The best interpretation of the confidence interval is We are 95% confident that the difference in proportions for smokers and nonsmokers with CVD in the population is between −0.01 and 0.04 that is option B.
Confidence interval is estimate of Parameter were parameter is difference in proportion of smokers and non smokers in population.
The percentage (frequency) of acceptable confidence intervals that include the actual value of the unknown parameter is represented by the confidence level. In other words, a limitless number of independent samples are used to calculate the confidence intervals at the specified degree of assurance. in order for the percentage of the range that includes the parameter's real value to be equal to the confidence level.
Most of the time, the confidence level is chosen before looking at the data. 95% confidence level is the standard degree of assurance. Nevertheless, additional confidence levels, such as the 90% and 99% confidence levels, are also applied.
Learn more about Confidence Interval:
https://brainly.com/question/17212516
#SPJ4
4^(-x)=1/256
I believe it is x=4, but I need how to work it out pls thxxx
Answer:
x = 4
Step-by-step explanation:
using the rule of exponents
• [tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex] , then
[tex]4^{-x}[/tex] = [tex]\frac{1}{4^{x} }[/tex]
and 256 = [tex]4^{4}[/tex]
then
[tex]\frac{1}{4^{x} }[/tex] = [tex]\frac{1}{4^{4} }[/tex]
so
[tex]4^{x}[/tex] = [tex]4^{4}[/tex]
since bases on both sides are equal, bot 4 then equate exponents
x = 4
Y=3x-4 4x+3y=1 what does X and y equal?
Answer:
{y,x}={-1,1}
to leave and take
Mrs. Cabana has 8 pets total. Three of the pets are chameleons and the rest are fish. Select all the answers that are a ratio relationship for Mrs. Cabana's pets.
Question 1 options:
Multi choice
3/5
3 to 11
3:8
5 to 8
8:1
Answer: numbers 1,3 and 4
Step-by-step explanation:
7. Complete the comparison: 17>?
O A. 18
O B. 17
O C. 39
O D. 1
O Mark for review will be highligh
Answer: 39
39 is the only answer option greater than 17
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0.59°C and 0.88°C.
The probability of obtaining a reading between 0.59°C and 0.88°C is 0.7224 and 0.8106.
What is mean?The sum of all possible values, weighted by the chance of each value, is equal to the mean of a discrete probability distribution of the random variable X. Each possible number of X must be multiplied by its probability P(x) before being added as a whole to determine the mean. In statistics, the mean is one measure of central trend in addition to the mode and median. The mean is simply the average of the numbers in the specified collection. It suggests that values in a specific data gathering are evenly distributed. In order to find the mean, the total values given in a datasheet must be added, and the result must be divided by the total number of values.
In this question, using the formula,
z-score = (x – μ) / σ
where:
x: individual data value
μ: population mean
σ: population standard deviation
for x=0.59
μ= 0
σ= 1
z-score= 0.59
Probability=0.7224
for x=0.88
z-score= 0.88
Probability=0.8106
To know more about mean, visit
https://brainly.com/question/30112112
#SPJ1
Use the diagram shown. Lines p and q are parallel.
How many degrees is the measure of ∠4?
Answer:
61°
Step-by-step explanation:
∠4 is the vertical angle to the 61° angle. This means they will have the same measure, so ∠4 is 61°.
On the day a video was posted online, 5 people watched the video. The next day the number of viewers had doubled. Assume the
number of viewers continues to double each day.
1. On which day will 640 people see the video? Explain or show your reasoning.
2. What strategy would you use to find the first day when more than 20,000 people will see the video (if the trend continues)?
On the 7th day after the videο was pοsted, 640 peοple will see the videο.
What is Statistics?Statistics is the discipline that cοncerns the cοllectiοn, οrganizatiοn, analysis, interpretatiοn, and presentatiοn οf data.
1 Let's start by finding the pattern in the number οf viewers. We knοw that οn the first day, 5 peοple watched the videο. On the next day, the number οf viewers dοubled tο 5 x 2 = 10. On the third day, the number οf viewers dοubled again tο 10 x 2 = 20. We can see that the number οf viewers is dοubling each day, which means we can write the number οf viewers as:
[tex]V = 5 x 2^n[/tex]
where n is the number οf days after the videο was pοsted.
Nοw we want tο find οn which day the number οf viewers will be 640. Sο we can set V equal tο 640 and sοlve fοr n:
[tex]640 = 5 x 2^n[/tex]
[tex]2^n = 128[/tex]
n = lοg2(128) = 7
2. Tο find the first day when mοre than 20,000 peοple will see the videο, we can set V equal tο 20,000 and sοlve fοr n:
[tex]20,000 = 5 x 2^n[/tex]
2^n = 4,000
n = lοg2(4,000) ≈ 11.29
Since n represents the number οf days after the videο was pοsted, we can rοund up tο the next whοle number tο find the first day when mοre than 20,000 peοple will see the videο. Therefοre, οn the 12th day after the videο was pοsted, mοre than 20,000 peοple will see the videο if the trend cοntinues
Learn more about statistics on:
https://brainly.com/question/15525560
#SPJ1
Mr. and Mrs. Davenport have 3 kids, ages 3, 6, and 13. Their financial matters for 2019 are as follows:Adjusted Gross Income: $65,000Un-reimbursed Medical Expenses: $5,250How much would the Davenports' medical expenses contribute to their total itemized deductions?
The Davenports' medical expenses contribute to their total itemized deductions are $375 (7.5% for 2019).
The costs you incurred for state and local income or sales taxes, real estate taxes, personal property taxes, mortgage interest, and disaster losses are all included in itemised deductions. You can also count charitable donations and a portion of your out-of-pocket medical and dental costs.
Currently for the 2019 (due 2020), you can deduct medical expenses that exceed 7.5% of your AGI, but back then in 2019, the threshold was 7.5%, not 10%.
So the Davenports can only deduct
$5,250 - ($65,000 x 7.5%) = $375
if they decided to itemize their deductions.
The threshold will increase back to 10% starting 2020 (due 2021) tax returns.
Learn more about Expenses:
https://brainly.com/question/29441986
#SPJ4
School administrators asked a group of students and teachers which of two
school logo ideas, logo A or logo B, they prefer. This table shows the results.
Students
Teachers
Total
Logo A
14
14
28
Logo B
86
11
97
Total
100
25
125
Are being a student and preferring logo B independent events? Why or why
not?
A. Yes, they are independent, because P(student) = 0.8 and
P(student logo B) = 0.89.
B. No, they are not independent, because P(student) = 0.8 and
P(student logo B) 0.78.
C. No, they are not independent, because P(student) = 0.8 and
P(student logo B) * 0.89.
D. Yes, they are independent, because P(student) = 0.8 and
P(student logo B) 0.78...
B, No, they are not independent events because the probability of a student preferring logo B (0.78) is different from the overall probability of preferring logo B (0.89), which includes both students and teachers.
How to find independent events?To determine whether being a student and preferring logo B are independent events, we need to compare the probability of a student preferring logo B (P(student logo B)) with the overall probability of preferring logo B (P(logo B)).
P(student logo B) = 0.78 (from the table)
P(logo B) = (86 + 11) / 125 = 0.89
If the two probabilities are equal, then the events are independent. However, in this case, P(student logo B) is not equal to P(logo B), indicating that being a student and preferring logo B are dependent events. Therefore, being a student and preferring logo B are dependent events.
Learn more on independent events here: https://brainly.com/question/27665211
#SPJ1
write a quadratic function in standard form that passes through the points (-8,0) ,(-5, -3) , and (-2,0) .
F(x)=
A quadratic function in standard form that passes through the points [tex](-8,0), (-5,-3), and (-2,0)[/tex] is equals to the [tex]f(x) = (1/3)( x^{2} + 10x + 16)[/tex].
What are some examples of quadratic functions?f(x) = ax2 + bx + c, in which a, b, and c are integers and an is not equal to zero, is a quadratic function. A parabola is the shape of a quadratic function's graph.
How do you determine whether an equation is quadratic?In other terms, you have a quadratic equation if a times the squares of the expression after b plus b twice that same equation not square plus c equals 0.
[tex]f(x) = ax^{2} + bx + c ----(1)[/tex]
is determined by three points and must be [tex]a[/tex] not equal [tex]0[/tex]. That is for determining the f(x) we have to determine value of three values a, b, and c. Now, we have three ordered pairs [tex](-8,0), (-5,-3)[/tex], and [tex](-2,0)[/tex] and we have to determine quadratic function passing through these points. So, firstly, plug the coordinates of point[tex]( -8,0), x = -8, y = f(x) = 0[/tex] in equation [tex](1)[/tex],
[tex]= > 0 = a(-8)^{2} + b(-8) + c[/tex]
[tex]= > 64a - 8b + c = 0 -------(2)[/tex]
Similarly, for second point [tex]( -5,-3) , f(x) = -3, x = -5[/tex]
[tex]= > - 3 = a(-5)^{2} + (-5)b + c[/tex]
[tex]= > 25a - 5b + c = -3 --(3)[/tex]
Continue for third point [tex](-2,0)[/tex]
[tex]= > 0 = a(-2)^{2} + b(-2) + c[/tex]
[tex]= > 4a -2b + c = 0 --(4)[/tex]
So, we have three equations and three values to determine.
Subtract equation [tex](4)[/tex] from [tex](2)[/tex]
[tex]= > 64 a - 8b + c - 4a + 2b -c = 0[/tex]
[tex]= > 60a - 6b = 0[/tex]
[tex]= > 10a - b = 0 --(5)[/tex]
subtract equation [tex](4)[/tex] from [tex](3)[/tex]
[tex]= > 21a - 3b = -3 --(6)[/tex]
from equation (4) and (5),
[tex]= > 3( 10a - b) - 21a + 3b = -(- 3)[/tex]
[tex]= > 30a - 3b - 21a + 3b = 3[/tex]
[tex]= > 9a = 3[/tex]
[tex]= > a = 1/3[/tex]
from [tex](5)[/tex] , [tex]b = 10a = 10/3[/tex]
from [tex](4)[/tex], [tex]c = 2b - 4a = 20/3 - 4/3 = 16/3[/tex]
So,[tex]f(x)= (1/3)( x^{2} + 10x + 16)[/tex]
Hence, required values are [tex]1/3, 10/3,[/tex] and [tex]16/3[/tex].
To know more about quadratic equation visit:
https://brainly.com/question/31111089
#SPJ1
Answer:
f(x) = (1/3)x² + (10/3)x + 16/3-------------------------------------
Given 3 points of a quadratic function and two of them lie on the x-axis:
(-8, 0) and (-2, 0)These two points are representing the roots of the function. With known roots we can show the function in the factor form:
f(x) = a(x - x₁)(x - x₂), where a - coefficient, x₁ and x₂ are rootsSubstitute the roots into the equation and use the third point with coordinates x = - 5, f(x) = - 3, find the value of a:
-3 = a(- 5 + 8)((-5 + 2)- 3 = a(3)(-3)3a = 1a = 1/3This gives us the function in the factor form:
f(x) = (1/3)(x + 8)(x + 2)Convert this into standard form of f(x) = ax² + bx + c:
f(x) = (1/3)(x + 8)(x + 2)f(x) = (1/3)(x² + 10x + 16)f(x) = (1/3)x² + (10/3)x + 16/3I'm not sure where I'm going wrong here and need a detailed explanation with a full answer please.
Answer:
g(x) = 1/2|x - 1| + 2
Step-by-step explanation:
You were almost there, you just got the slope wrong.
original vertex (h, k): (0, 0)
transformed vertex (h', k'): (1, 2)
original slope: 1
transformed slope: m = (3-2)/(3-1) = 1/2 pick any 2 points to find the slope
equation for the transformed function shown in the graph:
g(x) = 1/2|x - h'| + k'
g(x) = 1/2|x - 1| + 2
which statemnt is ture when the dimensions of a two-dimensional figures are dilated by a scale factor of 2
When a shape is dilated, the size of the shape changes. The true statement is (d) The scale factor is 2.5.
Dilation:
Dilation is the process of changing the size of an object or shape by reducing or increasing its size by a specific scale factor. For example, a circle with a radius of 10 units shrinks to a circle with a radius of 5 units. Applications of this method are in photography, arts and crafts, sign making and more.
According to the Question:
How to determine the scale factor
In figure A, we have:
Length = 0.6
In figure B, we have:
Length =1.5
The scale factor is then calculated as:
K = 1.5/0.6
Dividing the equation:
k = 2.5
Hence, the true statement is (d) The scale factor is 2.5.
Complete Question:
The first figure is dilated to form the second figure. Which statement is true?
The scale factor is 0.4.
The scale factor is 0.9.
The scale factor is 2.1.
The scale factor is 2.5.
Learn more about Shape:
https://brainly.com/question/28756579
#SPJ4
The following joint probability density function for the random variables Y1 and Y2, which represent the proportions of two components in a somaple from a mixture of insecticide.
f(y1,y2) = { 2, 0 <= y1 <= 1, 0 <= y2 <= 1, 0 <= y1+y2 <=1
{ 0, elsewhere
For the chemicals under considerationm an important quantity is the total proportion Y1 +Y2 found in any sample. Find E(Y1+Y2) and V(Y1+Y2).
The joint probability density function for the random variables Y1 and Y2 E(Y1+Y2) and V(Y1+Y2) is 41/144.
To find E(Y1+Y2), we need to integrate the sum of Y1 and Y2 over their joint probability density function:
E(Y1+Y2) = ∫∫ (y1 + y2) f(y1,y2) dy1 dy2
= ∫∫ (y1 + y2) (2) dy1 dy2, where the limits of integration are 0 to 1 for both y1 and y2 and y1+y2 <=1
= ∫[tex]0^1[/tex] ∫[tex]0^{(1-y1)}[/tex](y1 + y2) (2) dy2 dy1
= ∫[tex]0^1[/tex] (2y1 + 1) (1-y1)² dy1
= 5/12
To find V(Y1+Y2), we can use the formula V(Y1+Y2) = E[(Y1+Y2)²] - [E(Y1+Y2)]².
First, we need to find E[(Y1+Y2)^2]:
E[(Y1+Y2)²] = ∫∫ (y1+y2)² f(y1,y2) dy1 dy2
= ∫∫ (y1² + y2² + 2y1y2) (2) dy1 dy2, where the limits of integration are 0 to 1 for both y1 and y2 and y1+y2 = 1
= ∫[tex]0^1[/tex] ∫[tex]0^{(1-y1)}[/tex] (y1² + y2² + 2y1y2) (2) dy2 dy1
= ∫[tex]0^1[/tex] (1/3)y1³ + (1/2)y1² + (1/2)y1
(1/3)y1 + (1/4) dy1
= 7/12
Next, we need to find [E(Y1+Y2)]²:
[E(Y1+Y2)]² = (5/12)² = 25/144
Therefore, V(Y1+Y2) = E[(Y1+Y2)²] - [E(Y1+Y2)]² = (7/12) - (25/144) = 41/144.
Learn more about probability density function at
https://brainly.com/question/31039386
#SPJ4
THERE ARE 2 PARTS PLEASE ANSWER BOTH RIGHT TY HELPP!! There are 12 red cards, 17 blue cards, 14 purple cards, and 7 yellow cards in a hat.
Part A. What is the theoretical probability of drawing a purple card from the hat?
Part B.
In a trial, a card is drawn from the hat and then replaced 1,080 times. A purple card is drawn 324 times. How much greater is the experimental probability than the theoretical probability?
Enter the correct answers in the boxes.
A. The theoretical probability of drawing a purple card from the hat is ______.
B. The experimental probability of drawing a purple card is ____%
greater than the theoretical probability.
Part A. The probability pf drawing a purple card out of the hat is 28%.
Part B. The experimental probability is 2% greater than the theoretical probability.
Define probability?The probability that a specific event will occur is known as probability. The ratio of favourable outcomes to all other possible outcomes serves as a stand-in for the likelihood that an event will occur.
In numerous disciplines, including mathematics, statistics, physics, economics, and computer science, uncertain events are described and understood using probability theory. It is used to analyse risks, make decisions, and forecast events.
Now in the given question,
Total cards in the hat = 12 + 17 + 14 + 7 = 50 cards
Total purple cards in the hat = 14
Probability of getting a purple card from the hat = 14/50
= 0.28
= 28%
Now similarly for the experiment,
Probability = 324/1080
= 0.3
= 30%
Therefore, the experimental probability is 30% - 28% = 2% greater than the theoretical probability.
To know more about probability, visit:
https://brainly.com/question/24756209
#SPJ1
Kingsley knows that 1inch is about 2.45 centimeters. He wants to write an equation he can use to convert any given length in inches (i) to centimeters (c)
How should Kingsley write his equation?
A.) c/i = 2.54
B.) c = 2.54i
C.) i = c/2.54
Since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
What is equation ?
An equation is a statement that asserts the equality of two expressions, usually separated by an equals sign (=). The expressions on either side of the equals sign may contain one or more variables, which are unknown values that can be determined by solving the equation.
Kingsley wants to convert a given length in inches to centimeters. He knows that 1 inch is about 2.45 centimeters.
Let's call the length in inches "i" and the length in centimeters "c".
We want to find an equation that relates i and c. We know that 1 inch is about 2.45 centimeters, so we can write:
1 inch = 2.45 centimeters
To convert from inches to centimeters, we can multiply the length in inches by 2.45. So:
c = 2.45i
This is the equation Kingsley can use to convert any given length in inches to centimeters.
Alternatively, we can rearrange this equation to solve for i:
c = 2.45i
Divide both sides by 2.45:
c/2.45 = i
So the equation for converting from centimeters to inches is:
i = c/2.45
Therefore, since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
To learn more about Equation from given link.
https://brainly.com/question/19770987
#SPJ1
Need help answering all 3 of these please anyone
a. The slope of AB is [tex]m = 1[/tex] and slope of BC is [tex]m = -4/7.[/tex]
b. The best name for this quadrilateral would be a rectangle ABCD, as opposite sides and all angles are equal.
c. The mid-point of Diagonal AC is [tex](0, -1/2)[/tex]
What are the Quadrilaterals?A clοsed shape nοted fοr having sides with variοus widths and lengths is a quadrilateral. It is a clοsed, two-dimensional pοlygοn with fοur sides, fοur angles, and fοur vertices. Quadrilaterals include the trapezium, parallelοgram, rectangle, square, rhοmbus, and kite, amοng οthers.
a.
Slope is given by
[tex]A = (-2, 3) and B = (-5, 0)[/tex]
[tex]m = 1[/tex]
[tex]B = (-5, 0) and C = (2, -4)[/tex]
[tex]m = -4/7[/tex]
Thus, The slope of AB is m = 1 and slope of BC is [tex]m = -4/7[/tex] .
b. The best name for this quadrilateral would be a rectangle ABCD, as opposite sides and all angles are equal.
c. Midpoint of a segment is given by the 2 divided by of sum x and and sum of y
Thus, Diagonal [tex]A = (-2, 3)[/tex] and [tex]C = (2, -4)[/tex]
Midpoint [tex]= ((-2 + 2), (3 + -4))[/tex]
[tex]= ((0), (-1))[/tex]
Now divide them by 2
[tex]= ((0/2), (-1/2))[/tex]
[tex]= (0, -1/2)[/tex]
Therefore, the mid-point of Diagonal [tex]AC is (0, -1/2)[/tex]
Learn more about quadrilateral here:
https://brainly.com/question/29934440
#SPJ1
P, Q, R, S, T and U are different digits.
PQR + STU = 407
Step-by-step explanation:
There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:
P = 2
Q = 5
R = 1
S = 8
T = 9
U = 9
With these values, we have:
PQR = 251
STU = 156
And the sum of PQR and STU is indeed 407.
can anyone help with this triangle question
The triangle's other leg, side B, measures 12 cm in length.
Are there 180 right triangles in all?When one of the interior angles is 90 degrees, or a right angle, the triangle is said to be a right triangle. The three internal angles of a triangle add up to 180 degrees in a right triangle because one angle must always be 90 degrees and the other two must always total to 90 degrees (they are complementary).
We can observe that the given triangle is a right triangle because angle A's measure is 90 degrees. The hypotenuse, which is represented by the letter "c," is the side that is opposite the right angle. The legs are the other two sides, and they are indicated by "a" and "b".
We are told that the hypotenuse (side c) is 13 cm long and that one leg (side a) is 5 cm long. The length of the other leg must be determined (side b).
The Pythagorean theorem, which asserts that in a right triangle, can be used.
a² + b² = c²
Inputting the values provided yields:
5² + b² = 13²
25 + b² = 169
b² = 144
b = 12
To know more about triangle's visit:-
https://brainly.com/question/2773823
#SPJ1
Let f be the function given by f(x) = e-2x2.
a) Find the first four nonzero terms and the general termof the power series for f(x) about x = 0.
b) Find the interval of convergence of the power series forf(x) about x = 0. Show the analysis that leads to yourconclusion.
c) Let g be the function given by the sum of the first fournonzero terms of the power series for f(x) about x = 0. Show thatabsolute value(f(x) - g(x)) < 0.02 for -0.6<= x <=0.6.
a) The first four nonzero terms of the power series for f(x) about x=0 are
e^6 - 2x^2 + (2x^4)/2! - (2x^6)/3!
The general term of the power series is (-2)^n (2x)^(2n) / (2n)!
b) The interval of convergence of the power series is (-∞, ∞).
c) To estimate the error between f(x) and its partial sum g(x) given by the sum of the first four nonzero terms of the power series, we can use the Lagrange form of the remainder
|R4(x)| = |f(x) - g(x)| ≤ M |x|^5 / 5!
a) To find the power series for f(x) about x = 0, we can use the Maclaurin series formula
f(x) = Σ[n=0 to ∞] (fⁿ(0)/n!) xⁿ
where fⁿ(0) denotes the nth derivative of f evaluated at x=0.
In this case, we have
f(x) = e^6(-2x^2)
fⁿ(x) = dⁿ/dxⁿ(e^6(-2x^2)) = (-2)^n(2x)^ne^6(-2x^2)
So, we can write the power series as
f(x) = Σ[n=0 to ∞] ((-2)^n(2x)^n e^6(0))/n!)
= Σ[n=0 to ∞] ((-2)^n (2x)^n /n!)
To find the first four nonzero terms, we substitute n = 0, 1, 2, and 3 into the above formula
f(0) = e^6
f'(0) = 0
f''(0) = 24
f'''(0) = 0
So, the first four nonzero terms of the power series are:
e^6 - 2x^2 + (2x^4)/2! - (2x^6)/3!
The general term of the power series is
(-2)^n (2x)^(2n) / (2n)!
b) To find the interval of convergence of the power series, we can use the ratio test
lim [n→∞] |((-2)^(n+1) (2x)^(2n+2) / (2n+2)! ) / ((-2)^n (2x)^(2n) / (2n)!)|
= lim [n→∞] |-4x^2/(2n+1)(2n+2)|
= lim [n→∞] 4x^2/(2n+1)(2n+2)
Since this limit depends on the value of x, we need to consider two cases
i) If x = 0, then the power series reduces to the constant term e^6, and the interval of convergence is just x=0.
ii) If x ≠ 0, then the series converges absolutely if and only if the limit is less than 1 in absolute value
|4x^2/(2n+1)(2n+2)| < 1
This is true for all values of x as long as n is sufficiently large. So, the interval of convergence is the entire real line (-∞, ∞).
c) We can use the Lagrange form of the remainder to estimate the error between f(x) and its partial sum g(x) given by the sum of the first four nonzero terms of the power series
|R4(x)| = |f(x) - g(x)| ≤ M |x|^5 / 5!
where M is an upper bound for the fifth derivative of f(x) on the interval [-0.6, 0.6].
Learn more about power series here
brainly.com/question/28158010
#SPJ4
Individuals who identify as male and female were surveyed regarding their diets.
Vegetarian
Pescatarian
Total
89
101
190
Male
Female
Total
Meat-eater
35
37
72
12
23
35
24
14
38
Vegan
18
27
45
What is the probability that a randomly selected person is a meat-eater? Round your
answer to the hundredths place.
Answer:
To find the probability that a randomly selected person is a meat-eater, we need to add up the number of meat-eaters and divide by the total number of individuals surveyed. From the given table, we can see that there are 72 meat-eaters out of a total of 190 individuals surveyed:
Total meat-eater = 72
Total surveyed = 190
So the probability of selecting a meat-eater is:
P(meat-eater) = Total meat-eater / Total surveyed
P(meat-eater) = 72 / 190
P(meat-eater) = 0.38 (rounded to the hundredths place)
Therefore, the probability that a randomly selected person is a meat-eater is 0.38 or 38%.
in nonlinear models, the expected change in the dependent variable for a change in one of the explanatory variables is given by
The correct option is (C). In nonlinear models, the expected change in the dependent variable for a change in one of the explanatory variables is given by: ΔY = f(x₁ + ΔX₁, X₂ + ΔX₂, ..., Xk + ΔXk) - f(x₁, X₂, ..., Xk)
where ΔX₁, ΔX₂, ..., ΔXk are the changes in the respective explanatory variables. This equation represents the change in Y due to a simultaneous change in all the explanatory variables by ΔX₁, ΔX₂, ..., ΔXk. Option (C) represents the same equation in a slightly different notation. Option (A) only considers one explanatory variable, and option (B) does not include the baseline value of the function. Therefore, option (C) is the correct answer.
Learn more about nonlinear models here: brainly.com/question/20364708
#SPJ4
Complete question:
In nonlinear models, the expected change in the dependent variable for a change in one of the explanatory variables is given by
A. ΔY= f(x₁ +Xq, X2, Xx) = f(Xq, X2....XK). 1 1'
B. ΔY = F(X,+ ΔX₁₁ X2, Xx) - F(X₁₁ X2, Xk). ---
C. ΔY = f(x,+ ΔX₁₁ X₂ + ΔX2, Xx+ ΔX x) - F(X₁₁ X2, Xx). 1°
D. ΔY = f(x₁ +Xq, X2, Xk).
In a certain company, employees contribute to a welfare fund at the rate of 4% of the first $1000 earned, 3% of the next $1000, 2% of the next $1000 and 1% of any extra monies. How much will an employee who earned $20,000 contribute to the fund?
The employee will contribute 4% of the first $1000, which is $40. Then, the employee will contribute 3% of the next $1000, which is $30. Following that, the employee will contribute 2% of the next $1000, which is $20. Finally, the employee will contribute 1% of the remaining $17,000, which is $170. Therefore, the employee will contribute a total of $260 to the fund.
An employee who earned $20,000 will contribute $260 to the welfare fund.
To calculate the contribution to the welfare fund for an employee who earned $20,000, we can break down the earnings into different tiers based on the given rates.
The first $1000 will have a contribution rate of 4%.
Contribution for the first $1000 = 4% of $1000 = $40.
The next $1000 will have a contribution rate of 3%.
Contribution for the next $1000 = 3% of $1000 = $30.
The next $1000 will have a contribution rate of 2%.
Contribution for the next $1000 = 2% of $1000 = $20.
The remaining amount above $3000 ($20,000 - $3000 = $17,000) will have a contribution rate of 1%.
Contribution for the remaining amount = 1% of $17,000 = $170.
Now, let's sum up the contributions for each tier:
$40 + $30 + $20 + $170 = $260.
Therefore, an employee who earned $20,000 will contribute $260 to the welfare fund.
To learn more about welfare fund:
brainly.com/question/29851713
#SPJ2
Find the Z-score for each of the following IQ scores
90 160(Einstein's IQ)
Answer:
z=3.75
Step-by-step explanation:
when comparing the distribution of the population of individual scores to the distribution of means, the distribution of means will always have
The population distribution of scores has a similar average as the distribution of means.
In a sample distribution of means, the distribution will roughly resemble a normal distribution, the sampling distribution's mean will be equal to the population's mean, and the sampling distribution's standard deviation is based on the Central Limit Theorem.
The central limit theorem (CLT) of probability theory states that the distribution of a sample variable tends towards a normal distribution (i.e., a "bell curve") as the sample size increases, under the premise that all samples are of equal size and regardless of the population's actual distribution shape.
In other terms, the central limit theorem (CLT) is a statistical presumption that the mean of all sampled variables from the same population will be substantially equal to the mean of the entire population, given a large enough sample size from a population with little volatility. These samples likewise resemble a normal distribution in accordance with the law of large numbers, with their variances nearly matching the variance of the population as the sample size rises.
To know more about central limit theorem, click the below link
https://brainly.com/question/18403552
#SPJ4
the actual question is :
When comparing the size of the standard error of the mean with the size of the standard deviation of the underlying distribution of individual scores:
a. the standard error of the mean is always larger
b. the standard error of the mean is always smaller
c. the standard error of the mean is sometimes larger and sometimes smaller, depending on the sample size
d. none of these
Given that (1, 2, 3] System{1, 4, 7,6] for a system known to be LTI, compute the system's impulse response h[n] without using z-transforms.
Given that (1, 2, 3] System{1, 4, 7,6] for a system known to be LTI, the impulse response of the system: h[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2]
To compute the impulse response h[n] of a linear time-invariant (LTI) system given its input-output relationship, we can use the convolution sum:
y[n] = x[n] * h[n]
y[n] = (1/2)*(x[n] + 2x[n-1] + 3x[n-2])
y[n] = (1/2)*(δ[n] + 2δ[n-1] + 3δ[n-2])
y[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2]
Thus, the impulse response of the system is:
h[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2],where δ[n] is the impulse signal.
To learn about impulse response visit:
https://brainly.com/question/30426431
#SPJ4
Samir's statement shows a previous balance of $5,336.22, a payment of $607, and a
new transaction totaling $186. What is his new balance if his APR is 29.0%? Round
answer to hundredths place if answer does not have a hundredths place this use
zeros so it does. Do not include the units. Be sure to attach work for credit
Your Answer:
Samir's new balance is $5,044.17.
To calculate Samir's new balance, add the previous balance, subtract the payment, add the new transaction, and multiply by the interest rate for one period. The following formula can be used to calculate the interest for a single period:
balance * APR / 12 = interest
where APR stands for annual percentage rate and 12 represents the number of months in a year.
When we apply this formula to Samir's balance and APR, we get:
5336.22 * 0.29 / 12 = 128.95 in interest
As a result, the total new balance is:
5336.22 - 607 + 186 + 128.95 = 5044.17
We get the following when we round to the nearest hundredth:
$5,044.17
As a result, Samir now has a balance of $5,044.17.
To know more similar question visit:
https://brainly.com/question/30938788
#SPJ1
59, 60, 61, 62, 63, 64, 65, and 66 Find the values of x for which the series converges. Find the sum of the series for those values of x. 59. § (-5)".z" n=1 Answer + 00 60. Σ(α + 2)" n=1 61. (x - 2)" 3" n=0 Answer + 62. (-4)" (x - 5) n=0 00 63. 2" ch NO Answer
The values of x for which the series converges is x ∈ (-1/5, 1/5). The sum of the series for those values of x is (-5x)/(1 + 5x).
The series is [tex]\Sigma^{\infty}_{n=1}(-5)^nx^n[/tex].
We can write this series as [tex]\Sigma^{\infty}_{n=1}(-5x)^n[/tex].
This is a infinite geometric series with first term a = -5x and common ration r = -5x.
It is convergent when
|r| < 1
|-5x| < 1
|-5| |x| < 1
5|x| < 1
Divide by 5 on both side, we get
|x| < 1/5
The series is convergent when x ∈ (-1/5, 1/5).
Sum of the series is
Sₙ = a/1 - n
Sₙ = (-5x)/{1 - (-5x)}
Sₙ = (-5x)/(1 + 5x)
To learn more about series converges link is here
brainly.com/question/15415793
#SPJ4
The complete question is:
Find the values of x for which the series converges. Find the sum of the series for those values of x.
[tex]\Sigma^{\infty}_{n=1}(-5)^nx^n[/tex]
Find an equation of the plane that passes through the given point and contains the specified line. (-1, 0, 1); x = 5t, y=1+t, z= -t
The equation of the plane passing through the point (-1,0,1) and containing the lines x = 5t, y=1+t, z= -t is y + z = 1 .
We substitute , t=0 in the given line equations ,
we get; x=0 , y = 1 and z = 0 ;
So, the plane contain the line , Thus plane will also pass through (0,1,0);
Now, we have that plane passes through (-1,0,1) and (0,1,0), direction ratios of line joining these 2 points are ;
⇒ DR₁ = (-1-0 , 0-1 , 1-0) = (-1,-1,1);
So , the line can be written as x/5 = (y-1)/1 = z/-1 = t;
So, the direction ratio of this line will be :
⇒ DR₂ = (5 , 1 , -1);
The Direction Ratio of normal to the plane is = DR₁ × DR₂;
= (-1,-1,1) × (5,1,-1);
= [tex]\left|\begin{array}{ccc}i&j&k\\-1&-1&1\\5&1&-1\end{array}\right|[/tex]
On solving ,
We get;
= 4j + 4k = (0,4,4) ;
We know that for a normal with direction ratios (a,b,c), equation of plane is written as ax + by + cz = d;
We got direction ratio for plane normal = (0,4,4);
So, equation of plane is 0x+ 4y + 4z = d;
the plane passes through the point (-1,0,1) ;
⇒ 4(0) + 4(1) = d ⇒ d = 4;
we get the equation of plane is 4y + 4z = 4;
⇒ y + z = 1.
Therefore, the equation of the required plane is y + z = 1.
Learn more about Planes here
https://brainly.com/question/27190150
#SPJ4
given natural numbers a and b not both equal to 0, we know that there exist integers k and l with ak bl
The equation can be rearranged to the form y = -qx + r. This is the equation of a straight line, which can be graphed. The point of intersection of the two lines, ak + bl = 0 and y = -qx + r, is the solution for the two variables (k and l).
The equation ak + bl = 0 is a linear equation in two variables and is solved using the method of elimination. The equation can be written in the form ax + by = c, where a, b, c are constants. To solve this equation, both sides of the equation should be divided by the coefficient of one of the variables (a or b). This will result in a equation of the form x + qy = r, where q and r are constants. Then, the equation can be rearranged to the form y = -qx + r. This is the equation of a straight line, which can be graphed. The point of intersection of the two lines, ak + bl = 0 and y = -qx + r, is the solution for the two variables (k and l). The two variables can then be calculated using the point of intersection by substituting the x and y values into the two equations. In this way, the two variables k and l can be found such that ak + bl = 0.
Learn more about variables here:
https://brainly.com/question/2466865
#SPJ4
What are the integers k and l such that ak + bl = 0?
Write the equation for a parabola with a focus at (2,2) and a directrix at x=8
Answer:
(y - 2)² = -12(x - 5)
Step-by-step explanation:
A parabola is a locus of points, which are equidistant from the focus and directrix;
Generic cartesian equation of a parabola:
y² = 4ax, where the:
Focus, S, is: (a, 0)
Directrix, d, is: x = -a
a > 0
Put simply, a is the horinzontal difference between the directrix and the vertex or between the vertex and focus;
Always a good idea to do a quick drawing of the graph;
We are the told the focus, F, is: (2, 2) and directrix, d, is: x = 8;
First thing to note, the vertex, or turning point will be in line with the focus vertically, i.e. they will share the same y-coordinate;
Horizonatally, it will be halfway between the focus and the directrix, i.e. halfway between 8 and 2;
Therefore, the vertex will be will be (5, 2);
We can also work out a:
a = 8 - 5 = 5 - 2
a = 3
Substituting this value of a into the generic cartesian equation:
y² = 4(3)x
y² = 12x
The focus and directrix will be:
S: (3, 0)
d: x = -3
Next thing to note, a parabola curves away from the directrix;
In this case, the directrix is x = 8, so the vertex will be the right-most point on the parabola, it will curve off to the left and the focus will also be to the left;
What we want to do is compare with y² = 12x;
This parabola, has a vertex (0, 0), which is the left-most point that curves off to the right and a focus also to the right;
Since we know the formula of this parabola, if we figure out how to transform it into the one in the question, we can find out it's equation;
What we should recognise first is that the parabola in the question is reflected in the y-axis, compared to y² = 12x;
So we apply the transformation that corresponds to this, i.e. use the f(-x) rule:
y² = 12(-x)
y² = -12x
Now the two graphs will have the same shape and orientation;
The focus and directrix will also be affected:
S: (-3, 0)
d: x = 3
Now, the only remaining difference would be the coordinates of the focus and directrix of the two graphs;
The focus of the graph in the question is 5 units to the right and 2 units upwards compared to the focus of y² = -12x;
The directrix is 5 units to the right of that of y² = -12x;
So we apply a translation transformation of 5 units right and 2 units up, like so:
(y - 2)² = -12(x - 5)
Replace y with (y - 2) to translate up 2 units;
Replace x with (x - 5) to translate 5 units right.
We know have a parabola with focus, (2, 2), directrix, x = 8 and vertex, (5, 2), i.e. the parabola in the question;
Hence, the equation of the parabola in the question is:
(y - 2)² = -12(x - 5)
It might seem a bit long and complicated to begin with, but can be done very quickly if you can get used to it.