Answer:
2.7 in²
Step-by-step explanation:
Given that ∆BAC ~ is similar to ∆EDF, the ratio of the area of ∆BAC to the area of ∆EDF = the square of the ratio of their corresponding sides.
Thus, let x be the area of ∆EDF
[tex] \frac{6}{x} = (\frac{3}{2})^2 [/tex]
[tex] \frac{6}{x} = \frac{9}{4} [/tex]
Cross multiply
[tex] x*9 = 4*6 [/tex]
[tex] 9x = 24 [/tex]
[tex] \frac{9x}{9} = \frac{24}{9} [/tex]
[tex] x = 2.67 [/tex]
Area of ∆EDF = 2.7 in²
A researcher surveys middle-school students on their study habits. She finds that in a random sample of 28 middle-school students, the mean amount of time that they spend working on the computer each night is 2.4 hours with a standard deviation of 0.92 hours. She uses the sample statistics to compute a 95% confidence interval for the population mean - the the mean amount of time that all middle-school students spend working on the computer each night. What is the margin of error for this confidence interval
Answer:
The margin of error is [tex]E = 1.96 * \frac{ 0.92}{\sqrt{28 } }[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 28[/tex]
The sample mean is [tex]\= x = 2.4 \ hr[/tex]
The standard deviation is [tex]\sigma = 0.92 \ hr[/tex]
Given that the confidence level is 95% the the level of significance can be evaluated as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table,the value is [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05}{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 0.92}{\sqrt{28 } }[/tex]
[tex]E = 0.3408[/tex]
The table shows data collected on the relationship between time spent playing video games and time spent with family. The line of best fit for the data is ý = -0.363 +94.5. Assume the line of best fit is significant and there is a strong linear relationship between the variables.
Video Games (Minutes) Time with Family (Minutes)
40 80
55 75
70 69
85 64
Required:
a. According to the line of best fit, what would be the predicted number of minutes spent with family for someone who spent 36 minutes playing video games?
b. The predicted number of minutes spent with family is:_________
Answer:
81.432 minutes
Step-by-step explanation:
Given the following :
Video Games (Mins) - - - Time with Family(Mins)
40 - - - - - - - - - - - - - - - - - - - 80
55 - - - - - - - - - - - - - - - - - - - 75
70 - - - - - - - - - - - - - - - - - - - 69
85 - - - - - - - - - - - - - - - - - - - 64
Best fit line:
ý = -0.363x +94.5
For someone who spent 36 minutes playing video games, the predicted number of minutes spent with family according to the best fit line will be:
Here number of minutes playing video games '36' is the independent variable
ý is the dependent or predicted variable ;
94.5 is the intercept
ý = -0.363(36) +94.5
ý = −13.068 + 94.5
ý = 81.432 minutes
Which is about 81 minutes to the nearest whole number.
A human factor expert recommends that there be atleast 9 square ft of floor space in a classroom for every student in the class. Find the min space required for 49 students
Find the intersection point for the following liner function f(x)= 2x+3 g(x)=-4x-27
Answer:
( -5,-7)
Step-by-step explanation:
f(x)= 2x+3 g(x)=-4x-27
Set the two functions equal
2x+3 = -4x-27
Add 4x to each side
2x+3+4x = -4x-27+4x
6x+3 = -27
Subtract 3
6x+3 - 3 = -27-3
6x = -30
Divide each side by 6
6x/6 = -30/6
x =-5
Now we need to find the output
f(-5) = 2(-5) +3 = -10+3 = -7
Answer:
Step-by-step explanation:
big burgewr
Find the value of x.
A. 22
B. 7.3
C. 3.6
D. 5.5
Answer:
x= 5.5
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
x*4 = 11*2
4x = 22
Divide each side by 4
4x/4 = 22/4
x =5.5
In a triangle, the sum of two angles equals the third, Find the measure of the third angle.
A.45 degree
B.60 degree
C.90 degree
D.30 degree
Answer:
C.90 degree
Step-by-step explanation:
45 + 45 + 90 = 180
90 = 45 + 45
Use a definition, postulate, or theorem to find the value of x in the figure described. Point E is between points D and F. If DE = x − 3, EF = 6x + 5, and DF = 8x − 3, find x. Select each definition, postulate, or theorem you will use. A)definition of segment bisector B)definition of midpoint C)Linear Pair Theorem D)Segment Addition Postulate The solution is x =?
Answer:
Option (D)
x = 5
Step-by-step explanation:
Since point E is in the mid of the segment DF,
Therefore, by the Segment addition postulate,
DF = DE + EF
Since DF = (8x - 3), DE = (x - 3) and EF = (6x + 5)
By substituting these values in the given postulate,
(8x - 3) = (x - 3) + (6x + 5)
8x - 3 = (x + 6x) + (5 - 3)
8x - 3 = 7x + 2
8x - 7x = 3 + 2
x = 5
Therefore, x = 5 will be the answer.
Answer:
x=6 and D
Step-by-step explanation:
make a box-and-whisker plot for the data. numbers of colors in a country's flag :3,2,2,4,4,3,6,3,5,3,4,1
Answer: see attachment
Step-by-step explanation:
Put the numbers in order from smallest to biggest:
1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 6
↓ ∨ ↓
Q1 Median Q3
Q1 median = (2+3)/2 = 2.5 <---- left side of box plot
Median = (3+3)/2 = 3 <---- Vertical Line of box plot
Q3 median = (4+4)/2 = 4 <---- right side of box plot
Allied Corporation is trying to sell its new machines to Ajax. Allied claims that the machine will pay for itself since the time it takes to produce the product using the new machine is significantly less than the production time using the old machine. To test the claim, independent random samples were taken from both machines. You are given the following results.
New Machine Old Machine
Sample Mean 25 23
Sample Variance 27 7.56
Sample Size 45 36
As the statistical advisor to Ajax, would you recommend purchasing Allied's machine? Explain.
Answer:
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
Step-by-step explanation:
We must evaluate the differences of the means of the two machines, to do so, we will assume a CI of 95%, and as the interest is to find out if the new machine has better performance ( machine has a bigger efficiency or the new machine produces more units per unit of time than the old one) the test will be a one tail-test (to the left).
New machine
Sample mean x₁ = 25
Sample variance s₁ = 27
Sample size n₁ = 45
Old machine
Sample mean x₂ = 23
Sample variance s₂ = 7,56
Sample size n₂ = 36
Test Hypothesis:
Null hypothesis H₀ x₂ - x₁ = d = 0
Alternative hypothesis Hₐ x₂ - x₁ < 0
CI = 90 % ⇒ α = 10 % α = 0,1 z(c) = - 1,28
To calculate z(s)
z(s) = ( x₂ - x₁ ) / √s₁² / n₁ + s₂² / n₂
s₁ = 27 ⇒ s₁² = 729
n₁ = 45 ⇒ s₁² / n₁ = 16,2
s₂ = 7,56 ⇒ s₂² = 57,15
n₂ = 36 ⇒ s₂² / n₂ = 1,5876
√s₁² / n₁ + s₂² / n₂ = √ 16,2 + 1.5876 = 4,2175
z(s) = (23 - 25 )/4,2175
z(s) = - 0,4742
Comparing z(s) and z(c)
|z(s)| < | z(c)|
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
The very hight dispersion of values s₁ = 27 is evidence of frecuent values quite far from the mean
Suppose that 200 students are randomly selected from a local college campus to investigate the use of cell phones in classrooms. When asked if they are allowed to use cell phones in at least one of their classes, 40% of students responded yes. Using these results, with 95% confidence, the margin of error is 0.068. How would the margin of error change if the sample size increased from 200 to 400 students?
Answer:
It would change to 0.04802
Step-by-step explanation:
from this question we have that n became 400
40% of 400
= 160
p* = 160/400
= 0.4
1 - p* =
= 1 - 0.4
= 0.6
at confidence level,
1 - 0.95
= 0.05
alpha/2 = 0.025
z= 1.96
margin of error. E
= 1.96 x √[(0.4 x 0.6)/400]
= 1.96 x 0.0245
= 0.04802
M.E = 0.04802
what is the value of x?
Answer:
[tex]\boxed{\sf x = 80}[/tex]
Step-by-step explanation:
A quadrilateral inscribed in a circle has opposite sides equal to 180.
So,
x + x + 20 = 180
2x + 20 = 180
Subtracting 20 from both sides
2x = 180 - 20
2x = 160
Dividing both sides by 2
x = 80
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 80
▹ Step-by-Step Explanation
x + x + 20 = 180
2x + 20 = 180
2x = 180 - 20
2x = 160
x = 80
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Plzzz help me on this question
This is Additional mathematics IGCSE
Answer:
[tex] \alpha = 7[/tex]
Step-by-step explanation:
[tex]a(vector) = 4i - 2j[/tex]
[tex]b(vector) = \alpha i + 2j[/tex]
[tex]ab(vector) = ( \alpha - 4)i \: + 4j[/tex]
Now,
Let K * ab (unit vector) = ab (vector)
(0.4 * k) j = 4 j Thus, K = 10[tex](0.3 \times k)i = ( \alpha - 4)i[/tex]Solving further :
[tex] \alpha = 7[/tex]
PLEASE it's easy - "collecting like terms" It's algebra
Answer: The equation is correct.
Step-by-step explanation:
from the expression,
5x + 3( y + 4x² + 3x ) + 2( y - x² ) = 14x + 10x² + 5y
Open brackets with 3 and 2
5x + 3y + 12x² + 9x + 2y - 2x²
Now collect like terms
5x + 9x + 12x² - 2x² + 3y + 2y
14x + 10x² + 5y = 14x + 10x² + 5y (Q.E.D)
TH equation is correct
there are 5 discs, 6 jump ropes, 3 balls, and 12 pieces of sidewalk chalk in a bin. If two items are drawn at random without replacement, what is the probability that both items removed are not jump ropes?
Answer: 0.584
Step-by-step explanation:
We have:
5 discs
6 jump ropes
3 balls
12 pieces of sidewalk.
5 + 6 + 3 + 12 = 26
If all of them have exactly the same probability of being removed, then:
in the first selection, we do not want to remove a jump rope, so we can remove one disc, one ball or one piece of sidewalk.
The total number of those objects is:
5 + 3 + 12 = 20.
Then the probability of removing one of those objects is:
P1 = 20/26 = 0.769
Now in the second selection, we have the same situation, but now we have 25 objects in total, and because in the previous selection we removed one ball, or one disc, or one piece of sidewalk, the total number of these things now is 19.
So the probability of removing another object of that set is:
P2 = 19/25 = 0.76
The joint probability is equal to the product of the individual probabilities, so we have:
P = P1*P2 = 0.769*0.76 = 0.584
Five more than the square of a number Five more than twice a number Five less than the product of 3 and a number Five less the product of 3 and a number Twice the sum of a number and 5 The sum of twice a number and 5 The product of the cube of a number and 5 The cube of the product of 5 and a number. 5 + x2 5 + 2x 5 - 3x 3x - 5 2x + 5 2(x + 5) 5x3 (5x)3 WILL MARK BRAINLIEST AND DON'T PUT A FAKE ANSWER TO GET POINTS EITHER CUS I NEED HELP
Answer:
BelowStep-by-step explanation: Let all unknown no be x
Five more than the square of a number
= [tex]5 + x^2[/tex]
Five more than twice a number ;
[tex]5+2x\\= 2x+5[/tex]
Five less than the product of 3 and a number ;
[tex]5- 3x\\= 3x-5[/tex]
Twice the sum of a number and 5 ;
[tex]2(x+5)\\[/tex]
The sum of twice a number and 5 ;
[tex]2x+5[/tex]
The product of the cube of a number and 5;
[tex]x^3 \times 5\\=5x^3[/tex]
The cube of the product of 5 and a number ;
[tex](5\times x)^3\\(5x)^3[/tex]
Guys, can you help me out? I would really appreciate it! GIVING OUT BRAINLIEST!!
Answer:
C:750$
Step-by-step explanation:
The food expense is 15% of total income 5000$
=> food expense: (15/100) x 5000 = 750$
Week 4 Assignment: Solving Systems of Linear Equations by Eliminatio
Due Aug 2 by 11:59pm
Points 10
Submitting an external tool
Solve applications of systems of equations by elimination
Question
The sum of two numbers is -17. Their difference is 41. Find the numbers.
Sorry, that's incorrect. Try again?
I
10
-5
FEEDBACK
VIEW ANSWER
SUI
Content attribution
Answer:
The two numbers are 12 and -29
Step-by-step explanation:
Let x and y be the two numbers
x+y = -17
x - y = 41
Add the two equations together
x+y = -17
x - y = 41
----------------
2x = 24
Divide by 2
x = 12
Now find y
x+y = -17
12 +y = -17
Subtract 12 from each side
y = -17-12
y = -29
out of the 444 Fridays Rebecca has been driven to school, only 12/37 of the time did she ever choose to sit in the back seat. How many times did she sit in the front seat?
Answer:
300
Step-by-step explanation:
We need to find 12/37 of 444.
12/37 * 444 = 12/37 * 444/1 = (12 * 444)/(37 * 1) = 5328/37 = 144
She sat in the back seat 144 times out of 444.
444 - 144 = 300
She sat in the front seat 300 times.
You have 9kg of oats and cup scales that gears of 50g and 200g. How − in three weighings− can you measure 2kg of the oats?
Answer: You will need 8 cup scales
Step-by-step explanation:
kg=1000 grams
2000/250=8
Answer:
8
Step-by-step explanation:
2000/250=8
Find the side of a square whose diagonal is of the given measure.
Given = 15.2 cm
Answer:
15cm
Step-by-step explanation:
First, a square's diagonal is basically the hypotenuse of a 45-45-90 triangle. a 45-45-90 triangle has a really special relationship, where the side length is x, and the diagonal is x [tex]\sqrt{2}[/tex]. So, the side length is 15.
Answer:
15cm
Step-by-step explanation:
Each corner of the square would be a 90° angle so half of that would be 45°.
[tex] \sin(45) \times 15 \sqrt{2} = 15cm[/tex]
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
In 2004, 50 out of every 100 drivers at the National Trucking Company passed their driver's license exam on their first try. In 2005, 62 of the drivers passed on their first attempt. What was the percent increase in the passing rate?
Answer:
I believe it's a 12 percent increase.
Step-by-step explanation:
50/100= 50%
62/100= 62%
62%-50%=12%
Luis’s cedar chest measures 4 feet long, 2 feet wide, and 2 ¼ feet high. What is the volume of the chest?
Answer:
[tex]4 {ft}^{3} [/tex]
Step-by-step explanation:
[tex]2 \times \frac{1}{4} = 0.5 \\ v = lbh \\ 4 \times 2 \times 0.5 \\ = 8 \times 0.5 \\ = 4 {ft}^{3} [/tex]
The volume of Luis’s cedar chest is 18 cubic feet.
The dimensions of Luis’s cedar chest are length=4 feet, width=2 feet and height=2 1/4 feet.
What is the formula to find the volume of the cuboid?The volume of the cuboid is the measure of the space occupied within a cuboid. The cuboid is a three-dimensional shape that has length, breadth, and height. If we have a rectangular sheet and we go on stacking such sheets, we will end up getting a shape that has some length, breadth, and height.
The formula to find the volume of the cuboid is l×b×h.
Where, l=length, b=breadth or width and h=height.
Now, volume=4×2×2.25=18 cubic feet.
Therefore, the volume of Luis’s cedar chest is 18 cubic feet.
To learn more about the volume of the cuboid visit:
https://brainly.com/question/23118276.
#SPJ2
The average salary of all assembly-line employees at a certain car manufacturer is $42,000 is it a sample or population
Answer:
Population parameters
Step-by-step explanation:
Population parameters usually find from the average values, in a simple way we can say that finding the average value comes in the Population Parameters.
In the given question, car manufacturing companies provide sample of average.
So, given scenario is a type of "Population parameters".
If a recipe which makes 8 servings calls for 2 cups of sugar, how many cups of sugar will it take to make 18 servings?
Answer:
4.5
Step-by-step explanation:
2/8=x/18
Answer:
4.5 cups
Step-by-step explanation:
first you set up the problem like servings/cups. This would look like 8/2. Then you add the 18 servings and make it a cross multiplication problem. The expression would look like 8/2=18/x. You cross multiply and get 8x=36. Divide by 8 and get x=4.5 cups.
Which expression is equivalent to 5y^3/(5y)^-2
Answer:
5^3 y^5
125 y^5
Step-by-step explanation:
5y^3/(5y)^-2
Distribute the exponent in the denominator
5y^3/(5 ^-2 y^-2)
A negative exponent in the denominator brings it to the numerator
5y^3 5 ^2 y^2
Combine like terms
5 * 5^2 * y^3 5^2
We know that a^b * a^c = a^(b+c)
5^(1+2) * y^( 3+2)
5^3 y^5
125 y^5
Please help me with this ,
Answer:
(a) -2.3°/min
(b) -2.9°/min
Step-by-step explanation:
The average rate of change is the ratio of the difference in R values to the difference in the corresponding t values.
(a) m = (157.6 -226.6)/(30 -0) = -69/30 = -2.3 . . . degrees per minute
__
(b) m = (61.6 -119.6)/(70 -50) = -58/20 = -2.9 . . . degrees per minute
PLEASE HELP! (1/4) - 50 POINTS -
Answer:
D) 0.35
Step-by-step explanation:
The table gives the area between z=0 and the given magnitude of z. That is, the area between z = 0 and z = -0.6 is 0.23, as found in the 0.6 column of the table. Similarly, the area between z = 0 and z = 0.3 is 0.12, as found in the 0.3 column of the table.
The area between z = -0.6 and z = +0.3 is the sum of these areas:
p(-.6<z<.3) = 0.23 +0.12 = 0.35
In a large on-the-job training program, half of the participants are female and half are male. In a random sample of six participants, what is the probability that an investigator will draw at least one male?† (Round your answer to four decimal places.) P(X ≥ 1) =
Answer: 0.9844
Step-by-step explanation:
given data:
sample size n = 6
It’s assumed that half the population are male and the remaining half are females
F = 1/2
M = 1/2
the probability that the investigator would draw altleats one male
P ( x ≥ 1 ) =
= 1 - ( 0.5 ) ^ 6
= ( 0.5 )^6
= 0.9844
Can someone please help I don't understand. Determine the domain and range of the following function. Record your answers in set notation.
Look at the screenshot!!!