Answer: The position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.
Explanation: The Moon appears gibbous when more than half but not all of its illuminated side is visible from Earth.
The Moon is a celestial body that orbits Earth as Earth's only permanent natural satellite. The Moon is one of the brightest and largest objects in the night sky, with a diameter of 3,475 km.
The Moon appears to change shape as it orbits Earth, going through several phases throughout the lunar month. The illuminated side of the moon is the portion of the moon that is lit up by the sun.
The Moon is not actually glowing, but rather it reflects sunlight. We cannot see the Moon when it is not illuminated.
The Moon's phases depend on its position relative to the Sun and Earth, causing the illuminated side of the Moon to face Earth from different angles.
Thus, the position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.
Learn more about illumination here:
https://brainly.com/question/28914020
#SPJ11
Why are masses listed on the periodic table not whole #'s. Ex. 15.9999 for oxygen?
The masses listed on the periodic table are not whole numbers because they represent the weighted average of all the naturally occurring isotopes of an element.
What are Isotopes ?Isotopes are atoms of the same element that have different numbers of neutrons in their nuclei, resulting in slightly different masses. Since the abundance of each isotope in nature can vary, the weighted average takes into account the abundance of each isotope and their corresponding masses, resulting in a decimal value. For example, oxygen has three naturally occurring isotopes, with mass numbers of 16, 17, and 18.
Why only O-16 isotopes ?The most abundant isotope is oxygen-16, but the other isotopes are also present in trace amounts, leading to a weighted average of 15.9994 amu (atomic mass units). This is why the mass listed on the periodic table for oxygen is 15.999, which is a rounded value of the weighted average.
To know more about isotopes , visit :
https://brainly.com/question/11680817
#SPJ1
The masses listed on the periodic table are not whole numbers because they represent the average atomic mass of all the naturally occurring isotopes of an element, taking into account their relative abundances.
What are isotopes ?
Isotopes are atoms of the same element that have different numbers of neutrons in their nucleus, which affects their atomic mass. Some isotopes of an element are more abundant than others, and their relative abundances are taken into account when calculating the average atomic mass.
For example, oxygen has three naturally occurring isotopes: oxygen-16, oxygen-17, and oxygen-18. Oxygen-16 is the most abundant isotope, making up about 99% of all oxygen atoms. Oxygen-17 and oxygen-18 are much less abundant, but they still contribute to the overall atomic mass of the element.
The atomic mass listed on the periodic table for oxygen (15.9994) is the weighted average of the atomic masses of all three isotopes, taking into account their relative abundances. This average is not a whole number because the isotopes have different atomic masses and abundances, and their contributions to the overall average are weighted accordingly.
To know more about Periodic table visit :-
https://brainly.com/question/1173237
#SPJ1
When only one lightbulb blows out, an entire string of decorative lights goes out. The lights in this string must be connected in
a. parallel with one current pathway
b. parallel with multiple current pathways
c. series with one current pathway
d. series with multiple current pathways
When only one lightbulb blows out, an entire string of decorative lights goes out, which means that the lights in this string must be connected in series with one current pathway.
In a series circuit, the components are connected end to end in a single path, so the current flows through each component in turn. If one component, such as a lightbulb, fails, the circuit becomes incomplete, and the current cannot flow through any of the components downstream of the failed component. This results in all the lights in the series circuit going out when one lightbulb blows out.
In contrast, in a parallel circuit, the components are connected across multiple current pathways, so if one component fails, the current can still flow through the other components, and they will continue to function normally. Therefore, if one lightbulb blows out in a parallel circuit, the other lights will continue to work.
Learn more about the series circuit:
https://brainly.com/question/19865219
#SPJ11
A convex lens is shown here with an arrow in the left indicating the light moving through the lens. Assuming that
the lens is made of material that has a higher density than the air, predict the direction of the light after it passes
through the lens.
A The light will bend downward significantly as is indicated by arrow D.
B The light will bend upward as is indicated by arrow A.
C The light will continue on its straight path, as indicated by arrow B.
D The light will bend downward slightly as is indicated by arrow C.
Picture
Answer:
B The light will bend upward as is indicated by arrow A.
Explanation:
I just did the progress learning test
When Joselyn went to the store she bought 2.7kg of salt water taffy. What would Joselyn do to find out how many grams she bought?A. Divide by 1000B. Multiply by 1000C. Divide by 100D. Multiply by 100
At the shop, Joselyn purchased 2700 grammes of salt water taffy.
To convert kilograms (kg) to grams (g), Joselyn would need to multiply the weight in kilograms by 1000. This is because there are 1000 grams in 1 kilogram. Therefore, to find out how many grams of salt water taffy Joselyn bought, she would need to multiply 2.7kg by 1000.
The correct answer is (B) Multiply by 1000.
Multiplying 2.7kg by 1000 gives:
2.7kg x 1000 = 2700g
So Joselyn bought 2700 grams of salt water taffy at the store.
To learn more about salt water refer to:
brainly.com/question/6829606
#SPJ4
Consider the spectra of the two main sequence stars below (Star 1 on the left and Star 2 on the right) and sort the statements into the true or false bins. The intensity axes are not necessarily on the same scale. 350 450 550 Wavelength (nm) 350 45Q750 650 750 Wavelength (nm) true false Star 1 has a longer lifetime than Star 2 Star 2 is bluer than Star 1 Star 2 has a lower mass than Star 1 Star 1 has prominent hydrogen lines Star 2 has a higher luminosity than Star 1 Star 2 is cooler than Star 1.
. Additionally, Star 1 has prominent hydrogen lines, indicating a lower temperature than Star 2. Therefore, the statements can be sorted into the true and false bins as indicated above.
True: Star 1 has a longer lifetime than Star 2; Star 2 is bluer than Star 1; Star 2 has a lower mass than Star 1; Star 1 has prominent hydrogen lines.
False: Star 2 has a higher luminosity than Star 1; Star 2 is cooler than Star 1.
The spectra of the two main sequence stars illustrate some differences between the two stars. Star 1 is on the left and has a longer lifetime than Star 2, which is on the right. This is evident from the intensity axes that are not on the same scale. Star 2 has a lower mass than Star 1, is bluer than Star 1, and has a lower luminosity
for such more questions on hydrogen lines
https://brainly.com/question/30461609
#SPJ11
Suppose you watch a leaf bobbing up and down as ripples pass it by in a pond. You notice that it does two full up and down bobs each second. Which statement is true of the ripples on the pond?
They have a frequency of 2 hertz.
The correct statement of the ripples on the pond is that they have a frequency of 2 hertz.
In physics, the number of cycles of a periodic wave that occur in a unit of time is known as the frequency of that wave. Its unit is hertz (Hz), which indicates cycles per second.A hertz is a unit of frequency that indicates how many times per second a wave oscillates. The amount of time it takes for one complete cycle of the wave is inversely proportional to its frequency. A wave with a high frequency oscillates more frequently than one with a low frequency.What is hertz (Hz)?Hertz (Hz) is the standard unit of frequency. One hertz (Hz) is equal to one cycle per second, meaning that a wave with a frequency of 2 Hz repeats twice in one second. Therefore, the frequency of the ripples on the pond is 2 hertz.
More on frequency: https://brainly.com/question/25811461
#SPJ11
you are using a 1 cir pump which is producing 7.2 gal/min. the pump's shaft is being turned at 1,804 rpm. what is the volumetric efficiency of the pump (as a decimal)?
The Volumetric efficiency of the pump is the ratio of the actual capacity to the theoretical capacity of the pump.
Volumetric efficiency of the pump = Actual capacity of the pump / Theoretical capacity of the pump
Given Information
The provided information is,
1 cir pumpCapacity of the pump = 7.2 gal/minSpeed of the shaft = 1804 rpmFind
Volumetric efficiency of the pumpThe theoretical capacity of the pump is given by the following formula,
Theoretical capacity of the pump = π/4 x d² x l x n
where:
π = 3.14d = diameter of the pump l = length of the pump n = speed of the pumpFor the given problem,
Theoretical capacity of the pump = π/4 x d² x l x nπ = 3.14d = ?l = ?n = 1804 rpmWe need to find the diameter of the pump and length of the pump to calculate the theoretical capacity of the pump.
Now, we have the actual capacity of the pump.
Actual capacity of the pump = 7.2 gal/min = 7.2 x 0.13368 m³/min = 0.962496 m³/minVolumetric efficiency of the pump = Actual capacity of the pump / Theoretical capacity of the pumpAs we don't have the diameter and length of the pump, it is impossible to calculate the theoretical capacity of the pump.
Hence, the Volumetric efficiency of the pump cannot be calculated.
Learn more about Volumetric efficiency: https://brainly.com/question/14783214
#SPJ11
true or false if the whole picture plane is affected by aerial diffusion, it stops being an effective indicator of depth.
If the whole picture plane is affected by aerial diffusion, it stops being an effective indicator of depth - this statement is true.
Aerial diffusion is the scattering of light by particles in the air. These particles cause distant objects to appear fainter and bluer than closer objects, leading to a decrease in visual clarity and the ability to perceive depth. Aerial diffusion can be utilized in painting and drawing to create an atmospheric perspective, which produces a sense of depth by making objects are that further away appear hazier and less distinct than those that are closer. However, if the entire picture plane is affected by aerial diffusion, this can make it difficult to distinguish between objects at different depths, which can result in a lack of clarity and depth perception in the painting or drawing.
A picture plane is a theoretical plane that corresponds to the surface of a painting or drawing. The picture plane is where the artist organizes and arranges the various elements of the composition to create a visual representation of a scene. The picture plane is where the viewer's eye interacts with the artwork, and where the illusion of depth and space is created. In this context, the picture plane is an important factor in the creation of depth and atmosphere in a painting or drawing.
Learn more about aerial diffusion:
https://brainly.com/question/1381101
#SPJ11
A 1500 kg car is moving to the right with a speed of 20.0 m/s when it collides with a wall and reboubds at a speed of 5.00 m/s.
If the collision lasts for 250 ms, then the magnitude of the average force acring on the car is _____ kN (the answer is 150 but I'm not sure how)
pls help!!
Answer:
See below.
Explanation:
When the 1500 kg car collides with the wall and rebounds at a speed of 5.00 m/s, we can calculate the change in the car's velocity using the following formula:
Δv = v2 - v1
Where Δv is the change in velocity, v2 is the final velocity, and v1 is the initial velocity. Substituting the given values, we get:
Δv = 5.00 m/s - 20.0 m/s
Δv = -15.0 m/s
The negative sign indicates that the direction of the car's velocity has reversed, or that the car is now moving to the left. To calculate the magnitude of the change in velocity, we take the absolute value:
|Δv| = |-15.0 m/s|
|Δv| = 15.0 m/s
Therefore, the magnitude of the change in velocity is 15.0 m/s.
Now,
To find the magnitude of the average force acting on the car during the collision, we can use the impulse-momentum theorem, which states that:
Impulse = change in momentum
Average force = Impulse / time
The change in momentum of the car is given by:
Δp = mΔv
where Δv is the change in velocity calculated in the previous answer and m is the mass of the car.
Δp = 1500 kg × (-15.0 m/s)
Δp = -22500 kg·m/s
The impulse acting on the car during the collision is equal to the change in momentum:
Impulse = Δp = -22500 kg·m/s
To find the magnitude of the average force acting on the car during the 250 ms collision, we divide the impulse by the duration of the collision:
Average force = Impulse / time
Average force = -22500 kg·m/s / 0.250 s
Average force ≈ -90,000 N
The negative sign indicates that the force is in the opposite direction of the car's motion, or to the left. Therefore, the magnitude of the average force acting on the car during the collision is approximately 90,000 N.
A copper water tank of mass 20 kg contains 150 kg of water at 15°C. Calculate the energy needed to heat the water and the tanks to 55°C
The energy needed to heat the water and the copper tank to 55°C is 25,083,080 J.
Q = mCΔT
m = 150 kg (mass of water)
C = 4.18 J/g°C (specific heat capacity of water)
ΔT = 55°C - 15°C = 40°C (change in temperature)
Using the formula, we get:
[tex]Q_{water}[/tex] = mCΔT
[tex]Q_{water}[/tex] = (150 kg) x (4.18 J/g°C) x (40°C)
[tex]Q_{water}[/tex] = 25,080,000 J
m = 20 kg (mass of tank)
C = 0.385 J/g°C (specific heat capacity of copper)
ΔT = 55°C - 15°C = 40°C (change in temperature)
Using the formula, we get:
[tex]Q_{tank}[/tex] = mCΔT
[tex]Q_{tank}[/tex] = (20 kg) x (0.385 J/g°C) x (40°C)
[tex]Q_{tank}[/tex]= 3080 J
Finally, we can add the two energies together to get the total energy needed:
[tex]Q_{total}[/tex] = [tex]Q_{water}[/tex] [tex]+[/tex] [tex]Q_{tank}[/tex]
[tex]Q_{total}[/tex] [tex]= 25,080,000 J + 3080 J[/tex]
[tex]Q_{total}[/tex] [tex]= 25,083,080 J[/tex]
Energy is a fundamental concept that refers to the ability of a physical system to do work or cause a change. It is a scalar quantity that is measured in units of joules (J) in the International System of Units (SI). According to the law of conservation of energy, energy cannot be created or destroyed, but it can be transformed from one form to another. This means that the total amount of energy in a closed system remains constant.
Energy is a crucial concept in many areas of physics, including mechanics, thermodynamics, and electromagnetism. Understanding energy is essential for understanding how the physical world works, and it has numerous applications in technology and everyday life, from powering our homes and vehicles to the production of food and the functioning of our bodies.
To learn more about Energy visit here:
brainly.com/question/2409175
#SPJ4
A gas is compressed at a constant pressure from a volume of 10 m3 to a volume of 4 m3 , then work done on the system is:
a) nRT ln 1/6
b) nRT In2/5
c) nRT In 5/2
d) nRT In 6
None of the answer options provided are correct as they all involve calculations that assume certain values for the pressure, volume, and temperature of the gas.
What is Constant Pressure?
Constant pressure is a thermodynamic process in which the pressure of a system remains constant during the process. This means that any change in volume or temperature of the system must be accompanied by a corresponding change in some other property, such as the amount of heat added or removed from the system.
Since the gas is compressed at a constant pressure, the work done on the system can be calculated as:
W = -PΔV
In this case, P is constant, so we have:
W = -P(V2 - V1)
W = -P(4 m^3 - 10 m^3)
W = -P(-6 m^3)
W = 6P m^3
Since we are not given any information about the type of gas or its properties, we cannot use the ideal gas law to calculate the pressure P. Therefore, we cannot determine the exact value of the work done on the system.
Learn more about Constant Pressure from given link
https://brainly.com/question/2139620
#SPJ1
An apple fell 6.0 m from a tree to the ground. What additional information is needed to calculate both the gravitational potential energy of the apple and its kinetic energy?
the volume of the apple and the time the apple was in the air
the mass of the apple and the amount of energy lost to air resistance
the average acceleration of the apple and the time the apple was in the air
the average velocity of the apple and the amount of energy lost to friction
For calculation of potential energy mass of the apple , average acceleration of the apple and height of apple is required.
Energy While for calculation of kinetic energy volume of the apple and time the apple was in air, the average velocity of the apple and amount of energy lost to friction is required.Based on the force exerted on the two objects, the potential energy equation is determined. P.E. = mgh, where m is the mass in kilograms, g is the acceleration caused by gravity (9.8 m/s2 at the earth's surface), and h is the height in meters, is the formula for gravitational force.The relationship between kinetic energy and an object's mass and squared velocity is given by K.E. = 1/2 m v2. If the mass is measured in kilograms and the speed is measured in meters per second, the kinetic energy is measured in kilogram-meters squared per second squared.For more information on kinetic and potential energy kindly visit to
https://brainly.com/question/11749818
#SPJ1
1) A white dwarf is
A) a precursor to a black hole.
B) an early stage of a neutron star.
C) what most stars become when they die.
D) a brown dwarf that has exhausted its fuel for nuclear fusion.
The most appropriate option among the given options is C. A white dwarf is what most stars become when they die.What is a white dwarf?A white dwarf is a small, compact object that is the final stage of stellar evolution for most stars in the universe.
The star exhausts its fuel and begins to cool after it has used up all of the hydrogen fuel that powers its nuclear reactions. This phase of a star's evolution is referred to as a red giant. The star then sheds its outer layers of gas, exposing its core. The hot, glowing core of a star is exposed as a white dwarf once the outer layers have been ejected.What most stars become when they die is a white dwarf. This is one of the most fascinating phenomena in the universe, as well as one of the most intriguing. Furthermore, a white dwarf is a dense, compact object that is frequently composed of carbon and oxygen. It has no more nuclear fuel to burn, therefore it does not produce energy. As a result, it gradually fades away into the blackness of space, eventually turning into a black dwarf. However, it is believed that no black dwarfs have been observed yet.White dwarfs are not precursors to black holes or neutron stars, as those objects are formed from more massive stars that undergo different processes at the end of their lives. Brown dwarfs are also different objects, being failed stars that never achieved the temperature and pressure necessary for sustained nuclear fusion.
For more such questions one white dwarf
https://brainly.com/question/13914155
#SPJ11
a -pound elevator is suspended by a -foot cable that weighs lb/ft. how much work is required to raise the elevator from the basement to the third floor, a distance of ft?
The work required to raise the elevator from the basement to the third floor is equal to the force times the distance moved. The work required is equal to (-pounds)(ft) = -foot-pounds.
We have to calculate the work required to raise the elevator from the basement to the third floor using the given data. In order to calculate the work, we need to determine the force required to lift the elevator.
This can be done using the equation: F = W + w x L
where, F is the force required to lift the elevator, W is the weight of the elevator, w is the weight of the cable per foot, and L is the length of the cable. F = 1500 + (0.4 × 75) = 1500 + 30 = 1530 pounds.
Therefore, the force required to lift the elevator is 1530 pounds. The work done to raise the elevator is given by the equation: W = F × d
where, W is the work done, F is the force required to lift the elevator, and d is the distance traveled by the elevator.
W = 1530 × 30 = 45,900 foot-pounds.
Therefore, the work required to raise the elevator from the basement to the third floor is 45,900 foot-pounds.
Read more about the distance ;
https://brainly.com/question/26550516
#SPJ11
an incompressible substance with a density of 1000 kg/m3 is isothermally compressed from 100 to 1000 kpa. determine the change in enthalpy. multiple choice question. 0 kj/kg 0.9 kj/kg 10 kj/kg 900 kj/kg
The change in enthalpy of an incompressible substance with a density of 1000 kg/m³ that is isothermally compressed from 100 to 1000 kPa is 0 kJ/kg.
What is enthalpy?Enthalpy is a measure of the total energy of a thermodynamic system. In addition, it incorporates the energy that is supplied to the system as heat, as well as any energy that is used as work. Enthalpy is represented by the symbol H and is usually calculated in units of joules (J).
What is an incompressible substance?An incompressible substance is one that cannot be compressed or compressed to a significant degree. Liquids are examples of such materials. They are often described as having a constant density because, unlike gases, they do not easily change in volume in response to pressure or temperature changes. Therefore, the change in enthalpy is 0 kJ/kg.
Learn more about Enthalpy here: https://brainly.com/question/16985375.
#SPJ11
Star A is identical to Star B, but Star A is twice as far from us as Star B. Therefore, _______________.
Star A's light will take longer to reach us.
A wave interaction that occurs when two waves are in the same place at the same time
The wave interaction that occurs when two waves are in the same place at the same time is called interference.
Interference can be either constructive or destructive, depending on the relative phases of the waves.
What is constructive interference?
Constructive interference occurs when two waves have the same phase and their amplitudes add together. The resulting wave has a larger amplitude than either of the individual waves. This can be seen, for example, when two speakers playing the same sound are placed close together.
What is destructive interference?
Destructive interference occurs when two waves have opposite phases and their amplitudes subtract from each other. The resulting wave has a smaller amplitude than either of the individual waves. This can be seen, for example, when two waves with equal amplitude and wavelength are superimposed, but one is shifted by half a wavelength relative to the other.
To know more about interference, visit:
https://brainly.com/question/16098226
#SPJ1
Complete question is: The wave interaction that occurs when two waves are in the same place at the same time is called interference.
If you stand on one foot while holding your other leg up behind you, your muscles apply a force to hold your leg in this raised position. We can model this situation as in Figure 1). The leg pivots at the knee joint, and the force that holds the leg up is provided by a tendon attached to the lower leg as shown Assume that the lower leg and the foot have a combined mass of 3.6kg, and that the combined center of gravity is at the center of Figure he knot What is the magnitude of this force? The london provides you hold your leg in this position the upper legeerts a force Express your answer with the appropriate units the lower le TARO? Value Units Sube
To keep the leg in the raised position, the tendon should provide 160N force.
The rotating force or moment of a force around a particular axis or pivot point is measured by torque. The tendency of a force to cause an object to spin along an axis is described as a vector quantity, torque.
Given: combined mass of the lower leg and the foot, m = 3.6kg
position of the center of gravity, r1 = 25cm
r = 0.25m
distance between tendon and lower leg, r2 = 5cm = 0.05m
torque applied will be τ = 3.6 × 10 × 0.25
τ = 8 N-m
the force applied by tendon
F = τ/ r2
F = 8/ 0.05
F = 160N
Therefore, To keep the leg in the raised position, the tendon should provide 160N force.
To know more about torque, click here:
https://brainly.com/question/29024338
#SPJ12
What do the areas labeled x, y, and z represent? constructive interference in which waves cancel each other out constructive interference in which waves strengthen each other destructive interference in which waves cancel each other out destructive interference in which waves strengthen each other
The correct option is B, the areas labeled X, Y, and Z represent constructive interference in which waves strengthen each other.
Interference is a phenomenon that occurs when two or more waves interact with each other. In physics, waves can be described as a disturbance that travels through a medium, such as water or air. When two waves meet, they can either reinforce or cancel each other out, depending on their amplitudes and phases.
Constructive interference occurs when the peaks of two waves coincide, creating a larger amplitude than either wave alone. Destructive interference occurs when the peak of one wave coincides with the trough of another, resulting in a cancellation of the waves. Interference is a fundamental concept in many areas of physics, including optics, acoustics, and electromagnetism.
To learn more about Interference visit here:
brainly.com/question/16098226
#SPJ4
Complete Question:
The diagram shows monochromatic light passing through two openings.
What do the areas labeled X, Y, and Z represent?
A). constructive interference in which waves cancel each other out
B). constructive interference in which waves strengthen each other
C). destructive interference in which waves cancel each other out
D). destructive interference in which waves strengthen each other
a ceiling fan is turned on and a net torque of 2.3 n*m applied to the blades. the blades have a total moment of inertia of 0.39 kg*m^2. what is the angular acceleration of the blades?
The angular acceleration of the blades is 5.897 rad/s². It can be calculated using the formula α as the ratio of torque to moment of Inertia.
The torque is a rotational or twisting force. Angular acceleration is the rate at which the angular velocity of an object changes, measured in radians per second squared (rad/s²).
Given the torque and moment of inertia, we may utilize the following formula to find the angular acceleration of the blades:
[tex]\alpha= \dfrac{Torque}{Moment \; of \; inertia}\\\alpha= \dfrac{\tau}{I}[/tex]
where τ is the torque in newton-meters (N-m),I is the moment of inertia in kg-m², α is the angular acceleration in radians per second squared (rad/s²).
Rearranging the formula to solve for α gives:
[tex]\alpha=2.3/0.39\\=5.897 rad/s^2[/tex]
Therefore, the angular acceleration of the blades is 5.897 rad/s².
For further information about angular acceleration click on below link:
https://brainly.com/question/30238727
#SPJ11
an ambulance truck emits sound with a frequency of 800hz. what is the frequency detected by a stationary observer if the ambulance truck is moving 30 m/s toward the observer? (the speed of sound in air at 20c is 343 m/s)
The frequency detected by a stationary observer if the ambulance truck is moving 30 m/s toward the observer is 731.3 Hz.
When the ambulance truck emits sound with a frequency of 800hz and the ambulance truck is moving 30 m/s toward the observer,
The observed frequency is given by the following formula.
f’ = f [(v ± v_o)/(v ± v_s)]
Where v = the speed of sound in air = 343 m/s
f = frequency of the source = 800 Hz
v_o = velocity of the observer (stationary) = 0 m/s
v_s = velocity of the source (ambulance truck) = -30 m/s (since the ambulance truck is moving toward the observer)
Now we can plug in the values into the formula and calculate the observed frequency.
f' = 800 ((343 - 30) / (343 + 0))
= 800 (313 / 343)
= 731.5 Hz (rounded to one decimal place)
If the ambulance truck is moving towards a stationary observer at a speed of 30 m/s, the frequency detected by the observer is 731.3 Hz.
To know more about "observed frequency" in physics: https://brainly.com/question/15056533
#SPJ11
a rectangular field is twice as long as it is wide. the perimeter of the field is 450 yards. find the dimensions of the field. you must find an equation to represent the situation and solve.
The dimensions of the field can be found to be 75 yards in width and 150 yards in length.
Given:
Let the width of the rectangular field be x
Length of the rectangular field = 2x
Perimeter of the rectangular field = 450 yards
Formula Used:
Perimeter of a rectangle = 2 (l + w)
Where l and w are the length and width of the rectangle respectively.
Solution:
As per the question,
Perimeter of the rectangular field = 450 yards
Therefore, 2(Length + Width) = 450
2(x + 2x) = 450
2(3x) = 450
6x = 450
x = 75
Therefore, the width of the rectangular field is 75 yards
Length of the rectangular field = 2x = 2 × 75 = 150 yards
Hence, the dimensions of the field are 75 yards by 150 yards.
To know more perimeter, refer here:
https://brainly.com/question/30252651#
#SPJ11
The position of a toy locomotive moving on a straight track along the x axis is given by the equation x = t^3 - 6t^2 + 9t, where x is in meters and t is in seconds. The net force on the locomotive is equal to zero when t is equal to (A) zero (B) 2 s (C) 3 s (D) 4 s (E) 5 s
Option C, The net force on the toy locomotive moving on a straight track along the x-axis is equal to zero at t=3s.
A force is any push or pull that results in a modification in the state of motion of an object. The net force on an object is the combination of all forces acting on it in a specific direction. An object in motion will continue to move in a straight line at a steady velocity unless acted upon by a net force, according to Newton's first law of motion. The equation of motion for the toy locomotive is as follows:
x = t³ - 6t² + 9t
We must differentiate this equation twice to determine the acceleration of the toy locomotive.
a = x′′= 6t - 12, At time t = 3 seconds, the net force on the toy locomotive is zero. This occurs when the acceleration of the toy locomotive equals zero.
6t - 12 = 0t = 2
Therefore, the net force on the toy locomotive moving on a straight track along the x-axis is equal to zero at t = 3 seconds.
Learn more about force and locomotive at : https://brainly.com/question/14206785
#SPJ11
The width of the cube was 18. 45 mm. The density of the cube was 8. 0 × 103 kg/m3
Calculate the mass of the cube
The required mass of the cube when width of the cube and density of the cube are specified is calculated to be 0.0502 kg.
The width of the cube is given as 18.45 mm = 18.45 × 10⁻³ m
The density of the cube is given as 8 × 10³ kg/m³.
Mass of the cube is to be found out.
The general formula for density of a cube is given by, V = s³
where,
V is volume
s is side/width/height (As they are all equal in a cube)
So, the volume of the cube is,
V = (18.45 × 10⁻³)³ = 0.01845³ = 6.28 × 10⁻⁶ m³
Now, we know the general equation for density as, mass upon unit volume.
Mathematically, D = m/V
Making m as subject, we have,
Mass m = D × V = 8 × 10³ × 6.28 × 10⁻⁶ = 50.24× 10⁻³ kg = 0.0502 kg
Thus, the required mass is calculated to be 0.0502 kg.
To know more about density:
https://brainly.com/question/952755
#SPJ4
an open vertical tube has water in it. a tuning fork vibrates over its mouth. as the water level is lowered in the tube, the seventh resonance is heard when the water level is 217.75 cm below the top of the tube.
The speed of sound is found out to be 349.4 ms⁻¹ from the frequency of the seventh resonance heard when the water level is 217.75 cm below the top of the tube.
What is the frequency?Frequency of wave:
v = nλ
where, v = speed of sound, n = frequency, λ = wavelength
Speed of sound:
v = frequency n × wavelength λ
Frequency, n = v/λ
Wavelength, λ = v/n
The 7th resonance frequency of the tuning fork is given by:
n = 7 × f
where, f is the frequency of the tuning fork
Speed of sound, v = nλ
Speed of sound, v = 7fλ
Speed of sound, v = 7 × 256 Hz × λ
λ = 1.3671 m
Distance travelled by the sound wave in the water column is L = h + l
where, h = length of the air column and l = length of water column where the resonance was heard.
L = h + l
L = 217.75 cm + 50 cm
L = 267.75 cm = 2.6775 m
Length of the air column, h = L - l
where, l = length of water column where the resonance was heard.
h = 2.6775 m - 0.5 m
h = 2.1775 m
Wavelength of sound wave in air column, λ₁ = 4h
λ₁ = 4 × 2.1775 m
λ₁ = 8.71 m
Frequency of the sound wave in air column is given by:
n = v/λ₁
n = 349.4 ms⁻¹ / 8.71 m
n = 40.112 Hz
The 7th resonance frequency of the tuning fork is given by:
n = 7 × f
40.112 Hz = 7 × f
Frequency of the tuning fork, f = 5.73 Hz.
Learn more about Frequency here:
https://brainly.com/question/14316711
#SPJ11
please help!!
If an object were in motion, how might you use a magnet to change the direction of its motion? Diagram the setup and explain your reasoning.
If the object in motion has some magnetic properties or contains a magnet, we can use another magnet to change its direction of motion by exerting a force on it through magnetic interaction. This principle is known as the Lorentz force.
Here's how we can set up the experiment:
Take a magnet and place it on a flat surface.
Take another magnet or the object with magnetic properties that is in motion.
Hold the magnet or the object in your hand and bring it close to the stationary magnet without touching it.
Move the magnet or the object towards the stationary magnet and observe its behavior.
If the magnet or the object has the same polarity as the stationary magnet, they will repel each other, and the motion of the object will be deflected in a direction away from the stationary magnet. If the magnet or the object has opposite polarity to the stationary magnet, they will attract each other, and the motion of the object will be deflected in a direction towards the stationary magnet.
Here's a diagram to help you visualize the setup:
N S N S
__________ __________
| | | |
| M1 | | M2 |
|__________| |__________|
( ) ( )
| |
Motion Stationary
Object Magnet
In this diagram, M1 represents the motion object or magnet, and M2 represents the stationary magnet. The N and S represent the North and South poles of the magnets. The arrows indicate the direction of motion and the direction of the magnetic field.
As we move M1 towards M2, the magnetic interaction will exert a force on M1, causing it to change its direction of motion. The direction of deflection will depend on the polarity of the magnets.
Note: It's important to keep in mind that the magnetic force is only one of the many factors that can affect the motion of an object. Other factors such as friction, air resistance, and gravitational forces can also play a significant role.
To know more about Motion visit :-
https://brainly.com/question/453639
#SPJ1
The velocity of a particle moving along the x axis changes from vi to vs For which values of vi and vf is the total work done on the particle positive? vi = 5 m / s, vf = - 2 m / s vi = - 2 m / s, vf = - 5 m / s vi = 5 m / s, vf = 2 m / s vi = - 5 m / s, vf = - 2 m / s vi = - 5 m / s, vf = 2 m / s
The total work done on a particle is given by the formula:
W = (1/2)mvf^2 - (1/2)mvi^2
where m is the mass of the particle, vi is the initial velocity, and vf is the final velocity.
For vi = 5 m/s and vf = 2 m/s, the final velocity is less than the initial velocity, so the total work is positive.
For vi = -2 m/s and vf = -5 m/s, the final velocity is less than the initial velocity, so the total work is positive.
For vi = -5 m/s and vf = 2 m/s, the final velocity is greater than the initial velocity, so the total work is negative.
For vi = 5 m/s and vf = -2 m/s, the final velocity is greater than the initial velocity, so the total work is negative.
For vi = -5 m/s and vf = -2 m/s, the final velocity is less than the initial velocity, so the total work is positive.
Therefore, the total work done on the particle is positive for vi = 5 m/s and vf = 2 m/s, and for vi = -2 m/s and vf = -5 m/s.
What works ?In order for work to be done, there must be a displacement of the object in the direction of the force applied. If the force and displacement are perpendicular, then no work is done.
Work can be positive, negative, or zero, depending on the direction of the force and the displacement. Positive work is done when the force and the displacement are in the same direction, negative work is done when they are in opposite directions, and zero work is done when there is no displacement or when the force and displacement are perpendicular.
Work is a transfer of energy, and as such it can change the kinetic energy, potential energy, or both of an object.
To know more about Work visit :
https://brainly.com/question/18094932
#SPJ1
A Nichrome wire 75 cm long and 0.25 mm in diameter is connected to a 1.7 volt flashlight battery.
A) What is the electric field inside the wire?
B) Next the Nichrome wire is replaced by a wire of the same length and diameter, and same mobile electron density but with electron mobility 4 times as large as that of Nichrome. Now what is the electric field inside the wire?
The electric field inside the wire is still about 2.27 V/m, even though the electron mobility is 4 times higher. This is because the resistance of the wire remains the same, and Ohm's law still applies. The higher conductivity only means that a higher current flows through the wire for the same voltage, but the electric field remains the same.
We can use Ohm's law to find the electric field inside the Nichrome wire:
V = IR
where
V = 1.7 volts (battery voltage)
I = current
R = resistance of the wire
The resistance of a wire can be calculated using the formula:
R = (ρL) / A
where
ρ = resistivity of the material
L = length of the wire
A = cross-sectional area of the wire
The resistivity of Nichrome is about 1.10 x 10^-6 Ωm, and the cross-sectional area of the wire can be calculated using the formula for the area of a circle:
A = πr^2
where
r = radius of the wire = 0.125 mm = 0.000125 m
So, A = π(0.000125 m)^2 = 4.91 x 10^-8 m^2
Substituting the values, we get:
R = (1.10 x 10^-6 Ωm)(0.75 m) / (4.91 x 10^-8 m^2)
R ≈ 0.017 Ω
Now we can find the current:
I = V / R
I = 1.7 volts / 0.017 Ω
I ≈ 100 amps
The electric field inside the wire can be calculated using the formula:
E = V / L
where
E = electric field
V = potential difference
L = length of the wire
Substituting the values, we get:
E = 1.7 volts / 0.75 m
E ≈ 2.27 volts/meter or 2.27 V/m
So the electric field inside the Nichrome wire is about 2.27 V/m.
Next, we can repeat the calculations for the wire with the higher electron mobility. Since the mobile electron density and the length and diameter of the wire are the same, the resistance of the wire will also be the same as before. However, the higher electron mobility means that the wire will have a higher conductivity, which in turn means that the current will be higher for the same voltage.
Let's assume that the electron mobility is 4 times higher than that of Nichrome. Since the resistivity of the material remains the same, the conductivity will be 4 times higher as well. Therefore, the current will be 4 times higher than before:
I = 4 x 100 amps = 400 amps
Using the same formula as before, the electric field inside the wire can be calculated:
E = V / L
E = 1.7 volts / 0.75 m
E ≈ 2.27 volts/meter or 2.27 V/m
So, the electric field inside the wire is still about 2.27 V/m, even though the electron mobility is 4 times higher. This is because the resistance of the wire remains the same, and Ohm's law still applies. The higher conductivity only means that a higher current flows through the wire for the same voltage, but the electric field remains the same.
For such more questions on Ohm's law
https://brainly.com/question/14634041
#SPJ11
The model for the motion of the pendulum described in the background reading and OpenStax requires that several conditions are met in order to be an appropriate, accurate model. We often assume those conditions are met when we use a model, but, if our assumptions are wrong, the model may not describe what happens. Which of the following conditions, if not true/valid, would explain these experiment results? A. The pendulum is assumed to be swinging without friction. B. The string is assumed to be massless. C. The amplitude of oscillation is assumed to be small. D. All of these assumptions, if wrong, would explain the findings. E. None of these assumptions would explain the findings, regardless of whether they are true.
A, B, and C are all assumptions made in the model for the motion of a pendulum, and if any of them are not valid, the model may not accurately describe the behavior of the pendulum. Therefore, option D is correct.
The model for the motion of a pendulum assumes that the pendulum is swinging without friction, the string is massless, and the amplitude of oscillation is small. These assumptions allow us to use the simple harmonic motion equation to describe the motion of the pendulum. However, if any of these assumptions are not true, the model may not be valid.
Therefore, if any of these assumptions are not valid, the model for the motion of the pendulum may not be accurate, and the results obtained from the model may not describe the actual behavior of the pendulum.
Hence Option d IS CORRECT.
For more similar questions on pendulum,
brainly.com/question/12306298
#SPJ11.
as noted in this chapter, plants help to reduce water runoff and soil erosion, both of which affect the health of streams and rivers by impacting water quality. soil erosion increases the silt load in water and this literally smothers living organisms, particularly plants and invertebrate species. runoff water can carry pollutants, particularly pesticides and herbicides from agricultural land. read the description of each landscape and rank them from best stream quality to worst stream quality. 1: streams cutting through small farms with several different crop types and natural vegetation buffers between the fields and the streams. 2: a large floodplain area covered with lowland forests and swamps full of emergent vegetation, with small streams cutting through the area. 3: an urban housing development where the trees growing along the streams were removed and replaced with lawns. 4: a system of large farms with no buffer vegetation between the fields and the streams that cut through the farms. question list (4 items) (drag and drop into the appropriate area) landscape 1 landscape 2 landscape 3 landscape 4 correct answer list best stream quality
Plants help to reduce water runoff and soil erosion, both of which affect the health of streams and rivers by impacting water quality.
Soil erosion increases the silt load in the water, which can smother living organisms, particularly plants and invertebrate species. Runoff water can carry pollutants, particularly pesticides, and herbicides from agricultural land.
Landscape 1 (streams cutting through small farms with a variety of crop types and natural vegetation buffers between the fields and the streams) would be the best quality, followed by Landscape 2 (a large floodplain area covered in lowland forests and swamps full of emergent vegetation, with small streams cutting through the area) and Landscape 3 (an urban housing development where the streams are surrounded by emergent vegetation).
Learn more about water quality at brainly.com/question/20848502
#SPJ11