Answer:
R35625
Step-by-step explanation:
(R30,000×.125×18/12)+R30000
=R35625
Max needs to paint a wall that is shaped like a square. He knows that the area of the wall is 75 ft2 . He needs to find the height of the wall. Find the height of the wall to the nearest tenth of a foot.
Answer:
8.7 feet
Step-by-step explanation:
Use the square area formula, a = s², where s is the side length of the square.
Plug in the area and solve for s:
a = s²
75 = s²
√75 = s
8.7 = s
So, to the nearest tenth of a foot, the height is 8.7 feet
4. Eric has 54 yards of fencing to use for a flowerbed. Some possible measurements are
shown below. For which flowerbeds does Eric have enough fencing? Color in all the
possible answers.
A.
length = 30 yards
area = 300 square yards
B.
length = 20 yards
width = 5 yards
C.
width = 12 yards
perimeter = 48 yards
D.
length = 26 yards
width = 22 yards
E.
length = 16 yards
width = 14 yards
F.
width = 9 yards
area = 162 square yard
Answer:
B,C,F
Step-by-step explanation:
A=L*W
P=2L+2W
P≤54
for A, 2L is already greater than 60
B works as 2W+2L in this case is 50
C states that perimeter is less than 54
D doesn't work, as 2L+2W=96
E doesn't work, see above, P=60
F, area=W*L
162/9=18
L=18
2L+2W=48, so F works
Answer:
trả lời:
B,C,F
Giải thích từng bước:
A = L * W
P = 2L + 2W
Trang ≤54
đối với A, 2L đã lớn hơn 60
B hoạt động như 2W + 2L trong trường hợp này là 50
C nói rằng chu vi nhỏ hơn 54
D không hoạt động, vì 2L + 2W = 96
E không hoạt động, xem ở trên, P = 60
F, diện tích =W*L
162/9=18
L =18
2L + 2W = 48, vì vậy F hoạt động
I need help really bad
Answer:
1 ???????
Step-by-step explanation:
if f(n) = 6-2n, find f(-1)
Answer:
8
Step-by-step explanation:
f(n)= 6-2n
f(-1) = 6- 2(-1)
= 6+2
=8
the value of 5/121^1/2
Answer:
√5/121
Step-by-step explanation:
formula: a^½=√a
(⁵/¹²¹)^½=√⁵/¹²¹
The automatic opening device of a military cargo parachute has been designed to open when the parachute is 185 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 185 and standard deviation 32 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes
Answer:
0.0193 = 1.93% probability that there is equipment damage to the payload of at least one of five independently dropped parachutes.
Step-by-step explanation:
For each parachute, there are only two possible outcomes. Either there is damage, or there is not. The probability of there being damage on a parachute is independent of any other parachute, which means that the binomial probability distribution is used to solve this question.
To find the probability of damage on a parachute, the normal distribution is used.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Probability of a parachute having damage.
The opening altitude actually has a normal distribution with mean value 185 and standard deviation 32 m, which means that [tex]\mu = 185, \sigma = 32[/tex]
Equipment damage will occur if the parachute opens at an altitude of less than 100 m, which means that the probability of damage is the p-value of Z when X = 100. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{100 - 185}{32}[/tex]
[tex]Z = -2.66[/tex]
[tex]Z = -2.66[/tex] has a p-value of 0.0039.
What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes?
0.0039 probability of a parachute having damage, which means that [tex]p = 0.0039[/tex]
5 parachutes, which means that [tex]n = 5[/tex]
This probability is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.0039)^{0}.(0.9961)^{5} = 0.9807[/tex]
Then
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.9807 = 0.0193[/tex]
0.0193 = 1.93% probability that there is equipment damage to the payload of at least one of five independently dropped parachutes.
Find the bases for Col A and Nul A, and then state the dimension of these subspaces for the matrix A and an echelon form of A below.
A= 1 3 8 2 7 1 3 8 2 7
2 7 20 6 20 --- 0 1 4 2 6
-3 -12 -36 -7 -19 0 0 0 1 4
3 13 40 9 25 0 0 0 0 0
Start 4 By 5 Table 1st Row 1st Column 1 2nd Column 3 3rd Column 8 4st Column 2 5st Column 7 2nd Row 1st Column 2 2nd Column 7 3rd Column 20 4st Column 6 5st Column 20 3rd Row 1st Column negative 3 2nd Column negative 12 3rd Column negative 36 4st Column negative 7 5st Column negative 19 4st Row 1st Column 3 2nd Column 13 3rd Column 40 4st Column 9 5st Column 25 EndTable
tilde
Start 4 By 5 Table 1st Row 1st Column 1 2nd Column 3 3rd Column 8 4st Column 2 5st Column 7 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 2 5st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 5st Column 4 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 5st Column 0 EndTable
A basis for Col A is given by
StartSet nothing EndSet
(Use a comma to separate vectors as needed.)
The dimension of Col A is
3.
A basis for Nul A is given by
StartSet nothing EndSet
(Use a comma to separate vectors as needed.)
The dimension of Nul A .
Answer:
skip counting by 0
Step-by-step explanation:
skipcount by 0 to get to 100 for the third column.
Answer:
its the first graph
Step-by-step explanation:
I got it right bc im cool like that ig
What is the inverse of the function a(x)=1/x-2
Answer:
x = 1/x - 2
Step-by-step explanation:
please helpppp.
Which of these could be the graph of F(x) = In x + 3?
A. Graph A
B. Graph B
C. Graph C
D. Graph D
Answer:
c
Step-by-step explanation:
Try desmos
Plz help me find side x and y thanks
Answer:
2sqrt3
Step-by-step explanation:
Since this seems to be a 45, 45, 90 triangle, x and y are the same.
The hypoteneuse is always the side lengths *sqrt2
We divide the hypoteneuse by sqrt 2 and get sqrt12
sqrt12 simplified is 2sqrt3
A person's email for one day contained a total of 78 messages. The number of spam
messages was two less than four times the number of other messages. How many of
the email messages were spam?
Answer:
62 of the email messages were spam
Step-by-step explanation:
Let the number of spam and other messages be s and o respectively.
Total number of messages= 78
s +o= 78 -----(1)
s= 4o -2 -----(2)
Substitute (2) into (1):
4o -2 +o= 78
Simplify:
5o -2= 78
+2 on both sides:
5o= 78 +2
5o= 80
Divide both sides by 5:
o= 80 ÷5
o= 16
Since s +o= 78, s= 78 -o.
s= 78 -16
s= 62
If x+7 is an even number, is x+11 an even number or odd number?
Answer:
x + 11 is an even number.
Step-by-step explanation:
Even numbers can only be obtained from the sum of two odd numbers or two even numbers. Since we know that x + 7 is even, x + 11 must be even as well.
Which of the following fractions is closest to 0? 5/12 , 2/3, 5/6,3/4
Answer:
5/12
Step-by-step explanation:
5/12 , 2/3, 5/6,3/4
Get a common denominator of 12
5/12, 2/3 *4/4, 5/6*2/2, 3/4 *3/3
5/12, 8/12, 10/12, 9/12
The numerator closest to 0 is the fraction closest to 0
5/12
HELP !
Find the measure it the given angle.
Answer:
it's 90
Step-by-step explanation:
inscribed angle intercepts a semicircle is always 90
Write each as a decimal round to the thousands place 44%
Answer:
44 as a decimal is 0.44 and you can multiply 0.44 by a number to get 44 percent of that number.
josue bought 7 pounds of pretzels at a local wholesaler for $16.80. his friend ricardo bought 5 pounds of pretzels at the supermarket for $12.75. Ricardo thinks he got the better deal because $12.75 is less than $16.80. Is Ricardo's reasoning correct? Explain why or why not.
Please help! There is 2 questions in this pic! Thank you so much to whoever helps me
Answer:
[tex]{ \sf{thats \: it}}[/tex]
Help please:)) 2. When shipping ice cream, melting is understandably a big concern. You will notice that ice cream is not generally packaged in a cube-shaped container. A standard container of ice cream contains 1 L, or 1000 cm3 of ice cream,
a. What would be the optimal dimensions (radius and height) to minimize surface area?
b. What would the surface area be?
C. Suggest at least two reasons why this is different from the ice cream packaging that you see in the stores.
Answer:
a. The radius r = 5.42 cm and the height h = 10.84 cm
b. 553.73 cm²
c. i. Beauty ii. Design
Step-by-step explanation:
a. What would be the optimal dimensions (radius and height) to minimize surface area?
The volume of the standard container is a cylinder and its volume is V = πr²h where r = radius of container and h = height of container.
Since V = 1000 cm³,
1000 cm³ = πr²h (1)
Now, the surface area of a cylinder is A = 2πr² + 2πrh where r and h are the radius and height of the cylinder.
From (1), h = 1000/πr².
Substituting h into A, we have
A = 2πr² + 2πrh
A = 2πr² + 2πr(1000/πr²)
A = 2πr² + 2000/r
To maximize A, we differentiate A with respect to r and equate to zero to find the value of r at which A is maximum.
So, dA/dr = d[2πr² + 2000/r]/dr
dA/dr = d[2πr²]/dr + d[2000/r]/dr
dA/dr = 4πr - 2000/r²
Equating the equation to zero, we have
4πr - 2000/r² = 0
4πr = 2000/r²
r³ = 2000/4π
r = ∛(1000/2π)
r = 10(1/∛(2π))
r = 10(1/∛(6.283))
r = 10/1.8453
r = 5.42 cm
To determine if this value of r gives a minimum for A, we differentiate dA/dr with respect to r.
So, d(dA/dr)/dr = d²A/dr²
= d[4πr - 2000/r²]/dr
= d[4πr]/dr - d[2000/r²]/dr
= 4π + 4000/r³
Substituting r³ = 2000/4π into the equation, we have
d²A/dr² = 4π + 4000/r³ = 4π + 4000/(2000/4π) = 4π + 2 × 4π = 4π + 8π = 12π > 0
Since d²A/dr² = 12π > 0, then r = 5.42 cm gives a minimum for A.
Since h = 1000/πr²
h = 1000/π(5.42)²
h = 1000/92.288
h = 10.84 cm
So, the radius r = 5.42 cm and the height h = 10.84 cm
b. What would the surface area be?
Since the surface area, A = 2πr² + 2πrh
Substituting the values of r and h into A, we have
A = 2πr² + 2πrh
A = 2πr(r + h)
A = 2π5.42(5.42 + 10.84)
A = 10.84π(16.26)
A = 176.2584π
A = 553.73 cm²
c. Suggest at least two reasons why this is different from the ice cream packaging that you see in the stores.
i. Beauty
ii. Design
Which equation is in standard form?
a. X +3= -5y
b. 5-y=x
c. y =3x + 6
d. -8x+ 3y = 12
选项 (d)
option (d)
!!!!!!!!!
Factorize:
625a^4 + 4b^4
(625 • (a4)) + 22b4
54a4 + 22b4
Final result :
625a4 + 4b4
Find the slope and the y-intercept of the line with the given equation.
f(x) = 7 -4/5x
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. The slope is
(Type an integer or a simplified fraction.)
B. The slope is undefined.
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. The y-intercept is
(Simplify your answer. Type an ordered pair, using integers or fractions.)
B. There is no y-intercept.
Answer:
The slope is -4/5
The y intercept is (0,7)
Step-by-step explanation:
f(x) = 7 -4/5x
Rewriting
y = -4/5x +7
This is in slope intercept form
y = mx+b where m is the slope and x is the y intercept
The slope is -4/5
The y intercept is (0,7)
What is the variable used in the equation 5x + 2 =100?
Answer:
[tex]5x + 2 = 100 \\ 5x = 100 - 2 \\ 5x = 98 \\ x = \frac{98}{5} \\ x = 19.6[/tex]
Answer: the answer would be x because that's the actual variable in the question then if 19.6 was not an option
Step-by-step explanation:
prove:
sin²A-cos²B=sin²B-cos²A
Step-by-step explanation:
thwashm m GB DC GM 3hka it g feeds ygzdkzyzuzjz indin, mi, hn zbe
Answer:
Solution given:
L.H.S
sin²A-cos²B
we havesin²A=1-cos²A and Cos²B=1-sin²B
nowreplacing value
1-cos²A-(1-sin²B)
open bracket1-cos²A-1+sin²B
keep together like terms1-1+sin²B-Cos²A
=sin²B-Cos²A
R.H.S
proved.For a standard normal distribution, find:
P(z > c) = 0.058
Find c.
Answer:
1.572
Step-by-step explanation:
For a standard normal distribution,
P(z > c) = 0.058
To obtain C ; we find the Zscore corresponding to the proportion given, which is to the right of the distribution ;
Using technology or table,
Zscore equivalent to P(Z > c) = 0.058 is 1.572
Hence, c = 1.572
According to the U.S. National Center for Health Statistics, there is a 98% probability that a
20-year-old male will survive to age 30.
(a) Using statistical software, simulate taking 100 random samples of size 30 from this
population.
(b) Using the results of the simulation, compute the probability that exactly 29 of the 30 males
survive to age 30.
(c) Compute the probability that exactly 29 of the 30 males survive to age 30, using the
binomial probability distribution.
(d) Using the results of the simulation, compute the probability that at most 27 of the 30 males
survive to age 30.
(e) Compute the probability that at most 27 of the 30 males survive to age 30 using the
binomial probability distribution.
(f) Compute the mean number of male survivors in the 100 simulations of the probability
experiment. Is it close to the expected value?
(g) Compute the standard deviation of the number of
male survivors in the 100 simulations of the probability experiment. Compare the result to the
theoretical standard deviation of the probability distribution
Answer:
0.03398 or 3.398%
Step-by-step explanation:
-This is a binomial probability problem.
-Given p=0.24, n=100, the probability that exactly 30 people is calculated as:
Hence, the probability that exactly 30 people have hypertension is 0.03398
Power Function:
Consider the following graphs (1 and 2), and answer the questions FOR EACH GRAPH:
A) In what interval of the graph is it increasing, decreasing and constant? This answer must be justified by means of the definition
B) What is the domain and range?
C) Is it an odd or even function? This answer must be justified by means of the definition
Graph 1
Part (a)
The function is increasing when x > 0. The function is decreasing when x < 0.
The function is never constant
An increasing portion is when the graph goes uphill when moving left to right. A decreasing portion goes in the opposite direction: it goes downhill when moving left to right.
The reason why the function is never constant is because there aren't any flat horizontal sections. Such sections are when x changes but y does not. No such sections occur.
------------------------
Graph 1
Part (b)
Domain = set of all real numbers
Range = set of y values such that [tex]y \ge 0[/tex]
The domain is the set of all real numbers because we can plug in any value for x without any restriction. There are no division by zero errors to worry about, or square roots of negative numbers to worry about either.
The range is the set of nonnegative numbers as the graph indicates. The lowest y gets is y = 0.
------------------------
Graph 1
Part (c)
The function is even
The function f(x) = 1.6x^12 is an even function due to the even number exponent. For any polynomial, as long as the exponents are all even, then the function itself is even. If all the exponents were odd, then the function would be odd. This applies to polynomials only. A power function is a specific type of polynomial.
Note in the graph, we have y axis symmetry. The mirror line is vertical and placed along the y axis. This is a visual trait of any even function.
We could use algebra to show that f(-x) = f(x) like so
f(x) = 1.6x^12
f(-x) = 1.6(-x)^12
f(-x) = 1.6x^12
The third step is possible because (-x)^12 = x^12 for all real numbers x. It's similar to how (-x)^2 = x^2. You could think of it like (-1)^2 = (1)^2
============================================================
Graph 2
Part (a)
The function is decreasing when x < 0 and when x > 0
The function is never increasing
The function is never constant
In other words, the function is decreasing over the entire domain (see part b). The only time it's not decreasing is when x = 0.
The function is decreasing because the curve is going downhill when moving to the right. You can think of it like a roller coaster of sorts.
At no point of this curve goes uphill when moving to the right. Therefore, it is never increasing. The same idea applies to flat horizontal sections, so there are no constant intervals either.
------------------------
Graph 2
Part (b)
Domain: x is any real number but [tex]x \ne 0[/tex]
Range: y is any real number but [tex]y \ne 0[/tex]
Explanation: If we tried plugging x = 0 into the function, we get a division by zero error. This doesn't happen with any other number. Therefore, the set of allowed inputs is any number but 0.
The range is a similar story. There's no way to get y = 0 as an output.
If we plugged y = 0 into the equation, then we'd get this
y = 17x^(-3)
0 = 17/(x^3)
There's no way to have the right hand side turn into 0. The numerator is 17 and won't change. Only the denominator changes. We can't have the denominator be 0.
------------------------
Graph 2
Part (c)
The function is odd
We can prove this by showing that f(-x) = -f(x)
f(x) = 17x^(-3)
f(-x) = 17(-x)^(-3)
f(-x) = 17* ( -(x)^(-3) )
f(-x) = -17x^(-3)
f(-x) = -f(x)
This is true for nearly all real numbers x, except we can't have x = 0.
Graphic 1:
(A) If f(x) = 1.6x ¹², then f '(x) = 19.2x ¹¹. Both f '(x) and x have the same sign, which means
• for -∞ < x < 0, we have f '(x) < 0, so that f(x) is decreasing on this interval
• for 0 < x < ∞, we have f '(x) > 0, so f(x) is increasing on this interval
f(x) is not constant anywhere on its domain.
(B) Speaking of domain, since f(x) is a polynomial (albeit only one term), it has
• a domain of all real numbers
• a range of {y ∈ ℝ : y = f(x) and y ≥ 0} (in other words, all real numbers y such that y = 1.6x ¹² and y is non-negative)
(C) This function is even, since
f(-x) = 1.6 (-x)¹² = (-1)¹² × 1.6x ¹² = 1.6x ¹² = f(x)
Graphic 2:
(A) Now if f(x) = 17/x ³, then f '(x) = -51/x ⁴. Because x ⁴ ≥ 0 for all x, this means f '(x) < 0 everywhere, except at x = 0. So f(x) is decreasing for (-∞ < x < 0) U (0 < x < ∞).
(B) f(x) has
• a domain of {x ∈ ℝ : x ≠ 0} (or all non-zero real numbers)
• a range of {y ∈ ℝ : y = f(x) and y ≠ 0} (also all non-zero reals)
(C) This function is odd:
f(-x) = 17/(-x)³ = 1/(-1)³ × 17/x ³ = -17/x ³ = -f(x)
Solve the given differential equation by using an appropriate substitution. The DE is of the form dy/dx = f(Ax + By + C), which is given in (5) of Section 2.5. dy/dx = 4 + (y − 4x + 6)^1/2
dy/dx = 4 + √(y - 4x + 6)
Make a substitution of v(x) = y(x) - 4x + 6, so that dv/dx = dy/dx - 4. Then the DE becomes
dv/dx + 4 = 4 + √v
dv/dx = √v
which is separable as
dv/√v = dx
Integrating both sides gives
2√v = x + C
Get the solution back in terms of y :
2√(y - 4x + 6) = x + C
You can go on to solve for y explicitly if you want.
√(y - 4x + 6) = x/2 + C
y - 4x + 6 = (x/2 + C )²
y = 4x - 6 + (x/2 + C )²
find the greatest number than divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
15 is the greatest number that divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
Let write the factors of each number:
45: (1,3,5,9,15,45)
60:(1,2,3,4,5,6,10,12,15,20,30,60)
75:(1,3,5,15,15,75).
The greatest common factor is 15. So the answer is 15.
what expression is equivalent to (-7²-x-5)-(3x²+x)
Answer:
-3x² - 2x - 54
Step-by-step explanation:
(-7²-x-5)-(3x²+x)
-7² - x - 5 - 3x² - x
-49 - x - 5 - 3x² - x
-3x² - x - x - 49 - 5
-3x² - 2x - 54
Write 55% as a fraction in simplest form
Answer:
11/20
Step-by-step explanation: