Answer:
A. Q1 = 4.6; Q2 = 5.5; Q3 = 5.95
Step-by-step explanation:
{4.3, 4.5, 4.7, 5, 5.5, 5.7, 5.9, 6, 6.1}
First find the median or the 2nd quartile
There are 9 data points so the middle is the 5th
4.3, 4.5, 4.7, 5, 5.5, 5.7, 5.9, 6, 6.1}
Q2 = 5.5
Now looking at the data on the left, we need to find the middle, which is Q1 or the first quartile
4.3, 4.5 , 4.7, 5,
It is between 4.5 and 4.7 so we average
(4.5+4.7)/2 = 9.2/2 = 4.6
Q1 is 4.6
We do the same for the data on the right, which is the third quartile or Q3
5.7, 5.9, 6, 6.1
(5.9+6)/2 = 11.9/2 = 5.95
Q3 = 5.95
Answer: IT'S A !!
Step-by-step explanation:
May I get some help with this question?
2. In a 100m race, Luke was 2m ahead of Azam. Chandra was 3m behind Luke, Maggie was 7m ahead of Chandra. Luke was 5m behind Darren. Who was in the first place?
Answer:
luke won
Step-by-step explanation:
he is 2 meters ahead of azam witch is in 2dn place
A student majoring in accounting is trying to decide on the number of firms to which he should apply. Given his work experience and grades, he can expect to receive a job offer from 70% of the firms to which he applies. The student decides to apply to only four firms.
(a) What is the probability that he receives no job offer?
(b) How many job offers he expects to get?
(c) What is the probability that more than half of the firms he applied do not make him any offer?
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
(e) What is the probability of him securing more than 3 offers?
Answer:
a) 0.0081 = 0.81% probability that he receives no job offer
b) He expects to get 2.8 job offers.
c) 0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
d) Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
e) 0.2401 = 24.01% probability of him securing more than 3 offers.
Step-by-step explanation:
For each application, there are only two possible outcomes. Either he gets an offer, or he does not. The probability of getting an offer for a job is independent of any other job, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He can expect to receive a job offer from 70% of the firms to which he applies.
This means that [tex]p = 0.7[/tex]
The student decides to apply to only four firms.
This means that [tex]n = 4[/tex]
(a) What is the probability that he receives no job offer?
This is [tex]P(X = 0)[/tex]. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
0.0081 = 0.81% probability that he receives no job offer.
(b) How many job offers he expects to get?
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
In this question:
[tex]E(X) = 4(0.7) = 2.8[/tex]
He expects to get 2.8 job offers.
(c) What is the probability that more than half of the firms he applied do not make him any offer?
Less than 2 offers, which is:
[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
[tex]P(X = 1) = C_{4,1}.(0.7)^{1}.(0.3)^{3} = 0.0756[/tex]
Then
[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0081 + 0.0756 = 0.0837[/tex]
0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
(e) What is the probability of him securing more than 3 offers?
Between 4 and n, since n is 4, 4 offers, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 4) = C_{4,4}.(0.7)^{4}.(0.3)^{0} = 0.2401[/tex]
0.2401 = 24.01% probability of him securing more than 3 offers.
Karissa purchased a set of LED lights online that normally sells for $72.00 but was marked down to $48.96. What is the discount rate Karissa received? (2 points)
32%
47%
68%
Can someone help me out plz
Volume = πr²h
Radius = 3yd
Height = 12yd
Take π = 22/7
Volume = 22/7×3×3×12
= 2376/7
= 339.4285714yd³
Rounding off to nearest tenth
= 339.43yd³
Answered by Gauthmath must click thanks and mark brainliest
A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.
n=12, p=0.35, x=2
Answer:
0.1088 or 10.88%
Step-by-step explanation:
q = 1 - 0.35 = 0.65
P(X=2) = 12C2 × (0.35)² × (0.65)¹⁰
= 0.1088
find the missing length indicated
explainion:
[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]
Use The (Pythagorean Theorem) to find the length of any side of a right triangle. Form it like its shown in picture above. Follow the instructions that also shown in the picture above.
A history teacher gives a 17 question True or false exam. In how many different ways can the test be answered if the possible answers are true or false or possibly to leave the answer blank?
Answer:
Step-by-step explanation:
if it's only true or false there are 2¹⁷=131072 outcomes
if it's true, false, or blank there are 3¹⁷=129140163 outcomes
Help please ….. help
Answer:
Step-by-step explanation:
a) categorical
b) add all of the numbers and divide by how many numbers there were.
c) outliers means any that were far away from the rest of the data
d) not entirely, you can make an estimate based on it, but nat an exact answer.
50T Q12 A man wants to buy bags of gravel to cover his driveway. He decides to work out the area of his driveway. 1 bag of gravel covers 14m2 3m Sketch of driveway Not to scale 3m 8m 6m What is the area of his driveway? How many bags of gravel must he buy?
Answer:
hi amki nai patajjdkfkejd
Factor 64a^3 -8b^3 Explain all steps.
Answer:
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
Step-by-step explanation:
factor out the 8
then you have the sum/difference of cubes..
look that up SOAP: same opposite, always a plus
[tex]64a^3 -8b^3\\8(8a^3 -b^3)[/tex]
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
what is the least common multiple between 25 and 8
Answer:
200
Step-by-step explanation:
Break down 25 = 5*5
Break down 8 = 2*2*2
They have no common factors
The least common multiple is
5*5*2*2*2 = 25*8 = 200
Answer:
200
Step-by-step explanation:
list the factors of 25: 5,5
factors of 8:2,2,2,
please help this is due right now
Answer:
108.82
Step-by-step explanation:
Suppose Event A is taking 15 or more minutes to get to work tomorrow and Event B is taking less than 15 minutes to get to work tomorrow. Events A and B are said to be complementary events.
a. True
b. False
Answer:
Hence the answer is TRUE.
Step-by-step explanation:
If event A is taking 15 or more minutes to urge to figure tomorrow and event B is taking but a quarter-hour to urge to figure tomorrow, then events A and B must be complimentary events. this is often because the occurring of 1 is going to be precisely the opposite of the occurring of the opposite event and that they cannot occur simultaneously. In other words, events A and B are mutually exclusive and exhaustive.
Mathematically,
P(A) + P(B) = 1.
Question with last attempt is displayed for your review only
Amanda rented a bike from Ted's Bikes.
It costs $9 for the helmet plus $5.25 per hour.
If Amanda paid about $43.13, how many hours did she rent the bike?
Let h = the number of hours she rented the bike. Write the equation you would use to solve this problem.
Answer:
[tex]43.13 = 5.25h + 9[/tex]
Step-by-step explanation:
Let's solve this by making an equation.
$9 for the helmet, and $5.25 per hour.
h will stand for hours, C will stand for Amanda's cost.
[tex]C = 5.25h + 9[/tex]
Now, substitute in what we learned from the problem.
[tex]43.13 = 5.25h + 9[/tex]
This is an equation you can use to solve for the hours.
Which equation can be used to find the length of Line segment A C?
Answer:
I don't see the problem.
Step-by-step explanation:
in how many ways 6 gentleman and 4 ladies can be choosen out of 10 gentleman and 8 ladies?
Answer:
5880 ways
Step-by-step explanation:
For selections like this, we solve using the combination theory. Recall that
nCr = n!/(n-r)!r!
Hence given to find the number of ways 6 gentleman and 4 ladies can be choosen out of 10 gentleman and 8 ladies,
= 10C6 * 8C4
= 10!/(10-6)!6! * 8!/(8-6)!6!
= 10 * 9 * 8 * 7 * 6!/4 *3 *2 * 6! * 8 * 7 * 6!/2 * 6!
= 210 * 28
= 5880 ways
The arrangement can be done in 5880 ways
identify the roots of the equation and the multiplicities of the roots 8(x - 2)³ = 0
Answer:
The root of the equation is 2 with multiplicity 3
Step-by-step explanation:
8(x-2)^3=0
(x-2)^3=0
The root of the equation is 2 with multiplicity 3
If a seed is planted, it has a 90% chance of growing into a healthy plant.
If 6 seeds are planted, what is the probability that exactly 2 don't grow?
Answer:
[tex]\displaystyle\frac{19,683}{200,000}\text{ or }\approx 9.84\%[/tex]
Step-by-step explanation:
For each planted seed, there is a 90% chance that it grows into a healthy plant, which means that there is a [tex]100\%-90\%=10\%[/tex] chance it does not grow into a healthy plant.
Since we are planting 6 seeds, we want to choose 2 that do not grow and 4 that do grow:
[tex]\displaystyle \frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}[/tex]
However, this is only one case that meets the conditions. We can choose any 2 out of the 6 seeds to be the ones that don't grow into a healthy plant, not just the first and second ones. Therefore, we need to multiply this by number of ways we can choose 2 things from 6 (6 choose 2):
[tex]\displaystyle \binom{6}{2}=\frac{6\cdot 5}{2!}=\frac{30}{2}=15[/tex]
Therefore, we have:
[tex]\displaystyle\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \binom{6}{2},\\\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot 15,\\\\P(\text{exactly 2 don't grow})=\boxed{\frac{19,683}{200,000}}\approx 9.84\%[/tex]
Answer:
[tex] {?}^{?} However, this is only one case that meets the conditions. We can choose any 2 out of the 6 seeds to be the ones that don't grow into a healthy plant, not just the first and second ones. Therefore, we need to multiply this by number of ways we can choose 2 things from 6 (6 choose 2):
\displaystyle \binom{6}{2}=\frac{6\cdot 5}{2!}=\frac{30}{2}=15(26)=2!6⋅5=230=15
Therefore, we have:
\begin{gathered}\displaystyle\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \binom{6}{2},\\\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot 15,\\\\P(\text{exactly 2 don't grow})=\boxed{\frac{19,683}{200,000}}\approx 9.84\%\end{gathered}P(exactly 2 don’t grow)=101⋅101⋅109⋅109⋅109⋅109⋅(26),P(exactly 2 don’t grow)=101⋅101⋅109⋅109⋅109⋅109⋅15,P(exactly 2 don’t grow)=200,00019,683≈9.84%
[/tex]
I need help ASAP please
Answer:
5:10
6 (-2,0)
7 (-5,6)
8 (5,3)
9 No, ab=8 CD=6
Step-by-step explanation:
which of these figures has rotational symmetry
9514 1404 393
Answer:
A
Step-by-step explanation:
The parallelogram has rotational symmetry of degree 2. It looks the same after rotation by 180°.
_____
Additional comment
When a figure only looks like itself after a full rotation of 360°, it is said to have rotational symmetry of degree 1. All of the figures here will return to their original appearance after one 360° rotation. So, we assume the intent of the question is to identify figures with a rotational symmetry of degree greater than 1.
The population standard deviation for the heights of dogs, in inches, in a city is 3.7 inches. If we want to be 95% confident that the sample mean is within 2 inches of the true population mean, what is the minimum sample size that can be taken?
z0.101.282z0.051.645z0.0251.960z0.012.326z0.0052.576
Use the table above for the z-score, and be sure to round up to the nearest integer.
========================================================
Explanation:
At 95% confidence, the z critical value is roughly z = 1.960
The population standard deviation is given to be sigma = 3.7
The error is E = 2 since we want to be within 2 inches of the population mean mu
The min sample size needed is:
n = (z*sigma/E)^2
n = (1.960*3.7/2)^2
n = 13.147876
n = 14
We always round up to the nearest whole number to ensure that we clear the hurdle (otherwise, the sample is too small). It doesn't matter that we're closer to 13 than to 14.
Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 2.1yd : 1.4yd
9514 1404 393
Answer:
3/2
Step-by-step explanation:
Multiplying numerator and denominator by 10 will convert the ratio to a ratio of whole numbers. Then dividing by the common factor of 7 will reduce it to simplest form.
[tex]\dfrac{2.1\text{ yd}}{1.4\text{ yd}}=\dfrac{2.1\times10}{1.4\times10}=\dfrac{21}{14}=\dfrac{3\times7}{2\times7}=\boxed{\dfrac{3}{2}}[/tex]
While walking in the country, you count 39 heads and 116 feet in a field of cows and chickens. How many of each animal are there?
Answer: 58
Step-by-step explanation:
its 58 because chickens have two feet each so divide 2 % 166 and its 58
because each chicken has 2 legs count the 2 legs up to 116 then u get ur answer
Find the first five terms of the sequence..
Answer:
The Next fiver tems are - 2, -2,-8,-12,-16
Step-by-step explanation:
Answer:
2,-6,2,-6,2
Step-by-step explanation:
a1 = 2
an = -an-1 -4
Let n =2
a2 = -a1 -4 = -2-4 = -6
Let n=3
a3 = -a2 -4 = - (-6) -4 = +6 -4 = 2
Let n = 4
a4 = -a3 -4 = -2 -4 = -6
Let n=5
a5 = -a4 -4 = -(-6) -4 = +6-4 = 2
Find the measures of angles S and T in the triangle below.
Shaun is planting trees along his driveway, and he has 66 redwoods and 66 pine trees to plant in one row. What is the probability that he randomly plants the trees so that all 66 redwoods are next to each other and all 66 pine trees are next to each other
Answer:
0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.
Step-by-step explanation:
The trees are arranged, so the arrangements formula is used to solve this question. Also, a probability is the number of desired outcomes divided by the number of total outcomes.
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
Desired outcomes:
Two cases:
6 redwoods(6! ways) then the 6 pine trees(6! ways)
6 pine trees(6! ways) then the 6 redwoods(6! ways)
So
[tex]D = 2*6!*6![/tex]
Total outcomes:
12 trees, so:
[tex]D = 12![/tex]
What is the probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other?
[tex]p = \frac{D}{T} = \frac{2*6!*6!}{12!} = 0.0022[/tex]
0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.
Assume that the matrices below are partitioned conformably for block multiplication. Compute the product.
[I 0] [W X]
[K I] [Y Z]
Multiplying block matrices works just like multiplication between regular matrices, provided that component matrices have the right sizes.
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf{IW}+\mathbf{0Y}&\mathbf{IX}+\mathbf{0Z}\\\mathbf{KW}+\mathbf{IY}&\mathbf{KX}+\mathbf{IZ}\end{bmatrix}[/tex]
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W+\mathbf 0&\mathbf X+\mathbf 0\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W&\mathbf X\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]
(I assume I is the identity matrix and 0 is the zero matrix.)
PLEASE HELP
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
2y-3x=10
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
Hey there! I'm happy to help!
Here is our equation.
[tex]2y-3x=10[/tex]
Let's add 3x to both sides.
[tex]2y=3x+10[/tex]
Divide both sides by 2.
[tex]y=\frac{3}{2}x+5[/tex]
Here is slope intercept form.
[tex]y=mx+b\\m=slope\\b=y-intercept[/tex]
So, we can just find those two things in the equation, and here are our answers.
[tex]y=\frac{3}{2}x+5\\m=\frac{3}{2}\\b=5[/tex]
The graph is down below. If our y-intercept is 5, then one of our points is (0,5). You can then plug a random x-value into the formula to find another point and then draw the line going through the two points.
[tex]y=\frac{3}{2}(2)+5\\y=3+5\\y=8\\(2,8)[/tex]
Have a wonderful day and keep on learning! :D
b) Use Greens theorem to find∫x^2 ydx-xy^2 dy where ‘C’ is the circle x2 + y2 = 4 going counter clock wise.
It looks like the integral you want to find is
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy[/tex]
where C is the circle x ² + y ² = 4. By Green's theorem, the line integral is equivalent to a double integral over the disk x ² + y ² ≤ 4, namely
[tex]\displaystyle \iint\limits_{x^2+y^2\le4}\frac{\partial(-xy^2)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy = -\iint\limits_{x^2+y^2\le4}(x^2+y^2)\,\mathrm dx\,\mathrm dy[/tex]
To compute the remaining integral, convert to polar coordinates. We take
x = r cos(t )
y = r sin(t )
x ² + y ² = r ²
dx dy = r dr dt
Then
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy = -\int_0^{2\pi}\int_0^2 r^3\,\mathrm dr\,\mathrm dt \\\\ = -2\pi\int_0^2 r^3\,\mathrm dr \\\\ = -\frac\pi2 r^4\bigg|_{r=0}^{r=2} \\\\ = \boxed{-8\pi}[/tex]