Answer:
gfxfhhnhgfhjjgfghjhffgkhfdcg
Hey, can a physics major help me?
I have been wondering about the exact difference between theories laws facts and hypothosis.
I know the general layout but I am still a bit confused.
100 points for answering and brainly if it is a good one.
Answer:
A hypothesis is a limited explanation of a phenomenon; a scientific theory is an in-depth explanation of the observed phenomenon. A law is a statement about an observed phenomenon or a unifying concept
Answer:
Explanation:
will try 2 explain fact, hypothesis, theory n law
fact is the starting pt: e.g. apple falls from tree
hypothesis tries 2 explain a fact: e.g. there is a force pulling down apple
theory is a complete explanation w/ equations n stuff: e.g. Newton came up w/ theory of gravitational attraction force
law is a theory dat has been proven right through tests n experiments: Newton's gravity theory had been proven right in many many tests.
Use a scientific calculator to perform the operation below.
5.92 x 107 + 2.11 x 106
A. 6.13 x 107
B. 2.81 x 101
C. 1.25 x 1014
D. 5.71 x 107
SUBMIT
Answer:
A. 6.13 x 107
Explanation:
Given the expression
5.92 x 10^7 + 2.11 x 10^6
First, we need to convert to the whole number
5.92 x 10^7 = 59200000
2.11 x 10^6 = 2110000
Add both values
59200000 + 2110000
= 61,310,000
Express in standard form
= 6.13 * 10^7
This gives the required result
an object falls freely from rest the total distance covered by it in 2s will be
Answer:
Distance, S = 19.6 meters
Explanation:
Given the following data;
Time = 2 seconds
We know that acceleration due to gravity is equal to 9.8 m/s².
Also, the initial velocity of the object is equal to zero because it's starting from rest.
To find the total distance covered by the object, we would use the second equation of motion;
[tex] S = ut + \frac {1}{2}at^{2}[/tex]
Where;
S represents the displacement or height measured in meters. u represents the initial velocity measured in meters per seconds. t represents the time measured in seconds. a represents acceleration measured in meters per seconds square.Substituting into the equation, we have;
[tex] S = 0*2 + \frac {1}{2}*(9.8)*2^{2}[/tex]
[tex] S = 0 + 4.9*4[/tex]
[tex] S = 4.9*4 [/tex]
Distance, S = 19.6 meters
Therefore, the total distance covered by the object is 19.6 meters.
A car's bumper is designed to withstand a 5.04 km/h (1.4-m/s) collision with an immovable object without damage to the body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the average force on a bumper that collapses 0.255 m while bringing a 830 kg car to rest from an initial speed of 1.4 m/s.
Answer:
the magnitude of the average force on the bumper is 3189.8 N
Explanation:
Given the data in the question;
In terms of force and displacement, work done is;
W =[tex]F^>[/tex] × [tex]x^>[/tex]
W = [tex]Fxcos\theta[/tex] ------- let this be equation 1
where F is force applied, x is displacement and θ is angle between force and displacement.
Now, since the displacement of the bumper and force acting on it is in the same direction,
hence, θ = 0°
we substitute into equation 1
W = [tex]Fxcos([/tex] 0° [tex])[/tex]
W = [tex]Fx[/tex] ------- let this be equation 2
Now, using work energy theorem,
total work done on the system is equal to the change in kinetic energy of the system.
[tex]W_{net[/tex] = ΔKE
= [tex]\frac{1}{2}[/tex]mv² - [tex]\frac{1}{2}[/tex]mu² --------- let this be equation 3
where m is mass of object, v is final velocity, u is initial velocity.
from equation 2 and 3
[tex]Fx[/tex] = [tex]\frac{1}{2}[/tex]mv² - [tex]\frac{1}{2}[/tex]mu²
we make F, the subject of formula
F = [tex]\frac{m}{2x}[/tex]( v² - u² )
given that mass of car m = 830 kg, x = 0.255 m, v = 0 m/s, and u = 1.4 m/s
so we substitute
F = [tex]\frac{830}{(2)(0.255)}[/tex]( (0)² - (1.4)² )
F = 1627.45098 ( 0 - 1.96 )
F = 1627.45098 ( - 1.96 )
F = -3189.8 N
The negative sign indicates that the direction of the force was in opposite compare to the direction of the velocity of the car.
Therefore, the magnitude of the average force on the bumper is 3189.8 N
A 620 N physics student stands on a bathroom scale in an elevator that is supported by a cable. The combined mass of student plus elevator is 870 kg. As the elevator starts moving, the scale reads 450 N.
Required:
a. Find the acceleration of the elevator (magnitude and direction).
b. What is the acceleration if the scale reads 670 N?
c. If the scale reads zero, should the student worry? Explain.
d. What is the tension in the cable in parts (a) and (c)?
Answer:
(a) 9.28 m/s2
(b) 9.03 m/s2
(c) 9.8 m/s2
(d) 450 N, 670 N
Explanation:
mass of elevator + student, m = 870 kg
Reading of scale, R = 450 N
(a) When the elevator goes down, the weight decreases.
Let the acceleration is a.
By the Newton's second law
m g - R = m a
870 x 9.8 - 450 = 870 a
a = 9.28 m/s2
(b) R = 670 N
Let the acceleration is a.
870 x 9.8 - 670 = 870 a
a = 9.03 m/s2
(c) If the scale reads zero, it mean the elevator is falling freely. The acceleration is downwards and its value is 9.8 m/s2.
(d) Tension in cable is 450 N and 670 N.
A skateboarder is inside of a half pipe, shown here. Explain her energy transformations as she jumps off at point A, slides to point B, and finally reaches point C.
A person rolls a 7 kg bowling ball down a lane in a bowling alley. The lane is
18 m long. The ball is traveling at 7 m/s when it leaves the person's hand.
What is the ball's kinetic energy at this point?
Answer:
171.5J
Explanation:
K=1/2 *m *U²
K=1/2 *7 *7²
K=171.5 J
A balloon is filled with 80 liters of gas on a day where the temperature was 34 degrees at sea level which is 101.3 kPa and released. As the balloon rises to a certain altitude, the temperature drops to 0 degrees celsius and the balloon doubles in volume. What is the atmospheric pressure at that altitude?
Answer:
0.444atm
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (
P2 = final pressure (
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to this question,
P1 = 101.3 kPa = 101.3 × 0.00987 = 0.999atm
P2 = ?
V1 = 80L
V2 = 160L (double of V1)
T1 = 34°C = 34 + 273 = 307K
T2 = 0°C = 0 + 273 = 273K
Using P1V1/T1 = P2V2/T2
0.999 × 80/307 = P2 × 160/273
79.92/307 = 160P2/273
Cross multiply
307 × 160P2 = 79.92 × 273
49120P2 = 21818.16
P2 = 21818.16 ÷ 49120
P2 = 0.444
P2 = 0.444atm
Question 1 of 25
Which equation is an example of a synthesis reaction?
A. HNO3 + KOH → KCI + H20
B. 2Li+ CaCl2 - 2LiCl + Ca
O C. S+ 02 - S02
7
O D. CH4 + 202 - 2H2O + CO2
Answer:
C. S + 02 → S02
Explanation:
A synthesis or combination reaction is that reaction involving two elements as reactants to form a single compound as product.
In the reaction given below;
S + 02 → S02
Sulphur and oxygen are elemental substances that combine to synthesize sulfur IV oxide (SO2), and hence it is an example of synthesis reaction.
A crucible (container) of molten metal has an open top with an area of 5.000 m^2. The molten metal acts as a blackbody radiator. The intensity spectrum of its radiation peaks at a wavelength of 320 nm. What is the temperature of that blackbody?
Answer:
T = 9056 K
Explanation:
In the exercise they indicate that the body can be approximated by a black body, for which we can use the Wien displacement relation
λ T = 2,898 10⁻³
where lam is the wavelength of the maximum emission
T = 2,898 10⁻³ /λ
let's calculate
T = 2,898 10⁻³ / 320 10⁻⁹
T = 9.056 10³ K
T = 9056 K
a brick of mass 0.8 kg is accidentally dropped from a high scaffolding. it reaches the ground with a kinetic energy of 240 J. How high is scaffolding ?(Take acceleration due to gravity g be 10 m s-¹)
Answer:
30 m
General Formulas and Concepts:
Energy
Gravitational Potential Energy: [tex]\displaystyle U_g = mgh[/tex]
m is mass (in kg)g is gravityh is height (in m)Kinetic Energy: [tex]\displaystyle KE = \frac{1}{2}mv^2[/tex]
m is mass (in kg)v is velocity (in m/s²)Law of Conservation of Energy
Explanation:
Step 1: Define
Identify variables
[Given] m = 0.8 kg
[Given] g = 10 m/s²
[Given] U = 240 J
[Solve] h
Step 2: Solve for h
[LCE] Substitute in variables [Gravitational Potential Energy]: (0.8 kg)(10 m/s²)h = 240 JMultiply: (8 kg · m/s²)h = 240 JIsolate h [Cancel out units]: h = 30 mA jet is circling an airport control tower at a distance of 15.8 km. An observer in the tower watches the jet cross in front of the moon. As seen from the tower, the moon subtends an angle of 9.21x10-3 radians. Find the distance traveled (in meters) by the jet as the observer watches the nose of the jet cross from one side of the moon to the other.
Answer:
The Distance traveled (in meters) by the jet as the observer watches the nose of the jet cross from one side of the moon to the other.
=145.5m
Explanation:
The radius of the circling jet r = 15.8km = 15.8*10^3 m
the angle subtended by moon
θ = 9.21*10^-3 rad
Therefore, the distance traveled by jet is
s = rθ
= (15.8*10^3 m)(9.21*10^-3 )
= (15,800)(0.00921)
=145.5m
A box with mass 25.14 kg is sliding at rest from the top of the slope with height 13.30 m
and slope angle 30 degree, suppose the coefficient of friction of the slope surface is
0.25, find (neglect air resistance,take g=10 m/s^2)
The friction force experienced by the box.
00) The acceleration of the box along the slope.
(1) The time T required for the object to reach the bottom of the slope from the slope top.
Answer:
Explanation:
The first thing we are asked to find is the Force experienced by the box. That is found in the formula:
F - f = ma where F is the force exerted by the box, f is the friction opposing the box, m is the mass, and a is the acceleration (NOT the same as the pull of gravity). But F can be rewritten in terms of the angle of inclination also:
[tex]wsin\theta-f=ma[/tex] where w is the weight of the box. We will use this version of the formula because it will help us answer the second question, which is to solve for a. Filling in:
First we need the weight of the box. Having the mass, we find the weight:
w = mg so
w = 25.14(10) so
w = 251.4 N (I am not paying any attention at all to the sig fig's here, since I noticed no one on this site does!) Now we have the weight. Filling that in:
251.4sin(30) - f = ma Before we go on to fill in for f, let's answer the first question. F = 251.4sin(30) so
F = 125.7 And in order to answer what a is equal to, we find f:
f = μ[tex]F_n[/tex] where Fn is the weight of the object.
f = .25(251.4) so
f = 62.85. Filling everything in now altogether to solve for a, the only missing value:
125.7 - 62.85 = 25.14a and
62.85 = 25.14a so
a = 2.5 m/s/s
Now we have to move on to another set of equations to answer the last part. The last part involves the y-dimension. In this dimension, what we know is that
a = -10 m/s/s
v₀ = 0 (it starts from rest)
Δx = -13.30 m (negative because the box falls this fr below the point fro which it started). Putting all that together in the equation for displacement:
Δx = v₀t + [tex]\frac{1}{2}at^2[/tex] and we are solving for time:
[tex]-13.30=0t+\frac{1}{2}(-10)t^2[/tex] and
[tex]t=\sqrt{\frac{2(-13.30)}{-10} }[/tex] so
t = 1.6 seconds to reach the bottom of the slope from 13.30 m high.
What innovation did jethro wood add to plows in the 1800s?
Built by 1800, it was the home of inventor Jethro Wood (1774-1834), whose 1819 invention of an iron moldboard plow revolutionized American agriculture.
Answer the following using equations, number substitution and keep units. 1. What is the speed of an object that travels 5m in 10s. 2. What force is on a 10kg mass that accelerates at 3m/s/s. 3. What is the potential energy of a 7kg object 4m off the ground *
show all your work please
Explanation:
1. Distance, d = 5 m
Time, t = 10 s
Speed = distance/time
[tex]v=\dfrac{5}{10}=0.5\ m/s[/tex]
2. Mass, m = 10 kg
Acceleration, a = 3 m/s³
Force, F = mass (m) × acceleration (a)
F = 10 × 3
= 20 N
3. Mass, m = 7 kg
Height, h = 4 m
Potential energy, E = mgh
E = 7 × 9.8 × 4
E = 274.4 J
Hence, this is the required solution.
Consider a 92.0 kg ice skater who is spinning on the ice. What is the moment of inertia of the skater, if the skater is approximated to be a solid cylinder that has a 0.140 m radius and is rotating about the center axis of the cylinder.
Answer:
[tex]I=0.902kg*m^2[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=92.0kg[/tex]
Radius [tex]r=0.140m[/tex]
Generally the equation for moment of Inertia is mathematically given by
[tex]I = 0.5*m*r^2[/tex]
[tex]I=0.5*(92)*0.14^2[/tex]
[tex]I=0.902kg*m^2[/tex]
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. What will the horizontal speed be right before it hits the ground?
A. 15 m/s
B. 0 m/s
C. 30 m/s
D. 40 m/s
Answer:
C
Explanation:
horizintal speed stays same
only vertical speed changes
so H speed will stay 30 m/s
planet smaller than earth but larger than mercury
Answer:
venus......................
HELP ME PLEASE!!!
Which 2 statements are true about this chemical reaction that forms acid rain?
Answer:
B.
Explanation:
HNO2 is less stable thus dissociates easily to HNO3 + NO + H2O while HNO3 is a strong acid. Thus when they react with H2O they form acid rain
Answer:
B
Explanation:
dont have one just trust me
In addition to acceleration, what else will be a maximum at the amplitude for SHM?
A. Potential energy
B. Kinetic energy
C. Nuclear energy
D. Chemical energy
It is Potential energy's
. A 79 g sample of water at 21oC is heated until it becomes steam with a temperature of 143oC. Find the change in heat content of the system.
Answer:
40479.6 J
Explanation:
Applying,
q = cm(t₂-t₁).................... Equation 1
Where q = change in heat content of the system, c = specific heat capacity of the system, m = mass of the system, t₁ = initial temperature, t₂ = final temperature.
From the question,
Given: m = 79 g = 0.079 kg, t₁ = 21°C, t₂ = 143°C
Constant: c = 4200 J/kg.°C
Substitute these values into equation 1
q = 4200(0.079)(143-21)
q = 331.8(122)
q = 40479.6 J
You take your pulse and observe 80 heartbeats in a minute. What is the period of your heartbeat? What is the frequency of your heartbeat?
Answer:
120 beats per minute.
Explanation:
If I take your pulse and observe 80 heartbeats in a minute. Then the period of your heartbeat is 0.8 s and frequency is 1.3Hz.
What is Heartbeat ?A pulse is the term used in medicine to describe the tactile arterial palpation of the cardiac cycle (heartbeat) by skilled fingertips. Any location where an artery can be compressed close to the surface of the body, such as the carotid artery in the neck, the radial artery in the wrist, the femoral artery in the groyne, the popliteal artery behind the knee, the posterior tibial artery near the ankle joint, and on the foot, can be used to palpate the pulse (dorsalis pedis artery). Heart rate may be determined by monitoring pulse, or the number of arterial pulses per minute. Auscultation, which is the process of counting the heartbeats while listening to the heart using a stethoscope, is another way to determine the heart rate. Typically, three fingers are used to gauge the radial pulse.
Given,
heart beat = 80 beats/min = 1.3 beats/s
Frequency is nothing but how much beats is heart having in one second and that is 1.3 beats/s. Hence frequency of heart is 1.3Hz.
The Period is reciprocal of frequency,
T = 1/f = 0.8 s
To know more about frequency :
https://brainly.com/question/29739263
#SPJ2.
Part C
When only one color of light reflects from a piece of paper, what happens to the other colors of light?
Remember that light is energy, and energy cannot be created or destroyed.
В І ох
х
Font Sizes
A
EEEE
I
Characters used: 0 / 15000
Plz help me yall I’m struggling
Answer:
the other colours get absorbed by the paper
Answer:
The other colors are absorbed by the paper and not reflected.
A 2.5-kg rock is dropped off a 32-m cliff and hits a spring, compressing it 57 cm. What is the spring constant? Round your answer to two significant figures.
The spring constant, k, is
StartFraction N over m EndFraction.
Answer: 4800 N/m
Explanation:
Given
mass of rock [tex]m=2.5\ kg[/tex]
Height of cliff [tex]h=32\ m[/tex]
compression in the spring [tex]x=57\ cm[/tex]
Here, potential energy is converted into kinetic energy which in turn converts to elastic potential energy of the spring
[tex]\Rightarrow mgh=\dfrac{1}{2}kx^2\\\\\Rightarrow k=\dfrac{2mgh}{x^2}\\\\\Rightarrow k=\dfrac{1568}{0.3249}\\\\\Rightarrow k=4826.100\approx 4800\ N/m[/tex]
Answer:
480
Explanation:
2021
what affects our utility
Answer:
Energy Bill fluctuations are inevitable and depend on a variety of different factors. Two of the most important are the current weather your home is experiencing and the current price per Kilowatt Hour (which fluctuates more than you might think).
A total positive charge of 12.00 mC is evenly distributed on a straight thin rod of length 6.00 cm.
A positive point charge, Q = 4.00 nC, is located a distance of 5.00 cm above the midpoint of the
rod. What will be the electrical force on the point charge?
You are packing for a trip to another star, and on your journey you will be traveling at a speed of 0.99c. Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.
Explanation:
No. From your own reference frame, nothing will change. Everything will look the same to you even if you're traveling at 99% speed of light. However, an outside observer will see you shrink to about 14% of your original length along the direction of your motion according to the Lorentz contraction predicted by special relativity:
[tex]L=L_{0} \sqrt{1 - \frac{v^2 }{c^2 }}[/tex]
To a man running east at the rate of 3m/s vain appears to fall vertically with a speed of 4m/s. Find the actual speed and direction of rain...
Answer:
The actual speed of the rain is 5 m/s and its direction is -53.13°
Explanation:
The actual speed of the rain V = speed of man, v + speed of rain relative to man, v'.
V = v + v'
We add these vectorially.
Since the man's speed is 3 m/s east, in the positive x - direction, we have v = 3i and the rain's speed is falling vertically at 4 m/s, in the negative y- direction, we have v' = -4j
So, V = v + v'
V = 3i + (-4j)
V = 3i - 4j
So, the magnitude of V which is its speed is V = √(3² + (-4)²) = √(9 + 16) = √25 = 5 m/s
The direction of V, Ф = tan⁻¹(vertical component/horizontal component) = tan⁻¹(-4/3) = tan⁻¹(-4/3) = tan⁻¹(-1.333) = -53.13°
So, the actual speed of the rain is 5 m/s and its direction is -53.13°
If ATM is 102 kPa, what force does the atmosphere exert on the palm of your hand which has an area of 0.016 meters?
Answer:
Force = 1.632 Newton
Explanation:
Given the following data;
Pressure = 102 kPa
Area = 0.016 m²
To find what force the atmosphere exert on the palm of your hand;
Mathematically, pressure is given by the formula;
[tex] Pressure = \frac {Force}{area} [/tex]
Force = 102 * 0.016
Force = 1.632 Newton
A certain electric stove has a 16 Ω heating element. The current going through the element is 15 A. Calculate the voltage across the element.
Answer:
V = 240V
Explanation:
V = I*R
V = 15A*16ohms
V = 240V