Answer:
Helo ....
so this answer would be First class levers
becoz...
First-class levers have a considerable practical advantage over the other types of levers. They convert a downward moving force into a lifting force
is it possible to mark it brainliest <3
An ice-skater with a mass of 80kg is holding a bowling ball with a mass of 8 kg. Suppose that the skater tosses the bowling ball forward with a speed of 6 m/s. What is the skater's reactive velocity? Show all work.
Answer:
0.6 m/s
Explanation:
The details of the masses and velocities are;
The mass of the ice skater, m₁ = 80 kg
The mass of the ball, m₂ = 8 kg
The speed with which the skater tosses the ball forward, v₂ = 6 m/s
Therefore;
According to the principle of conservation of linear momentum, we have;
m₁·v₁ = m₂·v₂
Where;
v₁ = The skater's reactive velocity
Therefore, we get;
80 kg × v₁ = 8 kg × 6 m/s
v₁ = 8 kg × 6 m/s/(80 kg) = 0.6 m/s
The skater's reactive velocity, v₁ = 0.6 m/s.
A stone is thrown vertically upwards with an initial velocity of 20m/sec. Find the maximum height ot reaches and the time taken by it to reach the height. (g=10m/s2)
plz short numerical ASAP
Answer:
The height reached is 20m, The time taken to reach 20m is 2 seconds
Explanation:
Observing the equations of motion we can see that the following equation will be most helpful for this question.
[tex]v^{2} = u^{2} + 2as[/tex]
We are given initial velocity, u
We know that the stone will stop at its maximum height, so final velocity, v
Acceleration, a
And we are looking for the displacement (height reached), s
Substitute the values we are given into the equation
[tex]0^{2} = 20^{2} + 2(10)s[/tex]
Rearrange for s
[tex]0^{2} -20^{2} =20s[/tex]
[tex]-400=20s[/tex]
[tex]\frac{-400}{20} =s[/tex]
s = -20 (The negative is just showing direction, it can be ignored for now)
The height reached is 20m
Use a different equation to find the time taken
[tex]s = vt - \frac{1}{2} at^{2}[/tex]
Substitute in the values we have
[tex]-20=(0)t - \frac{1}{2} (10)t^{2}[/tex]
Rearrange for t
[tex]-20 =0 -5 t^{2}[/tex]
[tex]\frac{-20}{-5} =t^{2}[/tex]
[tex]4 = t^{2}[/tex]
t = 2s
The time taken to reach 20m is 2 seconds
A 20-N force acts on a 5-kg object at rest. How fast will
the object accelerate on a frictionless surface?
A. 15 m/s^2
B. 25 m/s^2
C. 4 m/s^2
D. 100 m/s^2
Answer:
C.
Explanation:
Force = Mass * Acceleration
So 20 = 5* Acceleration
4 = Acceleration
The acceleration of the object is 4 m/s².
To find the acceleration, the given values are:
Force = 20 N
Mass = 5 kg
Define acceleration.Definition:
As it was given as the values of Force and mass, here acceleration definition depends on the Newton's second law of motion.
Using the second law of motion, the force will be equal to the product of the mass and the acceleration.
As formula,
F = ma Newton
Here, to find acceleration,
a =f/ m
Substituting the values,
= 20 / 5
a = 4m/s².
So, the acceleration was 4 m/s². The Option C is the correct answer.
Learn more about acceleration,
https://brainly.com/question/12550364
#SPJ6
Which symbol and unit of measurement are used for electric current?
symbol. A, unit: 1
symbol: C, unit: A
symbol l; unit C
symbol: 1; unitA
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
newtons second law lab report link
Answer:
ghittu iihg उह्स उउह्स उग्य्किव जिक्ह्ब
A sample of nitrogen gas is inside a sealed container. The volume of the container decreases while the temperature is kept constant. This is a ________ process.
a) isothermal
b) constant-volume
c) adiabatic
d) isobaric
A vector points -43.0 units along the x axis, and 11.1 units along the y axis. Find the Direction of the vector.
Answer:
Explanation:
The direction of the vector implies only its angle, not its magnitude. The direction of the vector is found in
[tex]tan^{-1}(\frac{y}{x})[/tex] so
[tex]tan^{-1}(\frac{11.1}{-43.0})=-14.5[/tex] but since we are in QII (where x is negative and y is positive) we have to add 180 to this number to get a direction of 165.5 degrees
the internal resistance of each of the following cells E1 and E2 shown in the figure above is 2ohms. calculate the total current in the circuit
Answer:
The total current in the circuit is 0.8 A.
Explanation:
internal resistance of each battery = 2 ohm
Total emf of the circuit, E = E1 + E2 = 2 = 2 = 4 V
Now total internal resistance is
[tex]r = \frac{2\times 2}{2 + 2}= 1 ohm[/tex]
Total resistance, R = 4 = 1 = 5 ohm
Let the current is I.
E = I R
4 = I x 5
I = 0.8 A
1. How much heat energy ( Q ) is required to heat 2.0 kg of copper from 30.0 oC to 80.0 oC?
Answer:
Heat capacity, Q = 38500 Joules
Explanation:
Given the following data;
Mass = 2 kg
Initial temperature, T1 = 30°C
Final temperature, T2 = 80°C
Specific heat capacity of copper = 385 J/Kg°C
To find the quantity of heat required;
Mathematically, heat capacity is given by the formula;
[tex] Q = mcdt [/tex]
Where;
Q represents the heat capacity or quantity of heat.
M represents the mass of an object.
C represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 80 - 30
dt = 50°C
Substituting the values into the formula, we have;
[tex] Q = 2 * 385*50[/tex]
Heat capacity, Q = 38500 Joules
The particles of a substance stay close together but slide past one another as they move. When thermal energy is removed from the substance, the particles are forced into fixed positions by their attraction to one another. What change in state has occurred?
O A. Gas to solid
O B. Liquid to solid
O C. Solid to liquid
O D. Gas to liquid
Explanation:
The Answer is B.I think so may be it's wrong so kindly get any confirmation from your teacher about this
determine the metacentric height of a cylinder of 4 m diameter and height of 4m floating in water with its axis vertical, if period of oscillation is 6 seconds
Answer:
-0.383 m
Explanation:
Diameter of cylinder = 4m therefore r = 2
height of cylinder ( H ) = 4 m
specific gravity = 0.6 ( assumed )
depth of immersion = 'h'
Determine the metacentric height
weight of cylinder in water = water displaced
= 0.6 * 1000 * πr^2* H = 1000 * πr^2* h
= 0.6 * 4 = h
∴ h = 2.4 m
hence the depth of center of buoyancy from free space = h /2 = 1.2 m
The metacentric height can be calculated using the formula below
Gm = Io / Vsubmerged - BG
attached below is the remaining solution
The Indianapolis speedway consists of a 2.5 mile track having four turns, each 0.25 mile long and banked at 9 12'
Answer: Your question is missing below is the question
Question : What is the no-friction needed speed (in m/s ) for these turns?
answer:
20.1 m/s
Explanation:
2.5 mile track
number of turns = 4
length of each turn = 0.25 mile
banked at 9 12'
Determine the no-friction needed speed
First step : calculate the value of R
2πR / 4 = πR / 2
note : πR / 2 = 0.25 mile
∴ R = ( 0.25 * 2 ) / π
= 0.159 mile ≈ 256 m
Finally no-friction needed speed
tan θ = v^2 / gR
∴ v^2 = gR * tan θ
v = √9.81 * 256 * tan(9.2°) = 20.1 m/s
An electron experiences a downward force of 12.8×10-19 N while traveling in a magnetic field of 8×10-5 T west, what is the magnitude of the velocity?
Answer:
[tex]v=10^5\ m/s[/tex]
Explanation:
Given that,
Magnetic force acting on an electron, [tex]F=12.8\times 10^{-19}\ N[/tex]
The magnitude of the magnetic field,[tex]B=8\times 10^{-5}\ T[/tex]
We need to find the magnitude of the velocity. We know that the magnetic force is given by :
[tex]F=qvB[/tex]
Where
v is the velocity
So,
[tex]v=\dfrac{F}{qB}\\\\v=\dfrac{12.8\times 10^{-19}}{1.6\times 10^{-19}\times 8\times 10^{-5}}\\\\v=10^5\ m/s[/tex]
So, the magnitude of velocity is[tex]10^5\ m/s[/tex].
An object is free falling near the surface of the earth. At a certain instant in time, it is falling downward at a rate 25.0 m/s. After 2.5 seconds, what are its acceleration and velocity?
Answers:
acceleration = 9.81 m/s^2velocity = 49.5 m/sThe values are approximate.
==========================================================
Explanation:
When near the surface of the earth, the acceleration of gravity is roughly 9.81 m/s^2. This means that after each second passes, the velocity increases by roughly 9.81 m/s.
After 2.5 seconds, the velocity increases by 2.5*9.81 = 24.525 m/s = 24.5 m/s
If it was already going 25.0 m/s, then it bumps up to 25.0+24.5 = 49.5 m/s which is also approximate.
The acceleration of gravity stays the same when the object is close to the surface of the earth, so it stays at roughly 9.81 m/s^2
Side note: I'm ignoring air resistance (aka air friction or drag) since that greatly complicates things, and we would need to know the shape and surface area of the object. The material type would also be relevant info as well.
the direction of applied force has to be_____ to the distance in order to say work is done
Answer:
Explanation:
The direction of the applied force has to be parallel to the distance an object moved in order to say that work has been done.
what do you mean by supplementary quantities and its unit?
$ \large\boxed{ \sf \red{More ~Info :}}$
The units of supplementary quantities are dimensionless units.
[tex] \\ [/tex]
You are trying to hold your 550 g physics books with your hand against a vertical wall. Using a force sensor you know that the force you are applying is 10.0 N. Below the book on the floor you have placed a motion sensor. The position time graph for the book is given. Find the coefficient of kinetic friction.
The book's position is changing linearly with time, so its velocity is constant. This means that the net force acting on the book in the direction parallel to the surface is
∑ F = 10.0 N - n = 0
where n is the magnitude of the normal force on the book due to the wall, and the net force perpedicular to the surface is
∑ F = f - (0.550 kg) g = 0
where f is the mag. of kinetic friction, and f = µn where µ is the coefficient of kinetic friction.
Then
• n = 10.0 N
• f = (0.550 kg) g = 5.39 N
• 5.39 N = µ (10.0 N)
==> µ = 0.539
Answer:
Above answer
Explanation:
The book's position is changing linearly with time, so its velocity is constant. This means that the net force acting on the book in the direction parallel to the surface is
∑ F = 10.0 N - n = 0
where n is the magnitude of the normal force on the book due to the wall, and the net force perpedicular to the surface is
∑ F = f - (0.550 kg) g = 0
where f is the mag. of kinetic friction, and f = µn where µ is the coefficient of kinetic friction.
Then
• n = 10.0 N
• f = (0.550 kg) g = 5.39 N
• 5.39 N = µ (10.0 N)
==> µ = 0.539
25)Two forces are acting on a block in opposite directions as shown in the figure above
(a) Calculate the net force acting on the block.
(b) In which direction will the net force tend to move the object?
(c) Will any other force try to oppose the motion of the block?
[tex]\boxed{ \sf{Answer}} [/tex]
____________________
(a) A = 5 kgwt
B = 10 N
First convert 5 kgwt to N,
[tex]5 \times 9.8 \\ = 49 \: N[/tex]
Net force [the forces are acting in 2 opposite directions]
[tex]A - B \: \\ = 49 - 10 \\ = 39 \: N[/tex]
____________________
(b) Since, the force is greater by A ↦the block will move towards B, i.e, to the right.
____________________
(c) Frictional force will try to oppose the motion of the block but since A has greater force than B, the frictional force will be resisted.
____________________
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ ツ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
Light of wavelength 530.00 nm is incident normally on a diffraction grating, and the first‑order maximum is observed to be 33.0∘ from the normal. How many slits per millimeter are marked on the grating?
Answer:
1028 slits/mm
Explanation:
We are given that
Wavelength of light, [tex]\lambda=530nm=530\times 10^{-9} m[/tex]
1nm=[tex]10^{-9} m[/tex]
[tex]\theta=33^{\circ}[/tex]
n=1
We have to find the number of slits per mm are marked on the grating.
We know that
[tex]dsin\theta=n\lambda[/tex]
Using the formula
[tex]dsin33^{\circ}=1\times 530\times 10^{-9}[/tex]
[tex]d=\frac{530\times 10^{-9}}{sin33^{\circ}}[/tex]
[tex]d=9.731\times 10^{-7} m[/tex]
1m=[tex]10^{3}mm[/tex]
[tex]d=9.731\times 10^{-7}\times 10^3[/tex]mm
[tex]d=0.0009731mm[/tex]
Number of slits=[tex]\frac{1}{d}[/tex]
Number of slits=[tex]\frac{1}{0.0009731}[/tex]/mm
Number of slits=1028/mm
Hence, 1028 slits/mm are marked on the grating.
Answer:
1027.6 lines per mm.
Explanation:
wavelength = 530 nm
order, m= 1
Angle = 33 degree
Let the slits per mm is 1/d.
So,
[tex]m \lambda = d sin A\\\\1\times 530\times 10^{-6} = d sin 33\\\\\frac{1}{d} = 1027.6 lines per mm[/tex]
un litro de un gas es calentado a presión constante desde 20°C hasta 60°C que volumen final ocupará dicho gas?
Answer:
Final volume, V2 = 3 Litres
Explanation:
Given the following data;
Initial volume, V1 = 1 litre
Initial temperature, T1 = 20°C
Final temperature, T2 = 60°C
To find the final volume, we would use Charles' law;
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles is given by;
V1/T1 = V2/T2
Making V2 as the subject formula, we have;
V1T2 = V2T1
V2 = (V1T2)/T1
Substituting into the formula, we have;
V2 = (1 * 60)/20
V2 = 60/20
Final volume, V2 = 3 Litres
Which object has potential energy but not kinetic energy?

A.
A battery in a pair of headphones

B.
A person riding an elevator upward

C.
A person climbing a ladder

D.
A car that is slowing down
Answer:
A.
A battery in a pair of headphones
Explanation:
Potenial energy - the energy possessed by a body by virtue of its position relative to others, stresses within itself, electric charge, and other factors.
20 kg rodsis on the edge of a 80 m high de What is the rodes gracional potencial energy?
Answer:
Gpe = 15680 Joules
Explanation:
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;
G.P.E = mgh
Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Given the following data;
Mass = 20 kg
Height = 80 m
We know that acceleration due to gravity is equal to 9.8 m/s²
To find the gravitational potential energy;
Gpe = mgh
Gpe = 20 * 80 * 9.8
Gpe = 15680 Joules
Kevin used a pulley to lift a piano to the third floor of his apartment. His input work was 12,000 J and the output work was 10,000 J. What was the mechanical efficiency of the pulley?
A . 50%
B. 83.3%
C . 120%
D. 16.7%
Answer:
B
Explanation:
Eff = output work/input work ×100
Hence, Eff = 10000/12000 × 100
Eff = 83.3%
Imagine using brainly LOL COULDNT BE ME XD
Answer:
LOL! couldnt be me either bestieeeee
Answer:
-_-
Explanation:
i dont know What was XD??
What what is the change in internal energy if 500 joule of heat is added to a system and 125 joule of work are done on a system
Answer:
DU = 375 Joules
Explanation:
Given the following data;
Quantity of heat = 500 Joules
Work done = 125 Joules
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
DU is the change in internal energy.Q is the quantity of energy.W is the work done.Substituting into the formula, we have;
DU = 500 - 125
DU = 375 Joules
What is the difference between heat capacity and specific heat capacity? I want the meaning please.
Answer:
The heat capacity of a body is defined as the heat required to raise it's temperature by me degree or one kelvin.while specific heat capacity of a substance is defined as the heat required to the temperature of a unit mass of it through one degree or one kelvin.
I hope it helps
Which wave has the largest amplitude?
A.D
B.B
C.C
D.A
Answer:
D. A
General Formulas and Concepts:
Simple Harmonic Motion
Parts of a wave
PeriodAmplitudeWavelengthCrest/TroughExplanation:
The amplitude is the distance from the horizon to either the crest or trough of a wave.
In layman's terms, it is how high the wave is.
The "highest" wave would be wave A.
∴ our answer is D.
Topic: AP Physics 1 Algebra-Based
Unit: SMH
Answer:
A (The wave)
Explanation:
Wave A
A convex mirror of radius of curvature 1.6 m has an object placed at a distance of 1.0 m from it. Find the position of image and the magnification.
Answer:
The image is formed at 0.44 m in front of the mirror
magnification (M) = 0.44
Explanation:
Applying, mirror formular
1/f = (1/u)+(1/v).................... Equation 1
Where f = Focal length of the convex mirror, u = object distance, v = image distance.
Using the real is positive convection,
From the question,
Given: f = -1.6/2 = -0.8 m( The focal length of a convex mirror is vitual), u = 1.0 m
Substitute these values into equation 1
-1/0.8 = (1/v)+(1/1)
Solve for v
1/v = 1.25+1
1/v = 2.25
v = 1/2.25
v = 0.44 m
Hence the image is formed at 0.44 m in front of the mirror
Magnification (M) = v/u
m = 0.44/1
m = 0.44
16 100 g of water at 25 °C is poured into an insulating cup. 50 g of ice at 0 °C is added to the water.
The water is stirred until the temperature of the water has fallen to 0°C.
18 g of ice remains unmelted.
The specific heat capacity of water is 4.2 J /g °C.
Which value does this experiment give for the specific latent heat of fusion of ice?
Answer:
Q = Q
mcT = ml
100 x 4.2 x 25 = (50-18) l
l = 328
*Hope it helps*
The specific latent heat of fusion of the melted ice is 328.13 J/kg.
Conservation of energy
The specific latent heat of fusion of the melted ice is determined by applying the principle of conservation of energy as shown below;
Heat lost by the water = Heat gained by the ice
McΔθ = mL
where;
c is specific heat capacity of waterL is pecific latent heat of fusion of icem is mass of melted ice = 50 g - 18 g = 32 g(100)(4.2)(25) = (32)L
32L = 10500
L = 328.13 J/kg
Thus, the specific latent heat of fusion of the melted ice is 328.13 J/kg.
Learn more about heat capacity here: https://brainly.com/question/16559442
Earth changes all the time making it a __ planet.