux \ density}{Speed \ of \ light}[/tex]
I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;
[tex]Radiation \ pressure = \frac{1000}{3*10^{8}} \\\\Radiation \ pressure =3.33*10^{-6} \ Pa[/tex]
Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.