If the moon started it's orbit around the Earth from a spot in line with a certain star, it will return to that same spot in about _______.​

Answers

Answer 1

Answer:

1 month

Explanation:


Related Questions

Which phase of matter makes up stars?
O liquid
O gas
O plasma

Answers

Answer:

The answer to this question is plasma

Answer:

Plasma

Explanation:

The pressure exerted at the bottom of a column of liquid is 30 kPa. The height of the
column is 3,875 m. What type of liquid is used?

Answers

Answer:

For example, the pressure acting on a dam at the bottom of a reservoir is ... pressure = height of column × density of the liquid × gravitational field ... The density of water is 1,000 kg/m 3.

A truck moves 70 m east, then moves 120 m west, and finally moves east again a distance of 90 m. If east is chosen as the positive direction, what is the truck's resultant displacement

Answers

Answer:

140m east

Explanation:

If East is positive then lets rephrase the problem into integers

A truck moves +70 m, then moves -120m, and finally moves +90m.

So totally Displacement = +70-120+90= +140m

Since east is positive, the trucks resultant displacement is 140 m east of origin

~~~~NEED HELP ASAP~~~~

Block A slides into block B along a frictionless surface. They are moving in the direction from left o the right.

Block A= 3kg

Block B= 4kg

Block A velocity before collision =30m/s.

Block B velocity before collision = 15 m/s

The velocity of block B after the collision is 20m/s.


a.) What is the velocity of block A after collision?

b.) Is the collision elastic? Show work to explain answer why or why not.

Answers

Answer:

Block A velocity is 23.33 m/s and the collission is not elastic.

Explanation:

a) m1v1 + m2v2 = m1v1' + m2v2'

Plug in givens

90+60=3v1'+80

solve for v1'= 23.33m/s

b) Find the initial and final kinetic energy of Block B

Ki= 1/2(4)(15)^2 + 1/2(3)(30)^2 = 1800 J

Kf= 1/2(4)(20)^2 + 1/2(3)*(23.33)^2= 1616.433J

Since Ki does not equal Kf the collision is not elastic

A uniform ladder of length 24 m and weight w is supported by horizontal floor at A and by a vertical wall at B. It makes an angle 45 degree with the horizontal. The coefficient of friction between ground and ladder is 1/2 and coefficient of friction between ladder and wall is 1/3. If a man whose weight is one-half than the ladder, ascends the ladder, how much length x of the ladder he shall climb before the ladder slips

Answers

Answer:

I could not find the answer or do it myself if I did find it I would defenetly share

A stopped organ pipe of length L has a fundamental frequency of 220 Hz. For which of the following organ pipes will there be a resonance if a tuning fork of frequency 660 Hz is sounded next to the pipe?

a. a stopped organ pipe of length L
b. a stopped organ pipe of length 2L
c. an open organ pipe of length L;
d. an open organ pipe of length 2L.

Answers

Answer:

Option (a), (d) are correct.

Explanation:

Frequency, f = 220 Hz

Resonant frequency = 660 Hz

The next frequency of stopped organ pipe is

2f, 3 f, 4 f ....

= 2 x 220 , 3 x 220 , 4 x 220 ....

= 440 Hz, 660 Hz, 880 Hz

So, the option (a) is correct.

The next resonant frequency of open organ pipe is

3 f, 5 f,...

= 3 x 220, 5 x 220 , ..

= 660 Hz, 1100 Hz,...

So, option (d) is correct.

In the late 19th century, great interest was directed toward the study of electrical discharges in gases and the nature of so-called cathode rays. One remarkable series of experiments with cathode rays, conducted by J. J. Thomson around 1897, led to the discovery of the electron.
With the idea that cathode rays were charged particles, Thomson used a cathode-ray tube to measure the ratio of charge to mass, q/m, of these particles, repeating the measurements with different cathode materials and different residual gases in the tube.
Part A
What is the most significant conclusion that Thomson was able to draw from his measurements?
He found a different value of q/m for different cathode materials.
He found the same value of q/m for different cathode materials.
From measurements of q/m he was able to calculate the charge of an electron.
From measurements of q/m he was able to calculate the mass of an electron.
Part B
What is the distance Δy between the two points that you observe? Assume that the plates have length d, and use e and m for the charge and the mass of the electrons, respectively.
Express your answer in terms of e, m, d, v0, L, and E0.
Part C
Now imagine that you place your entire apparatus inside a region of magnetic field of magnitude B0 (Figure 2) . The magnetic field is perpendicular to E⃗ 0 and directed straight into the plane of the figure. You adjust the value of B0 so that no deflection is observed on the screen.
What is the speed v0 of the electrons in this case?
Express your answer in terms of E0 and B0.

Answers

Answer:

a) He found the same value of q/m for different cathode materials.

b)      y = [tex]- \frac{e}{m}\ \frac{E_o v_o^2 }{2d^2}[/tex] ,  c)  v = [tex]\frac{E_o}{B_o}[/tex]

Explanation:

In Thomson's experiments he was able to measure the deflection of the light beam under the effect of the magnetic field and with these results find the e / m relationship, which in all cases is the same, therefore the most important conclusion is that the value e E / m is constant for all materials.

b) In the part of the plates the electrons are accelerated by the electric field,

              F = ma

             - e E = m a

              a = - (e/m)  E₀

               

the distance traveled is          

X axis

          x = v₀ t

the separation of the plates is x = d

          t = vo / d

               

Y axis

          y = v_{oy} t + ½ to t²

          y = ½ a t²

          y = [tex]- \frac{e}{m}\ \frac{E_o v_o^2 }{2d^2}[/tex]

           

c) In this case there is a magnetic field B₀ and the electrons have no deflection

         F = - e E + e v x B

       

if there is no deviation F = 0

         e E = e v B

         v = [tex]\frac{E_o}{B_o}[/tex]

Drawing a shows a displacement vector (450.0 m along the y axis). In this x, y coordinate system the scalar components are Ax 0 m and Ay 450.0 m. Suppose that the coordinate system is rotated counterclockwise by 35.0, but the magnitude (450.0 m) and direction of vector remain unchanged, as in drawing b. What are the scalar components, Ax and Ay, of the vector in the rotated x, y coordinate system

Answers

Answer:

x ’= 368.61 m,  y ’= 258.11 m

Explanation:

To solve this problem we must find the projections of the point on the new vectors of the rotated system  θ = 35º

            x’= R cos 35

            y’= R sin 35

           

The modulus vector can be found using the Pythagorean theorem

            R² = x² + y²

            R = 450 m

we calculate

            x ’= 450 cos 35

            x ’= 368.61 m

            y ’= 450 sin 35

            y ’= 258.11 m

Astronauts in space move a toolbox from its initial position ????????→=<15,14,−8>m to its final position ????????→=<17,14,−1>m. The two astronauts each push on the box with a constant force. Astronaut 1 exerts a force ????1→=<18,7,−12>???? and astronaut 2 exerts a force ????2→=<16,−10,16>????.

Required:
What is the total work performed on the toolbox?

Answers

If both forces are measured in Newtons, then the net force is

F = (18, 7, -12) N + (16, -10, 16) N = (34, -3, 4) N

The toolbox undergoes a displacement (i.e. change in position) in the direction of the vector

d = (17, 14, -1) m - (15, 14, -8) m = (2, 0, -9) m

The total work done by the astronauts on the toolbox is then

F • d = (34, -3, 4) N • (2, 0, -9) m = (68 + 0 - 36) N•m = 32 J

The work done by the two astronauts is equal to 96 J.

What is work done?

work done?Work done is defined as the product of force applied and the distance moved by the force.

Work done = Force × Distance

The forces applied = 18+16 N, 7+ -10 N, and -12 + 16N

Forces = 34 N, -3 N, and 4N

Distances = (17 - 15, 14 - 14, -1 - - 8) m

Distances = 2, 0, 7

Work done = 34 × 2 + -3 × 0 + 4 × 7

Work done = 96 J

Therefore, the work done by the two astronauts is equal to 96 J.

Learn more about work done at: https://brainly.com/question/25573309

#SPJ6

What is true when an object floats in water? A. When an object floats, it exceeds the volume of water available. B. When an object floats, it displaces a volume of water equal to its own volume. C. When an object floats, it does not displace its entire volume.

Answers

Answer:

C. When an object floats, it does not displace its entire volume.

Explanation:

Buoyancy can be defined as an upward force which is created by the water displaced by an object.

According to Archimede's principle, it is directly proportional to the amount (weight) of water that is being displaced by an object.

Basically, the greater the amount of water an object displaces; the greater is the force of buoyancy pushing the object up. The buoyancy of an object is given by the formula;

[tex] Fb = pgV [/tex]

[tex] But, \; V = Ah [/tex]

[tex] Hence, \; Fb = pgAh [/tex]

Where;

Fb = buoyant force of a liquid acting on an object.

g = acceleration due to gravity.

p = density of the liquid.

v = volume of the liquid displaced.

h = height of liquid (water) displaced by an object.

A = surface area of the floating object.

The unit of measurement for buoyancy is Newton (N).

Additionally, the density of a fluid is directly proportional to the buoyant force acting on it i.e as the density of a liquid decreases, buoyancy decreases and vice-versa.

Furthermore, an object such as a boat, ship, ferry, canoe, etc, are able to float because the volume of water they displace weigh more than their own weight. Thus, if a boat or any physical object weighs more than the volume of water it displaces, it would sink; otherwise, it floats.

In conclusion, the true statement is that when an object floats, it does not displace its entire volume.

What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed of light (300000000 m/s)? You may ignore all other gravitational interactions for the rocket and assume that the Earth-rocket system is isolated. Hint: the mass of the Earth is 5.94 x 1024kg and G=6.67×10−11Jmkg2G=6.67\times10^{-11}\frac{Jm}{kg^2}G=6.67×10−11kg2Jm​

Answers

Answer:

The expected radius of the Earth is 3.883 meters.

Explanation:

The formula for the escape speed is derived from Principle of Energy Conservation and knowing that rocket is initially at rest on the surface of the Earth and final energy is entirely translational kinetic, that is:

[tex]U = K[/tex] (1)

Where:

[tex]U[/tex] - Gravitational potential energy, in joules.

[tex]K[/tex] - Translational kinetic energy, in joules.

Then, we expand the formula by definitions of potential and kinetic energy:

[tex]\frac{G\cdot M\cdot m}{r} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (2)

Where:

[tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.

[tex]M[/tex] - Mass of the Earth. in kilograms.

[tex]m[/tex] - Mass of the rocket, in kilograms.

[tex]r[/tex] - Radius of the Earth, in meters.

[tex]v[/tex] - Escape velocity, in meters per second.

Then, we derive an expression for the escape velocity by clearing it within (2):

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]v = \sqrt{\frac{2\cdot G \cdot M}{r} }[/tex] (3)

If we know that [tex]v = \frac{1}{21}\cdot c[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex], [tex]M = 5.94\times 10^{24}\,kg[/tex], [tex]G = 6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex] and [tex]M = 5.94\times 10^{24}\,kg[/tex], then the expected radius of the Earth is:

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]r = \frac{2\cdot G \cdot M}{v^{2}}[/tex]

[tex]r = \frac{2\cdot \left(6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.94\times 10^{24}\,kg)}{\left[\frac{1}{21}\cdot \left(3\times 10^{8}\,\frac{m}{s} \right) \right]^{2}}[/tex]

[tex]r = 3.883\,m[/tex]

The expected radius of the Earth is 3.883 meters.

Infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz. Calculate the wavelength of the infrared radiation.

Answers

Answer:

[tex]\lambda=6.83\times 10^{-5}\ m[/tex]

Explanation:

Given that,

An infrared telescope is tuned to detect infrared radiation with a frequency of 4.39 THz.

We know that,

1 THz = 10¹² Hz

So,

f = 4.39 × 10¹² Hz

We need to find the wavelength of the infrared radiation.

We know that,

[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{4.39\times 10^{12}}\\\\=6.83\times 10^{-5}\ m[/tex]

So, the wavelength of the infrared radiation is [tex]6.83\times 10^{-5}\ m[/tex].

Which indicates the first law of thermodynamics ​

Answers

Answer:

(d)

Explanation:

because dU = Q -W so ,that the option d(D) is correct

Please assist with solving this problem and showing the steps

Answers

Answer:

2.21 N

Explanation:

The force in this case is the total mass multiplied by the acceleration due to gravity. You are not asked for the solution to be in terms of the torque which is the usual way to solve these problems. That's why you are not given where the fulcrum is.

The fulcrum feels F1 + F2 + 34 * 980

F2 = 141.7 * 980 = 138866

F1 = 50.3 * 980  =  49294

Ruler = 34 * 980=  33320

Total Force = 221480 The units here are dynes

I just saw in the middle of the question that g = 9.80

So the answer becomes 221480 / 1000 = 221.48   because we needed kg

And that answer becomes 221.48/100 2.21 because the force of gravity should be 9.8 not 980

The total force exerted on the fulcrum is

Please help,it is urgent!)

Answers

Answer:

answer is 18.58 because

Answer:

My answer is d.25.1 because

lamp in a child's Halloween costume flashes based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.360 s, during which it produces an average 0.690 W from an average 3.00 V. (a) What energy does it dissipate

Answers

Energy = (power) x (time)

Energy = (0.69 W) x (0.36 sec)

Energy = 0.25 Joule

Which level of government relies the most on income tax?
OA.
federal
state
OC.
local

Answers

Answer:

Its the Federal government

Federal government tax

The primary coil in a transformer has 250 turns; the secondary coil has 500. Which is correct?

a. This is a step-down transformer.

b. The voltage in the secondary coil will be higher than in the primary.

c. The power in the secondary coil is greater.

d. The power in the primary coil is greater.

Answers

Explanation:

option b is the correct one

A boy throws a ball upward with a velocity of 4.50 m/s at 60.0o. What is the maximum height reached by the ball?

Answers

Answer:

3.1m

Explanation:

Since we only care about the y direction we only need to find vy. Once u draw your vector you will realize that vy= 4.5sin60=3.897m/s.

use vf²=v²+2a(y)

At the maximum height the velocity is 0 and since the object is in freefall, a=-g

Plug in all values

0=15.1875-2*9.8(y)

solve for y

-15.1875*2/-9.8=y

y=3.1m

Answer:

0.774m

Explanation:

The formula for maximum height is given by:

hmax = ∨₀² ₓ Sin (α)² / 2 × g

where;

∨₀ = initial velocity

Sin (α) = angle of launch

g = gravitational acceleration which is equal to 9.8m/s²

Plugging in our values, we will have:

hmax = (4.50m/s)² × (Sin 60.0)² / 2 × 9.8m/s²

hmax= 20.25m/s × 0.75 / 19.8m/s²

hmax = 15.1875 / 19.8

hmax = 0.774m

When UV light of wavelength 248 nm is shone on aluminum metal, electrons are ejected withmaximum kinetic energy 0.92 eV. What maximum wavelength of light could be used to ejectelectrons from aluminum

Answers

Answer:

The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm

Explanation:

Given;

wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m

maximum kinetic energy of the ejected electron, K.E = 0.92 eV

let the work function of the aluminum metal = Ф

Apply photoelectric equation:

E = K.E + Ф

Where;

Ф is the minimum energy needed to eject electron the aluminum metal

E is the energy of the incident light

The energy of the incident light is calculated as follows;

[tex]E = hf = h\frac{c}{\lambda} \\\\where;\\\\h \ is \ Planck's \ constant = 6.626 \times 10^{-34} \ Js\\\\c \ is \ speed \ of \ light = 3 \times 10^{8} \ m/s\\\\E = \frac{(6.626\times 10^{-34})\times (3\times 10^8)}{248\times 10^{-9}} \\\\E = 8.02 \times 10^{-19} \ J[/tex]

The work function of the aluminum metal is calculated as;

Ф = E - K.E

Ф = 8.02 x 10⁻¹⁹  -  (0.92 x 1.602 x 10⁻¹⁹)

Ф =  8.02 x 10⁻¹⁹ J   -  1.474 x 10⁻¹⁹ J

Ф = 6.546 x 10⁻¹⁹ J

The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;

[tex]\phi = hf = \frac{hc}{\lambda_{max}} \\\\\lambda_{max} = \frac{hc}{\phi} \\\\\lambda_{max} = \frac{(6.626\times 10^{-34}) \times (3 \times 10^8) }{6.546 \times 10^{-19}} \\\\\lambda_{max} = 3.037 \times 10^{-7} m\\\\\lambda_{max} = 303.7 \ nm[/tex]

a. Give an example of the conversion of light energy to electrical energy.

b. Give an example of chemical energy converting to heat energy.

c. Give an example of mechanical energy converting to heat energy.

Answers

Explanation:

a) photovoltaic cell is a semiconductor device and it converts light energy to electrical energy

b) burning of coal converts chemical energy to heat energy

c) rubbing of both hands against each other converts mechanical to heat energy

Answer:

a. solar cells

b.coal,wood,petroleum

c.rubbing ours palms

Mary and her younger brother Alex decide to ride the carousel at the State Fair. Mary sits on one of the horses in the outer section at a distance of 2.0 m from the center. Alex decides to play it safe and chooses to sit in the inner section at a distance of 1.1 m from the center. The carousel takes 5.8 s to make each complete revolution.

Required:
a. What is Mary's angular speed %u03C9M and tangential speed vM?
b. What is Alex's angular speed %u03C9A and tangential speed vA?

Answers

Answer:

you can measure by scale beacause we dont no sorry i cant help u but u can ask me some other Q

how did kepler discoveries contribute to astronomy

Answers

Answer:

They established the laws of planetary motion. They explained how the Sun rises and sets. They made astronomy accessible to people who spoke Italian.

Explanation:

It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10 m/s. A 60 kg passenger gets aboard on the ground floor.
1. What is the passenger's apparent weight before the elevator starts moving?
2. What is the passenger's apparent weight whilethe elevator is speeding up?
3. What is the passenger's apparent weight afterthe elevator reaches its cruising speed?

Answers

Answer:

1. 588 N

2. 738 N

3. 588 N

Explanation:

time, t = 4 s

initial velocity, u = 0

final velocity, v = 10 m/s

mass, m= 60 kg

1.

Weight of passenger before starts

W =m g = 60 x 9.8 = 588 N

2.

When the elevator is speeding up

v = u + a t

10 = 0 + a x 4

a = 2.5 m/s2

Now the weight is

W' = m (a + g) = 60 (9.8 + 2.5) = 738 N

3.

When he reaches the cruising speed, the weight is

W = 588 N

Two positive charges, 91 = 5 x 10-'[C] and q2 =1 x 10-9 [C], are
separated by a distance of d=0.05 m. At location 'P' between the
two charges, the net electric field is found to be zero.

b. [10 points] The distance between charge qı and location 'P' is
considered to be 'x'. Find the value of 'x' in [cm]

Answers

Answer:

wareffctgggyyggghhhh

Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results

Answers

Answer:

No, it will not affect the results.

Explanation:

For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.

What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.

Paauto A: Isulat sa papel ang alpabetong Ingles at bilang I hanggang 10 sa istilong
Roman ng pagleletra.​

Answers

Answer:

Explanation:

English alphabets numbered fro 1 to 26

and the numbers 1 to10 so they are written in roman numbers as

1 - I

2 - II

3 - III

4 - IV

5 -V

6 - VI

7 -VII

8 - VIII

9 - IX

10 -X

11 - XI

12 - XII

13 - XIII

14 - XIV

15 - XV

16 - XVI

17 - XVII

18 - XVIII

19 - XIX

20- XX

21 - XXI

22 - XXII

23 - XXIII

24 - XXIV

25 - XXV

26 - XXVI  

water contracts on freezing is it incorrect or conrrect

Answers

Answer:

hope it helps

much as you can

Two cars are facing each other. Car A is at rest while car B is moving toward car A with a constant velocity of 20 m/s. When car B is 100 from car A, car A begins to accelerate toward car B with a constant acceleration of 5 m/s/s. Let right be positive.
1) How much time elapses before the two cars meet? 2) How far does car A travel before the two cars meet? 3) What is the velocity of car B when the two cars meet?
4) What is the velocity of car A when the two cars meet?

Answers

Answer:

Let's define t = 0s (the initial time) as the moment when Car A starts moving.

Let's find the movement equations of each car.

A:

We know that Car A accelerations with a constant acceleration of 5m/s^2

Then the acceleration equation is:

[tex]A_a(t) = 5m/s^2[/tex]

To get the velocity, we integrate over time:

[tex]V_a(t) = (5m/s^2)*t + V_0[/tex]

Where V₀ is the initial velocity of Car A, we know that it starts at rest, so V₀ = 0m/s, the velocity equation is then:

[tex]V_a(t) = (5m/s^2)*t[/tex]

To get the position equation we integrate again over time:

[tex]P_a(t) = 0.5*(5m/s^2)*t^2 + P_0[/tex]

Where P₀ is the initial position of the Car A, we can define P₀ = 0m, then the position equation is:

[tex]P_a(t) = 0.5*(5m/s^2)*t^2[/tex]

Now let's find the equations for car B.

We know that Car B does not accelerate, then it has a constant velocity given by:

[tex]V_b(t) =20m/s[/tex]

To get the position equation, we can integrate:

[tex]P_b(t) = (20m/s)*t + P_0[/tex]

This time P₀ is the initial position of Car B, we know that it starts 100m ahead from car A, then P₀ = 100m, the position equation is:

[tex]P_b(t) = (20m/s)*t + 100m[/tex]

Now we can answer this:

1) The two cars will meet when their position equations are equal, so we must have:

[tex]P_a(t) = P_b(t)[/tex]

We can solve this for t.

[tex]0.5*(5m/s^2)*t^2 = (20m/s)*t + 100m\\(2.5 m/s^2)*t^2 - (20m/s)*t - 100m = 0[/tex]

This is a quadratic equation, the solutions are given by the Bhaskara's formula:

[tex]t = \frac{-(-20m/s) \pm \sqrt{(-20m/s)^2 - 4*(2.5m/s^2)*(-100m)} }{2*2.5m/s^2} = \frac{20m/s \pm 37.42 m/s}{5m/s^2}[/tex]

We only care for the positive solution, which is:

[tex]t = \frac{20m/s + 37.42 m/s}{5m/s^2} = 11.48 s[/tex]

Car A reaches Car B after 11.48 seconds.

2) How far does car A travel before the two cars meet?

Here we only need to evaluate the position equation for Car A in t = 11.48s:

[tex]P_a(11.48s) = 0.5*(5m/s^2)*(11.48s)^2 = 329.48 m[/tex]

3) What is the velocity of car B when the two cars meet?

Car B is not accelerating, so its velocity does not change, then the velocity of Car B when the two cars meet is 20m/s

4)  What is the velocity of car A when the two cars meet?

Here we need to evaluate the velocity equation for Car A at t = 11.48s

[tex]V_a(t) = (5m/s^2)*11.48s = 57.4 m/s[/tex]

Two balls of known masses hang from the ceiling on massless strings of equal length. They barely touch when both hang at rest. One ball is pulled back until its string is at 45 ∘, then released. It swings down, collides with the second ball, and they stick together.The problem can be divided into three parts: (1) from when the first ball is released and to just before it hits the stationary ball, (2) the two balls collide, and (3) the two balls swing up together just after the collision to their highest point. ..............conserved in parts (1) and (3) as the balls swing like pendulums. During the collision in part (2) ................. conserved as the collision is ................. Explain.Match the words in the left column to the appropriate blanks in the sentences on the rightboth energy and momentum areonly energy is only momentum is.........both energy and momentum are only energy is only momentum iselasticinelastic

Answers

Answer:

In parts 1 and 3 the energy

In part 2  moment.  inelastic

conserved

Explanation:

In this exercise, we are asked to describe the conservation processes for each part of the exercise.

In parts 1 and 3 the energy is conserved since the bodies do not change

In part 2 the bodies change since they are united therefore the moment is conserved and part of the kinetic energy is converted into potential energy.

Energy

moment   .inelastic

conserved

The two balls swing up together just after the collision to their highest point. energy is conserved.

What is the law of conservation of momentum?

According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.

According to the law of conservation of momentum

Momentum before collision =Momentum after collision

When the first ball is released and just before it hits the stationary ball, The two balls collide, The two balls swing up together just after the collision to their highest point. energy is conserved.

The balls swing like pendulums. During the collision in part (2) energy is conserved as the collision is inelastic.

We are requested to describe the conservation methods for each element of the activity in this exercise.

Because the bodies do not change in sections 1 and 3, energy is conserved.

Because the bodies change in part 2 is joined, the moment is conserved and some of the kinetic energy is transformed into potential energy.

Hence the two balls swing up together just after the collision to their highest point. energy is conserved.

To learn more about the law of conservation of momentum refer to;

https://brainly.com/question/1113396

Other Questions
Name four important sources of tribal history? The fibrous protein that gives skin its flexibility and helps skin regain its shape after being expanded is: why is the term judicial administration multifaceted 19. In a random sample of 250 students, we found that 75 work out 4 or more times a week. Find the 95% confidence interval for the proportion of students who work out 4 or more times a week. Can you suggest a LinkedIn Helper (automation tool) alternative? What is 47 as a decimal rounded to 3 decimal places? HELP PLEASE! I tried everything from adding to dividing, subtracting, multiplying but still no correct answer. Can someone help me out here please? I am not sure where to start. Thank you for your time. help pls, i need help pls When a rope is wrapped around a wheel (or pulley) and pulled, the lever arm is the ________ Blank 1 of the wheel and the angle between this and the force is ALWAYS ________ degrees. Blank 2 Which per unit cost does the slope of the total cost line represent? Group of answer choices Fixed Variable. Semivariable Step-variable help plsssssssssssssssssssssssssssssss What fossil discovered in the 1950s reinforced the hypothesis that Africa was the birthplace of humanity? i13(12)-2give answer What is the role of language according to "If Black English Isn't a Language, Then Tell Me, What Is?" Select all that apply. Julie's younger sister died suddenly from an undiagnosed heart defect. The next day, Julie fell into a trance-like state. Two days later, Julie became reanimated and began experiencing auditory hallucinations. Concerned for her well-being, Julie's family took her to the local hospital. After a week of inpatient care, Julie started acting like her old self again. Given this information, Julie's diagnosis would be __________. use 100-150 words, write a paragraph about home with adjectives and adverbs. There is a high-speed rail track between London and Manchester.The length of this track is 210 miles.A train departs London at 11:20 and arrives in Manchester at 13:28The train company claimsthe average speed of this train is 104 miles per hour.Is the average speed of this train 104 miles per hour?(4)Use the box below to show clearly how you get your answer. The following contribute to accidents when a teen driver has other teens as passengers (x-1)/(x-1)=1, what is the answer and explenation Juan and Lizette rented a car for one week to drive from Phoenix to Boise. The car rental rate was $250 per week and $0.20 per mile. By the most direct route, the drive is 926 miles. How much did they spend on the rental car?