Answer:
11,232,000 license plates are possible.
Step-by-step explanation:
The order in which the symbols are chosen is important(ABC is a different plate than BAC), which means that the permutations formula is used to solve this question.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
In this question:
3 letters from a set of 26.
3 digits from a set of 10. So
[tex]T = P_{26,3}P_{10,3} = \frac{26!}{23!} \times \frac{10!}{7!} = 11232000[/tex]
11,232,000 license plates are possible.
The final price of the textbook for an English literature course is 13.5% more than the listed price when tax and shipping costs are included. If the listed price is $147, what is the final price of the textbook?
(Round to the nearest dollar.)
Answer:
The final price of the textbook rounded to the nearest dollar is $167
Step-by-step explanation:
To solve this problem, we need to find out what 13.5% of $147 equals.
13.5% = 0.135
0.135 x $147 = $19.845
$147 + 19.845 = 166.845
Round to the nearest dollar to get $167
factor the expression completely. -30+36x
Answer:
6 (-5 + 6x)
Step-by-step explanation:
Rewrite the number 30 as 6×5 and 36 as 6×6
Factor out the common number, which is 6
so, 6 (-5 + 6x)
Answer:
-6(5-6x).
Just factor out -6 from the expression. Thank you!
Dylan has a coworker who is always showing up late and then not finishing his work on time. It's frustrating the other members of the team. What can he do that might help the situation? a) Complain about the coworker to other team members O b) Ask his coworker if he understands his job responsibilities c) Tell his boss that the coworker is slacking off O d) Complete his coworker's work for him
A particle is moving such that its height h at time t is given by h(t) = 2 + 8t - 3t^2 + 1/5t^3. The average velocity of the particle on the period [0,3] is
[tex]\\ \Large\sf\longmapsto h(t)[/tex]
[tex]\\ \Large\sf\longmapsto 2+8t-3t^2+\dfrac{1}{5}t^3[/tex]
[tex]\\ \Large\sf\longmapsto 2+8(3)-3(3)^2+\dfrac{1}{5}(3)^3[/tex]
[tex]\\ \Large\sf\longmapsto 2+24-3(9)+\dfrac{27}{5}[/tex]
[tex]\\ \Large\sf\longmapsto 26-27+5.4[/tex]
[tex]\\ \Large\sf\longmapsto -2+5.4[/tex]
[tex]\\ \Large\sf\longmapsto h(t)=3.4m[/tex]
If (x^2−1)/(x+1) = 3x + 5, then x + 3 =
(A) -3
(B) -2
(C) 0
(D) 2
(E) 4
The principle
P=6000 A=6810 T=3 years
Answer:
incomplete question
Step-by-step explanation:
that is what is wrong with your question
Answer:
r = 4.3%
Step-by-step explanation:
6810= 6000(x)^3
6810/6000= (x)^3
x = 1.043114431
r = 043114431
Write a quadratic equation with integer coefficients having the given numbers as solutions.
9514 1404 393
Answer:
x² -22 = 0
Step-by-step explanation:
The roots are opposites, so the equation is pretty simple.
x = ±√22
x² = 22 . . . . . square both sides
x² -22 = 0 . . . . your quadratic equation in standard form
Convert 2546 in base 10 to base 5
Answer:
40141
Step-by-step explanation:
What are the divisible number(s) for 430?
Answer:
The numbers that 430 is divisible by are 1, 2, 5, 10, 43, 86, 215, and 430.
Estimate the product of 0.235 and 13.467 to the nearest hundredth. Round each value to the nearest hundredth before multiplying. Your final answer should also be rounded to the nearest hundredth.
Answer:
0.235 = 0.24
13.467 = 13.47
0.24+13.47=13.71
A $22,000 loan was taken out. If $24,805 is due at the end of the loan after being compounded daily at 2.5%, how many
years was the loan for? (Round to the nearest tenth of a year)
Provide your answer below
9514 1404 393
Answer:
4.8 years
Step-by-step explanation:
Solving the compound interest formula for the number of years gives ...
t = log(A/P)/(n·log(1 +r/n))
where principal P invested at rate r compounded n times per year produces value A after t years.
t = log(24805/22000)/(365·log(1 +0.025/365)) ≈ 4.800
The loan was for 4.8 years.
A construction crane lifts a bucket of sand originally weighing 145 lbs at a constant rate. Sand is lost from the bucket at a constant rate of .5lbs/ft. How much work is done in lifting the sand 80ft?
Answer: [tex]10,000\ lb.ft[/tex]
Step-by-step explanation:
Given
Initial weight of the bucket is [tex]145\ lb[/tex]
It is lifted at constant rate and rate of sand escaping is [tex]0.5\ lb/ft[/tex]
At any height weight of the sand is [tex]w(h)=145-0.5h[/tex]
Work done is given by the product of applied force and displacement or the area under weight-displacement graph
from the figure area is given by
[tex]\Rightarrow W=\int_{0}^{80}\left ( 145-0.5h \right )dh\\\\\Rightarrow W=\left | 145h-\dfrac{0.5h^2}{2} \right |_0^{80}\\\\\Rightarrow W=\left [ 145\times 80-\dfrac{0.5(80))^2}{2} \right ]-0\\\\\Rightarrow W=11,600-1600\\\\\Rightarrow W=10,000\ lb.ft[/tex]
Let S be a sample of size 31 from a normally distributed population Omega . It is given that the average of the data in S is 120 and the standard deviation is 18. Construct a 90% confidence interval [a, b] for the population mean based on the data in the sample.
Answer:
48 NO seña hfjxsmisns sisbxbd
Step-by-step explanation:
nzhejsbxbddndbhwksdyanvxydjd4mnnneknwnennnnnnPlease help!!!!
CE is tangent to this circle, CD is a radius and ECB=48 what is BAC
Answer:
48degrees
Step-by-step explanation:
From the circle geometry shown, traingle BDC is an isosceles triangle which shows means that their base angels are the same. Hence;
<B = <C
<CBD + <BCD + <D = 180
<BCD + <BCD + <D =180
2<BCD + <BDC = 180
Get <BCD;
<BCD+ <ECB = 90
<BCD + 48 = 90
<BCD = 90 - 48
<BCD = 42degrees
Get <BDC
2<BCD + <BDC = 180
2(42)+ <BDC = 180
84 + <BDC = 180
<BDC = 180 - 84
<BDC = 96
Since angle at the centre is twice that at the circumference, then;
<BAC = 1/2(<BDC )
<BAC = 96/2
<BAC = 48degrees
13.
а/8 = $1.25
Can someone help explain
Answer:
a= $10.00
Step-by-step explanation:
It's very simple. Move /8 to the other side of the equation. It should give you $1.25 x 8. Solve the multiplication and you should get $10.00.
If I didn't make my explanation clear enough, please comment. I sometimes don't even explain myself very well.
Answer:
a = 10
Step-by-step explanation:
a/8 = 1.25
multiply both sides by 8 to isolate a.
(8)(a/8) = 1.25(8)
which gives you
a = 1.25(8)
which simplifies to
a = 10
Write the expression as a single trigonometric function.
cos 5x cos 6x- sin 5x sin 6x
Answer:
[tex]\cos(11x)[/tex]
Step-by-step explanation:
Given
[tex]\cos 5x\ \cos 6x- \sin\ 5x \sin 6x[/tex]
Required
Express as a single function
In trigonometry, we have:
[tex]\cos(A + B) = \cos A\cos B - \sin A \sin B[/tex]
By comparison, we have
[tex]\cos(5x + 6x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]
[tex]\cos(11x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]
Help on 3,5,7,9,11,13.15,17, please thank you
Answer:
3. 6a+60
5. 25+5w
7. 90-10t
11. 4.5-12c
13. f-2
15. 12z+1.5
Step-by-step explanation:
3.
6(a+10)
Multiply 6 by both factors in the parentheses, in this case, a and 10.
6*a = 6a
6*10 = 60
6(a+10) = 6a + 60
I only put the step- by- step explanation for #3, but you should be able to figure the rest out with that.
help with math it would help with summer school
Answer:
[tex]A). \ \ \frac{(72\pi + 9\pi )}{4} \ in^2[/tex]
Step-by-step explanation:
Given;
radius of the circle, r = 9 inches
the part of the circle cut out = one-forth of the complete circle
the angle of the sector cut out θ= ¹/₄ x 360 = 90⁰
Area of the complete circle = πr² = π x 9² = 81π in²
Area of the sector cut out = [tex]= \frac{\theta }{360} \pi r^2 = \frac{90}{360} \pi (9^2) = \frac{1}{4} \times 81\pi = \frac{81 \pi}{4} = \frac{(72\pi + 9\pi)}{4} \ in^2[/tex]
Therefore, the only correct option is A. [tex]\frac{(72\pi + 9\pi )}{4} \ in^2[/tex]
Find the x- and y-intercept of the line
X+4y=36
Use the point-slope form from the previous question and fill-in the following table of values.
The point-slope equation went through the following 2 points: (0, -1) and (1, 2)
(0, -1)
(1, 2)
(2, )
(3, )
Answer:
Step-by-step explanation:
Slope of line through (0,-1) and (1,2) = (-1 - 2)/(0 - 1) = 3
Point-slope equation for line of slope 3 that passes through (0,-1):
y+1 = 3(x-0)
When x = 2:
y+1 = 3(2-0)
y = 3·2 - 1 = 5
When x = 3:
y+1 = 3(3-0)
y = 3·3-1 = 8
the cost of 1 kg tomato is RS . 75.Find the cost of 14 kg
Answer:
Cost of 1kg tomato=rs.75
Cost of 14kg tomato=(75×14)
rs.1050
Find the area of a triangle with legs that are: 12 m, 15 m, and 9 m.
Answer:
108 meters squared or m^2
Step-by-step explanation:
* means multiply
15 is probably hypotenuse because its the longest
12 and 9 are probably base and height
area = base * height
area = 12 * 9
area = 108
Answer:
54m^2
Step-by-step explanation:
find the missing length indicated
Answer:
192
Step-by-step explanation:
geometric mean theorem :
with p and q being the segments of the Hypotenuse, then
h = x = sqrt(p×q)
p = 144
q = 400-144 = 256
h = x = sqrt(144×256) = 12×16 = 192
The fuel efficiency of a vehicle is 28 miles per gallon and gasoline cost 2.25 per gallon. What is the cost per mile to drive the vehicle?
Answer:
$.08 per mile
Step-by-step explanation:
$2.25 gallon
------------ * ---------------
gallon 28 miles
$2.25
-------------
28 miles
$.080357143 per mile
Rounding to the nearest cent
$.08 per mile
Domain and range of g(x)= 5x-3/2x+1
Solve for domain and range?
Một đài khí tượng thủy văn muốn xem xét khả năng dự báo thời tiết của mình. Từ số liệu thống kê chỉ ra rằng: xác suất dự báo có nắng trong ngày không mưa là 0,95; có nắng trong ngày mưa là 0,8; xác suất một ngày sẽ không mưa là 0,6. a. Tính xác suất dự báo ngày sẽ có nắng. b. Biết đã có dự báo là ngày có nắng, tính xác suất để ngày đó là ngày không mưa.
Answer:
ask in English then I can help u
a recent survey shows that 66% of college students have a cat and 37% have a HBO subscription. Assuming these two events are independent, what is the probability that a randomly selected student has neither a cat nor HBO
Answer:
[tex]P(C'\ and\ H') =0. 2178[/tex]
Step-by-step explanation:
Let
[tex]C \to[/tex] Student with cat
[tex]H \to[/tex] Student has HBO sub
[tex]P(C) = 66\% \\ P(H) = 37\%[/tex]
Required
[tex]P(C'\ and\ H')[/tex]
This is calculated as:
[tex]P(C'\ and\ H') = P(C') * P(H')[/tex]
Using complement rules, we have:
[tex]P(C'\ and\ H') = [1 - P(C)] * [1 - P(H)][/tex]
So, we have:
[tex]P(C'\ and\ H') = [1 - 66\%] * [1 - 37\%][/tex]
[tex]P(C'\ and\ H') = [33\%] * [66\%][/tex]
[tex]P(C'\ and\ H') =0. 2178[/tex]
(d) (8x2 + 7y2 – z2 + 2yz + 3xz – 5xy) * (2x – 3y) vertical method
Answer:
(8x²+7y²–z²+2yz+3xz–5xy) × ( 2x–3y)
= (16x³+14xy²–2z²x+4yzx+6x²z–10x²y –24yx²–21y³+3z²y–6y²z–9xzy+15xy²)
=( 16x³+29xy²–2z²x–5xyz+6x²z–34x²y–21y³+3z²y–6y²z)
[tex] = 16 {x}^{3} - 21 {y}^{3} - 2 {z}^{2}x + 3 {z}^{2} y - 5xyz - 6 {y}^{2} z + 6 {x}^{2} z - 34 {x}^{2} y+ 29x {y}^{2} [/tex]
I hope I helped you^_^
1. Find the volume of the shipping box using the two methods and show your work plzzzzzzzz i neeeeeeeeeeeeeed help
Step-by-step explanation:
Measure the width, length and height of the shipping box in inches. Multiply the width, length and height of the box to calculate its volume in cubic inches. For example, if the box is 20 inches wide, 24 inches long and 16 inches high, then the volume is (20)(24)(16) = 7,680 cubic
Answer:
The volume of the shipping box would be 36 9/16
Step-by-step explanation:
One method to find the volume of the shipping box would be (l)(w)(h)
one we plug in our dimensions the equation would become 3 1/4 x 3 x 3 3/4
To simplify this we would first
Multiply
3 1/4 x 3 x 3 3/4 = 39/4 x 3 3/4
The bolded parts are the pieces we are working on
3 1/4 as an improper fraction is 13/4
13/4 x 3 = 13 x 3/4 = 39/4
- The second step would be to
Convert the mixed number to an improper fraction.
3 3/4 = ( 3 × 4 ) / 4 + 3/4 = 12 + 3 / 4 = 15/4
Now we have to Multiply
39/4 x 15/4 = 39 x 15 / 4 x 4 = 585/16
Lastly, we have to simplify
585/16 = 36 9/16
Which of the relations given by the following sets of ordered pairs is a function?
o {(5,2), ( - 4, 2), (3,6), (0,4), (- 1, 2)}
o {(5, 4), (5, 6), (5,8), (5, 10), (5, 12)}
{(-3, - 2), ( - 2, – 1), (0, - 1), (0, 1), (1, 2)}
{(7,3), ( – 6,8), ( – 3,5), (0, – 3), (7, 11)}
9514 1404 393
Answer:
(a) {(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)}
Step-by-step explanation:
The only relation with no repeated x-values is the first one. The first relation is a function.