1. The shallow-water wave will travel at 12 km/hour. 2. The depth of the ocean at the point is 10 km. 3. The period of the wave is 30 minutes. 4. The speed of the swell with a wavelength of 10 m is 12.5 m/sec. 5. The wavelength of the deep-water wave traveling at 12 m/sec is 9.6 meters.
1. Using the formula s = 1.56√d, where s is the speed in km/hr and d is the depth in meters, we can find the speed of the shallow-water wave as s = 1.56√4 = 3.12 m/s = 11.232 km/hr ≈ 12 km/hr.
2. Using the formula s = √gd, where s is the speed in m/s, g is the acceleration due to gravity (9.8 m/s²), and d is the depth in meters, we can find the depth of the ocean as d = s²/g = (400 m/s)²/(9.8 m/s²) = 16,326.5 m ≈ 10 km.
3. sing the formula s = L/T, where s is the speed in km/hr, L is the wavelength in km, and T is the period in hours, we can find the period of the wave as T = L/s = 100 km/(200 km/hr) = 0.5 hr = 30 minutes.
4. Using the formula s = 1.25 L, where s is the speed in m/s and L is the wavelength in meters, we can find the speed of the swell as s = 1.25 × 10 = 12.5 m/s.
5. Rearranging the formula s = 1.25 L, we get L = s/1.25. Substituting s = 12 m/s, we get L = 12 m/s ÷ 1.25 = 9.6 m.
To know more about wavelength, refer here:
https://brainly.com/question/4112024#
#SPJ11
why can't we fall safely with the help of parachute towards the moon?
Answer:
The Moon has no atmosphere so there is no drag on the capsule to slow its descent; parachutes will not work. Lunar landing vehicles were equipped with rocket engines that were fired by the pilot to provide lift — thrust in the opposite direction of descent — during the rapid descent to the Moon's surface.
The moon does not harbor any appreciable atmosphere. Therefore no parachute, no matter how large, will operate properly on the moon. Air is required in order to inflate the parachute and slow down the descending object. Remember geologist Harrison Schmidt, the ONLY scientist to visit the moon? He was one of the last two people to ever touch the lunar surface. (Apollo 17). He demonstrated what would happen when two objects of different masses were dropped simultaneously from about five feet above the moon’s surface. He dropped a hammer and a feather. They fell at the same rate and hit the surface at exactly the same instant! There was no atmosphere to cause the feather to flutter. Note: Careful observers may notice that in videos of the the descending Apollo Lunar Lander (“The Eagle has landed”) lunar dust is kicked up by the craft’s engines. The dust moves out in straight lines, not in billowing clouds! PROOF that the film was made in the airless void of the moon and NOT in some clandestine film studio on Earth. No moon landing hoax!
hydroelectric, wind, geothermal, and parabolic solar collection all rely on spinning turbines (connected to a generator) to produce electricity. explain how each provides the force to do so.
Hydroelectric energy is generated by capturing the energy of flowing water. As water flows through a turbine, the blades of the turbine spin and generate electricity.
How does the different energies provide force?Wind energy is generated by capturing the kinetic energy of the wind. As wind passes through the turbine, the blades spin and generate electricity.
Geothermal energy is generated by harnessing the natural heat of the Earth’s core. Heat from the Earth’s core is used to generate steam, which is then used to spin a turbine and generate electricity.
Parabolic solar collection is a method of collecting the sun’s energy using large reflective mirrors. The mirrors focus the sunlight onto a central point, which is then used to spin a turbine and generate electricity.
Thus, all of these power sources rely on spinning turbines connected to a generator to produce electricity.
Read more about Electricity here:
https://brainly.com/question/158098
#SPJ11
the surface of the sun appears sharp in visible light because
"The surface of the sun appears sharp in visible light because the photosphere is thin compared to the other layers in the sun."
Most of the electromagnetic energy that reaches the earth begins in the photosphere, the area of the sun that is visible to us. The photosphere is referred to as the sun's surface, despite the fact that it is a gaseous entity.
The gas in the photosphere appears to have a sharp surface, but in reality, it is heavier lower in the Sun and less dense higher up. It is more transparent the less thick it is. The area of the gas that is visible to us is where it has largely become translucent. About 300 km of this layer are deep.
The photosphere is the line separating the core of the Sun from its atmosphere. It is the part of the Sun's surface that is visible to us. The photosphere is not like a planet's surface; even if you could stand in the sun, you couldn't do so on the photosphere.
To know more about Sun:
https://brainly.com/question/12498469
#SPJ4
A student and a teacher each lift a book from the floor and place it on the same shelf. The book lifted by the student has a greater mass than the book lifted by the teacher. The teacher takes less time to lift a book than the student does
The student did more work than the teacher because the student lifted a heavier book.
Work is defined as the transfer of energy from one object to another by the application of a force. When a force is applied to an object and it moves in the direction of the force, work is said to have been done on the object. The amount of work done is equal to the force applied multiplied by the distance the object moved in the direction of the force.
Work is a scalar quantity, meaning it has magnitude but no direction. The unit of work is the joule (J), which is equivalent to one newton-meter (Nm). Work is closely related to energy, as work done on an object results in a change in its energy. This relationship is described by the work-energy theorem, which states that the net work done on an object is equal to its change in kinetic energy.
To learn more about Work visit here:
brainly.com/question/18094932
#SPJ4
Part L The figures below show four circuits, with the resistances of the resistors given. In all cases, the emf of the battery is 10 V. Rank the circuits in order of descending total current coming out of the battery. (You should be able to answer this question using what you have already learned, but if you want, feel free to build the four circuits and make measurements.) Reset Help 9.07 10.00 9.07 10.00 10.00 00 9.07 10.000 10.00 50.00 10.00 IL- Greatest current Smallest current
The order of descending total current coming out of the battery is Circuit 1, Circuit 2, Circuit 3, Circuit 4.
The total current coming out of the battery can be calculated by the formula I = V/R, where V is the emf of the battery (10 V in this case) and R is the total resistance of the circuit. From this, we can calculate the total current for each of the four circuits:
Circuit 1: I = 10V/9.07Ω = 1.10ACircuit 2: I = 10V/10.00Ω = 1.00ACircuit 3: I = 10V/9.07Ω + 10.00Ω + 10.00Ω = 0.72ACircuit 4: I = 10V/50.00Ω = 0.20ATherefore, the order of descending total current coming out of the battery is Circuit 1, Circuit 2, Circuit 3, Circuit 4.
Learn more about total current:brainly.com/question/20024264
#SPJ11
Leonardo da Vinci (1452-1519) is credited with being the first to perform quantitative experiments on friction, though his results weren't known until centuries later, due in part to the secret code (mirror writing) he used in his notebooks. Leonardo would place a block of wood on an inclined plane and measure the angle at which the block begins to slide. He reports that the coefficient of static friction was 0. 22 his experiments.
At what angle did Leonardo’s blocks begin to slide?
The angle of repose or the angle of friction is the angle at which the block starts to slide down the inclined plane. By balancing the forces operating on the block along the inclination, it may be calculated.
The gravitational force (mg) acting downhill and the normal force (N) acting perpendicular to the inclination are the forces acting on the block. The gravitational force component perpendicular to the inclination, which is calculated as mg cos, where is the angle of the incline, and the normal force are identical in magnitude.
The block can have a maximum static friction force (Ff) applied to it without it sliding down the incline if:
Ff = μs N
where s is the static friction coefficient.
The amount of the frictional force is equal to the component of the gravitational force parallel to the inclination, which is mg sin, at the instant the block just starts to slide.
learn more about angle here:
https://brainly.com/question/28451077
#SPJ4
Part C Is the impulse delivered to the superball during its collision with the scale greater than, less than, or equal to the impulse delivered to the clay during its collision with the scale? •O The impulse delivered to superball is greater than the impulse delivered to the clay. O The impulse delivered to superball is equal to the impulse delivered to the clay. O The impulse delivered to superball is less than the impulse delivered to the clay.
Compared to the impulse provided to clay, the superball receives a stronger impulse.
The quantity of impulse is influenced by the amount and duration of applied force. The change in momentum that an item experiences is represented by the impulse.
Both the clay and the superball feel an impulse during a contact, but the size of the impulse is determined by the forces and their duration.
The superball suffers a larger force and a longer duration of force during the contact since it is comprised of a material that is very elastic. As a result, the superball receives a stronger impulse.
The clay, on the other hand, is formed of a substance that is extremely inelastic, which results in a lesser force and a shorter duration of force during the contact.As a result, the impulse that reaches the clay is reduced.
As a result, when the superball collides with the scale, it generates a larger impulse than when clay collides with the scale.
Learn more about Impulse here:
https://brainly.com/question/31183315
#SPJ4
dealing with continuously variable data such as sound and light waves is called
Dealing with continuously variable data such as sound and light waves is called signal processing.
Signal processing is the manipulation of signals to extract useful information or transform them into a desired form. It is a broad field that encompasses many different applications, including audio and video processing, communication systems, radar systems, and control systems.
Signal processing techniques can be used to analyze and manipulate sound waves, such as filtering out unwanted noise, compressing or expanding dynamic range, or modifying the frequency spectrum of a signal. In the case of light waves, signal processing techniques can be used to remove noise, enhance contrast or color, or manipulate the spatial frequency content of an image.
There are many different tools and techniques that can be used in signal processing, depending on the specific application. Some common techniques include Fourier analysis, which decomposes a signal into its frequency components, and digital signal processing, which involves the use of digital algorithms to manipulate signals.
Overall, signal processing is a fundamental aspect of many modern technologies and is used in a wide range of applications, from audio and video processing to medical imaging and telecommunications.
learn more about signal processing here
https://brainly.com/question/11903284
#SPJ4
If the 0. 100-mm diameter tungsten filament in a light bulb is to have a resistance of 0. 200 ω at 20. 0oc , how long should it be?
The length is 2.78 mm if the 0. 100-mm diameter tungsten filament in a light bulb is to have a resistance of 0. 200 ω at 20 degrees.
The length tungsten filament is 2.78 mm to have a resistance of 0. 200 ω at 20. degrees.
The given data is as follows:
Diameter of tungsten = 0.100 mm
resistance of tungsten = 0.200ω
The resistance (R) of a conductor is calculated by using the formula,
R = ρ × (L/A)
ρ = resistivity of the material
L = length of the conductor
A = cross-sectional area.
By rearranging the formula to calculate the length,
L = (R × A) / ρ
A = π × r²
A = 3.14 × (5.0 x [tex]10^{-5}[/tex])²
A = 7.85 x [tex]10^{-9}[/tex] m²
The resistivity of tungsten at 20.0°C = 5.6 x [tex]10^{-8}[/tex] Ωm
L = (0.200 × 7.85 x [tex]10^{-9}[/tex]) / (5.6 x [tex]10^{-8}[/tex])
L = 2.78 x [tex]10^{-3}[/tex] m
L = 2.78 mm
Therefore we can conclude that the length is 2.78 mm to have a resistance of 0. 200 ω at 20 degrees.
To learn more about resistance at
https://brainly.com/question/14806080
#SPJ4
a concave makeup mirror is designed so that a person 27.6 cm in front of it sees an upright image at a distance of 50.3 cm behind the mirror. a) what is the radius of curvature of the mirror?
The radius of curvature of a concave makeup mirror that is designed so that a person 27.6 cm in front of it sees an upright image at a distance of 50.3 cm behind the mirror is 35.54 cm.
What is the radius of curvature?The mirror formula is used to calculate this. When an object is placed in front of a concave mirror, a virtual image is formed behind it. The magnification of the virtual image is positive. Here's how to solve the problem:
1/f = 1/u + 1/v
where, f is the focal length of the mirror, u is the distance of the object from the mirror, v is the distance of the image from the mirror.
Given that , u = −27.6 cm (the negative sign indicates that the object is on the left-hand side of the mirror).
v = −50.3 cm (the negative sign indicates that the image is on the left-hand side of the mirror).
To calculate the radius of curvature, the focal length is required. The focal length can be calculated using the mirror formula.
1/f = 1/u + 1/v = (v + u)/uv = (-27.6 - 50.3)/(-27.6 × 50.3) = 77.9/1388.28 = 0.0562 cm. Therefore = 1/0.0562 = 17.77 cm.
The radius of curvature is twice the focal length.
2R = 2f = 2 × 17.77 = 35.54 cm
Thus, the radius of curvature of the mirror is 35.54 cm.
Read more about the radius here:
https://brainly.com/question/27696929
#SPJ11
3. Which of the following best describes the relationship between the Boston Marathon
bombing and biometrics?
A.
Because of the newly developed biometric technology, the FBI was able to
quickly identify two suspects.
B.
The blurry photos released by the FBI after the bombing prompted
researchers to improve their early biometric software.
C.
Because biometric technology was unavailable at the time, the Boston
Marathon bomber remains at large.
D.
The Boston Marathon bombing made researchers aware of how biometric
technology is sometimes useless and ineffective.
The correct answer is A. Because of the newly developed biometric technology, the FBI was able to quickly identify two suspects is best describes the relationship between the Boston Marathon
What is biometric technology?
After the Boston Marathon bombing in 2013, the FBI was able to use biometric technology to quickly identify the two suspects, Tamerlan and Dzhokhar Tsarnaev. Biometric analysis was used to match images of the suspects captured by surveillance cameras with images in the FBI's biometric database. This helped the FBI to quickly identify the suspects and bring them to justice.
What is FBI?
The FBI stands for the Federal Bureau of Investigation. It is a law enforcement agency of the United States government that is primarily responsible for investigating and enforcing federal laws.
To know more about FBI, visit:
https://brainly.com/question/30166719
#SPJ1
An object is subjected to a friction force with magnitude 4.50 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes? (a) the purple path o to A followed by a return purple path to O ________ J. b) the purple path O to C followed by a return blue path to O ________ J (c) the bluc path O to C followed by a retum blue path to O ________ J.
The work done (needed to move the object at constant speed for the following routes is (a) the purple path o to A followed by a return purple path to O 0 J, (b) the purple path O to C followed by a return blue path to O 21.67 J, (c) the bluc path O to C followed by a retum blue path to O 43.33 J.
(a) The purple path o to A followed by a return purple path to O.
The work done on an object is given by the product of force acting on the object and the displacement of the object in the direction of the force applied. Therefore, the work done on an object is given by the formula
W = Fd,
where W is the work done, F is the force applied, and d is the displacement of the object.
When an object is moved at a constant speed, its acceleration is zero, which means that the net force acting on the object is zero. Therefore, the force applied to the object is equal in magnitude and opposite in direction to the force of friction acting against the motion of the object.
The displacement of the object along the purple path o to A followed by a return purple path to O is zero since the object starts and ends at the same point. Therefore, the work done on the object is zero, which is represented by 0 J.
(b) The purple path O to C followed by a return blue path to O
The displacement of the object along the purple path O to C is given by the distance between O and C. The distance between two points is given by the formula
d = √((x2 - x1)2 + (y2 - y1)2), where x1 and y1 are the coordinates of the initial point O and x2 and y2 are the coordinates of the final point C.
The coordinates of O are (0, 0), and the coordinates of C are (5, 3). Therefore, the distance between O and C is given by
d = √((5 - 0)2 + (3 - 0)2) = √(25 + 9) = √34 m.
The work done on the object along the purple path O to C followed by a return blue path to O is given by the product of the force and the distance, which is
W = Fd = (4.50 N) × (√34 m) = 21.67 J (rounded to 2 decimal places).
(c) The blue path O to C followed by a return blue path to O.
The displacement of the object along the blue path O to C is given by the distance between O and C. The distance between two points is given by the formula d = √((x2 - x1)2 + (y2 - y1)2), where x1 and y1 are the coordinates of the initial point O and x2 and y2 are the coordinates of the final point C.
The coordinates of O are (0, 0), and the coordinates of C are (5, 3). Therefore, the distance between O and C is given by d = √((5 - 0)2 + (3 - 0)2) = √34 m.
The work done on the object along the blue path O to C followed by a return blue path to O is given by the product of the force and the distance, which is
W = Fd = (4.50 N) × (2√34 m) = 43.33 J (rounded to 2 decimal places).
Learn more about Work done:
https://brainly.com/question/18762601
#SPJ11
Two vectors of magnitude 3 units and 4 units are at an angle 60degree between them. Find the magnitude of their difference
The magnitude of the difference amongst the two vectors is sqrt (13) units.
Let's call the two vectors A and B. We can use the Law of Cosines to find the magnitude of their difference:
|A - B|^2 = |A|^2 + |B|^2 - 2|A||B|cosθ
where θ is the angle between the two vectors.
Substituting the given values, we get:
|A - B|^2 = (3) ^2 + (4) ^2 - 2(3)(4) cos60°
Simplifying, we get:
|A - B|^2 = 9 + 16 - 12
|A - B|^2 = 13
Taking the square root of both sides, we get:
|A - B| = sqrt (13)
Therefore, the magnitude of the difference between the two vectors is sqrt (13) units.
To know more about Magnitude:
https://brainly.com/question/14452091
#SPJ4
A__ is a measure of the electric power an appliance uses
An appliance's use of electricity is measured in watt (W). It displays the rate at which an electrical device uses energy while it is in operation. The power needed to generate one joule of energy per second is equal to one watt.
WattAn electrical device uses energy from the electrical power source that powers it when it is in use. Watts (W), a unit of power, is used to assess the rate of energy consumption. The pace at which one joule of energy is used up per second is equal to one watt.A 60-watt light bulb, for instance, means that when it is turned on, it uses energy at a rate of 60 joules per second. Similarly to this, when a fan with a 100-watt rating is switched on, it uses 100 joules of energy each second.An appliance's wattage can be found on its label or in its user manual.learn more about watt here
https://brainly.com/question/1446143
#SPJ1
A Decision-making Model includes:
A. Recognizing the problem and identifying alternatives as possible solutions to the problem.
B. Identifying and estimating the relevant costs and benefits for each feasible alternative.
C. Making the decision by selecting the alternative with the greatest overall net benefit.
D. All of these choices are correct.
D. All of these choices are correct. A decision-making model includes recognizing the problem and identifying alternatives as possible solutions to the problem, identifying and estimating the relevant costs and benefits for each feasible alternative, and making the decision by selecting the alternative with the greatest overall net benefit.
Let's now define a Decision-making Model in detail:
The Decision-making Model is a framework that helps people make a sound decision by gathering information and assessing it rationally. It is a process for making intelligent and well-thought-out decisions. A well-established model for decision-making includes the following steps:
Step 1: Recognizing the problem and identifying alternatives as possible solutions to the problem.
Step 2: Identifying and estimating the relevant costs and benefits for each feasible alternative.
Step 3: Making the decision by selecting the alternative with the greatest overall net benefit. The model outlines a process that may be applied in a structured manner to solve any issue. It's essential to follow each of these steps to arrive at a well-informed and rational decision.
To know more about decision-making model, click the below link:
https://brainly.com/question/3023190
#SPJ11
Students in Chuck Stone's lab measure the speed of a steel ball to be 8.0 m/s when launched horizontally from a 1.0 m high tabletop. Their objective is to place a 20cm tall coffee can on the floor to catch the ball. Show that they score a bull's eye when the can is placed 3.2m from the base of the table.
The coffee can must be placed at least 0.2 meters below the final horizontal position, which would be about 3.2 meters from the base of the table. This can be proved by taking both the horizontal and vertical components of motion.
What is the motion of ball?We can use both the equations for horizontal and vertical motion. Since the ball is launched horizontally, only the horizontal equation is needed:
Horizontal Motion: xf = xi + vxt
where:
xf = final horizontal position
xi = initial horizontal position
vx = horizontal velocity
t = time elapsed
Since we know the initial horizontal position, the horizontal velocity, and the time elapsed, we can calculate the final horizontal position:
xf = 0 + 8.0 m/s × 2.5 s = 20 m
Now, the coffee can is 20 cm tall, which is equal to 0.2 m. The initial vertical position of the ball is 1.0 m. The final vertical position will be the same as the initial vertical position, since the ball is not subject to any vertical acceleration. Therefore, the coffee can must be placed 0.2 m below the final horizontal position, which would be 3.2 m from the base of the table.
Learn more about Motion here:
https://brainly.com/question/17675825
#SPJ11
What causes friction?
A. Tiny collisions, called microwelds, on surfaces, even those that seem smooth B. Action - Reaction C. All surfaces are rough to the touch and therefore cause friction D. Inertia
Answer:
b
Explanation: friction is like a force to something to react
(a) When the mass is removed, the length of the cable is found to be l0=4.76m. After the mass is added, the length is measured and found to be l1=5.49m. Determine Young's Modulus Y in N/m2 for the steel cable if the weight has a mass m=35kg and the cable has a radius r=0.015m.
b) If this cable is pulled down a distance d in m from its equilibrium position it acts like a spring when released. Write an expression determining the spring constant k of this material using the cable-specific variables Y,l0,l1, and r.
To find Young's modulus Y, use [tex]Y = mg( l1 - l0 ) / ( πr^2l0 )[/tex] with given values. For the spring constant k, use [tex]k = Yπr^2 / l0, with Y, r,[/tex] and l0 given. (a) Young's modulus Y is a measure .
the stiffness of a material and is calculated using the formula Y = (mg( l1 - l0 )) / ( πr^2l0 ), where g is the acceleration due to gravity. Substituting the given values,[tex]Y = 2.08 × 10^11 N/m^2.[/tex] This means that the steel cable is relatively stiff and can resist deformation under stress. n(b) The spring constant k of the steel cable indicates its stiffness as a spring, with a higher value indicating a stiffer material that will resist deformation more strongly. In this case, the steel cable has a relatively high spring constant of 9.16 × 10^4 N/m, meaning that it will not stretch much when a force is applied.
learn more about Young's modulus here:
https://brainly.com/question/30756002
#SPJ4
(a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model it as a particle? (b) Calculate the magnitude of the angular momentum of the earth due to its rotation around an axis through the north and south poles, modeling it as a uniform sphere. Please show your work.
(a) Angular momentum of Earth in a circular orbit around the sun is 2.66 × 10^40 kg m^2/s. It can be modeled as a particle. (b) The angular momentum of Earth due to its rotation around an axis through the poles is 7.07 × 10^33 kg m^2/s, modeled as a uniform sphere.
An object's angular momentum, which measures its rotating motion, is essential to many physical processes. The orbit of the Earth around the sun gives rise to the first sort of angular momentum, while the rotation of the Earth about its axis produces the second. The angular momentum of the Earth's orbit around the sun is quite large, at around 2.66 1040 kg m2/s. Given that the size and form of the Earth have little bearing on its orbit, it seems sensible to treat it as a particle for this computation. In comparison, the Earth's rotation about its own axis generates angular momentum that is only about 7.07 1033 kg m2/s in size. This kind of angular momentum is calculated using the uniform sphere's moment of inertia. In several disciplines, including astronomy and geophysics, the Earth's angular momentum is a crucial number.
learn more about Angular momentum here:
https://brainly.com/question/29897173
#SPJ4
water stands at a depth H in a large, open tank whose sidewalls are vertical. a hole is made in one of the walls at adepth h below the water surface.
a)at what distance R from the foot of the wall does theemerging stream strike the floor?
b)how far above the bottom of the tank could a second hole becut so that the stream emerging from it could have the same rangeas for the first hole?
2hcosθsinθ is the distance R from the foot of the wall the emerging steam strike the floor.
the second hole should be cut at a height of (H - h/4) above the bottom of the tank in order to get the same range as the first hole.
Let's derive an expression for the velocity of water coming out of the hole. The water coming out of the hole is a free fall under gravity .
So we can use Bernoulli's equation to find the velocity of the water coming out of the hole as:
P + (1/2)ρv² + ρgh = constant ….(1)
where P is the pressure of the water inside the tank,
ρ is the density of water,
v is the velocity of the water coming out of the hole,
h is the height of the water level inside the tank, and g is the acceleration due to gravity.
Since the hole is below the water's surface, the pressure at the hole is the pressure due to water at the second hole should be cut at a height of (H - h/4) above the bottom of the tank in order to get the same range as for the first hole.
depth h. So, the pressure due to water is ρgh.
At the hole, the velocity of water is v, and the height of the water surface above the hole is (H - h). Therefore, the pressure at the surface of the water is ρg(H - h). Putting these values in equation (1), we get:
P + (1/2)ρv² + ρgh = ρg(H - h) + P₀
Where P₀ is atmospheric pressure, which can be considered constant. This is the Bernoulli's equation.
Let's apply the law of conservation of mechanical energy.
Let the velocity of the water coming out of the hole be v.
The kinetic energy of the water at the hole is (1/2)ρv².
The gravitational potential energy of the water at the hole is ρgh.
The gravitational potential energy of the water at the point where it hits the floor is zero.
Hence, by the law of conservation of mechanical energy, we can write:
(1/2)ρv² + ρgh = 0
Solving for v, we get:
v = √(2gh)
Part a) of the question:
We know the velocity of the water coming out of the hole. Let's assume that the stream coming out of the hole makes an angle of θ with the horizontal, as shown in the figure.
We need to find the horizontal distance R from the foot of the wall at which the stream hits the floor. This is given by:
R = (v²/g)sin2θ
sin2θ can be written as 2sinθcosθ. Therefore, we get:
R = (v²/g)sinθcosθ
Using the value of v from above, we get:
R = (2gh/g)sinθcosθ = 2hcosθsinθ
Part b) of the question:
Let's assume that the second hole is cut at a depth x above the bottom of the tank. We need to find the value of x such that the stream emerging from it could have the same range as for the first hole.
This means that the horizontal distance R must be the same for both holes. Using the expression for R from above, we get:
2hcosθsinθ = (2gh/g)sinθcosθ
Simplifying, we get:
x = H - h/4
To know more about Bernoulli's equation:https://brainly.com/question/15396422
#SPJ11
the electric field just above the surface of the earth is roughly 100 v/m (over the entire surface) and points vertically downwards. a) calculate the total charge of the earth in coulombs (rearth
The electric field at a distance r from the center of a sphere of total charge Q is given by E=Q/(4πε0r^2). Calculate the radius of the earth R = 6.37 x 10^6 m2. Determine the volume of the earth V = (4/3)πR^33. Use the density of the earth, 5.5 g/cm3 to determine the mass of the earth m = density x volume4. Calculate the total charge of the earth Q = E x 4πε0R^2 Where,ε0 = permittivity of free spaceε0 = 8.85 x 10^-12 C^2 / Nm^2(a) The radius of the earth, R is;R = 6.37 x 10^6 m(b) Volume of the earth, V is;V = (4/3)πR^3= (4/3)π(6.37 x 10^6)^3= 1.086 x 10^21 m^3(c) Mass of the earth, m is;m = density x volume= 5.5 g/cm^3 × 1.086 x 10^21 m^3 × (10^3 cm/m)^3= 5.98 x 10^24 kg(d) Total charge of the earth, Q is;Q = E x 4πε0R^2= 100 (V/m) × 4π(8.85 × 10^-12 C^2/Nm^2) × (6.37 × 10^6 m)^2= 8.86 × 10^11 C.
Therefore, the total charge of the earth is 8.86 × 10^11 C.
For more information regarding this topic, you can click the below link
https://brainly.com/question/19878202
#SPJ11
As a mass tied to the end of a string swings from its highest point down to its lowest point, it is acted on by three forces: gravity (F), tension (T), and air resistance (R) HINT (a) Which force does positive work? O Fg O T O R (b) Which force does negative work? O Fg O T O R (c) Which force does zero work? O Fg O T O R
(a) Tension (T) does positive work. (b) Air resistance (R) does negative work. (c) Gravity (Fg) does zero work.
Whenever a mass is hung on a string and is left to swing from its highest point to the lowest point, it experiences three forces, which are tension (T), air resistance (R), and gravity (Fg).The force that does positive work is tension (T). Tension is the force acting on the mass towards the midpoint of its swing. The tension in the string is the force responsible for the work done on the mass during its oscillation from the highest point to the lowest point. When the mass moves in the direction of the tension, the tension does positive work.
The force that does negative work is air resistance (R). Air resistance opposes the motion of the mass, and since the motion of the mass is in the direction of gravity, air resistance does negative work on the mass. The force that does zero work is gravity (Fg). Since the motion of the mass is perpendicular to gravity, gravity does no work on the mass.
Learn more about Air resistance:
https://brainly.com/question/27888011
#SPJ11
Applied force in garlic and effect of action applied
When a force is applied to an object, it can cause a change in the object's motion or state of rest.
If the force is unbalanced, it can cause the object to accelerate or decelerate, resulting in a change in speed or direction. The effect of the applied force depends on the mass and nature of the object, as well as the magnitude and direction of the force. Additionally, the object may experience other effects, such as deformation or compression, depending on the type and direction of the force applied. Understanding the effects of applied forces is crucial in fields such as engineering, physics, and mechanics.
To know more about engineering, here
brainly.com/question/19117846
#SPJ4
--The complete question is, When force is Applied on an object describe effect of action applied. --
Q9: A bungee jumper falls with a total of 7.8kJ of kinetic energy. If the bungee jumper's total mass is 50kg, at what speed do they fall?
The bungee jumper falls at a speed of approximately 17.67 meters per second.
What is the bungee jumper fall speed?Kinetic energy is simply a form of energy a particle or object possesses due to its motion.
It is expressed as;
K = (1/2)mv²
Where m is mass of the object and v is its velocity.
We know that the kinetic energy of the bungee jumper is 7.8 kJ and their mass is 50 kg.
Substituting these values into the equation gives:
K = (1/2)mv²
7.8 kJ = (1/2) × 50 kg × v²
Convert from kiloJoule to Joule
7.8 kJ = (7.8 × 1000 ) = 7800J
Simplifying:
7800J = (1/2) × 50 kg × v²
7800 kgm²/s² = (1/2) × 50 kg × v²
7800 kgm²/s² = 25 kg × v²
v² = 7800 kgm²/s² ÷ 25kg
v² = 312 m²/s²
Taking the square root of both sides:
v = √( 312 m²/s² )
v = 17.67 m/s
Therefore, the fall speed is 17.67 m/s.
Learn more about kinetic energy here: brainly.com/question/12669551
#SPJ1
Which is a correct statement of the second law of thermodynamics? Entropy of the universe is constantly increasing. Nature allows the conversion of potential energy into kinetic energy, but not vice versa. Heat is the only form of energy that can be converted into work with 100% efficiency. Energy cannot be created or destroyed, but it can change form
The correct statement in regard to second law of thermodynamics is in any natural process, the entropy of the universe must increase, which means option A is the right answer.
Thermodynamics is the study of motion of thermal energy. The second law of thermodynamics states that entropy of any system in universe either increase or remains constant. It cannot be negative because when energy is transferred from one system to another or it transforms its nature, some part of it is supposed to be lost. This happens in the form of heat or light energy.
Entropy is defined as the system's thermal energy per unit temperature that is now not available for doing useful work. It can also be defined as the measure of disorderliness and randomness.
Learn more about second law of thermodynamics at:
brainly.com/question/30600157
#SPJ4
Jupiter's four large moons - Io, Europa, Ganymede, and Callisto - were discovered by Galileo in 1610. Jupiter also has dozens of smaller moons. Callisto has a radius of about 2.40 x 106 m, and the mean orbital radius between Callisto and Jupiter is 1.88 x 109 m.
(a) If Callisto's orbit were circular, how many days would it take Callisto to complete one full revolution around Jupiter?
(b) If Callisto's orbit were circular, what would its orbital speed be?
If Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.
What is the time and orbital speed of Callisto?Radius of Callisto, rc = 2.40 × 10⁶ m
Mean orbital radius, r = 1.88 × 10⁹ m
The time required for Callisto to complete one full revolution around Jupiter is given by: T = 2πr/v
where, T is the period of revolution, v is the speed of Callisto, and r is the mean orbital radius.
If Callisto's orbit were circular, then its speed would be constant, and the time required to complete one full revolution would be the same as its period of revolution.
T = 2πr/v = (2π)(1.88 × 10⁹ m)/(8.20 × 10³ m/s) ≈ 1.67 × 10⁶ s ≈ 16.7 days
The speed of Callisto in a circular orbit is given by:
v = 2πr/T = (2π)(1.88 × 10⁹ m)/(1.67 × 10⁶ s) ≈ 8.20 × 10³ m/s
Hence, Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.
Learn more about Orbital speed here:
https://brainly.com/question/541239
#SPJ11
now consider the case of impending tipping. where do the normal force and friction force act in this case? a. at the midpoint of the bottom edge of the block. b. at the point directly below the center of gravity of the block. c. at the edge of the block closest to the top of the ramp. d. at the edge of the block closest to the bottom of the ramp. e. at an unknown point along the bottom edge of the block.
The normal force and friction force act at the point directly below the center of gravity of the block in the case of impending tipping.
Impending tipping occurs when the force of gravity acting on an object is unbalanced, causing it to start to tip over or become unstable.
When a solid object is about to tip over, the net torque about its center of gravity should be zero, or else it will fall.
In the case of impending tipping, the normal force and friction force act at the point directly below the center of gravity of the block.
When an object is about to tip over, the normal force (or the weight) acting on the center of mass should be equal to the maximum possible friction force at the base of the object.
Normally, a force is applied to the object that exceeds this friction force, causing the object to tip over.
When an object is about to tip over, the normal force (or the weight) acting on the center of mass should be equal to the maximum possible friction force at the base of the object.
To know more about normal force: https://brainly.com/question/28788588
#SPJ11
I need help with this question
The gardener does 5600 joules of work in pushing the wheelbarrow around the lawn.
Step-by-step calculation:
The distance traveled by the wheelbarrow is the perimeter of the lawn, which is:
Perimeter = 3 m + 4 m + 3 m + 4 m = 14 m
The net force exerted on the wheelbarrow is the sum of the force used to push it along the ground and the force used to lift it off the ground:
Net force = 100 N + 300 N = 400 N
The angle between the force and the direction of motion is 0 degrees, so the cosine of the angle is 1.
The work done by the gardener is given by:
Work = Force x Distance x cos(theta)
Substituting the values we found above, we get:
Work = 400 N x 14 m x cos(0 degrees)
Work = 5600 J
Therefore, the gardener does 5600 joules of work in pushing the wheelbarrow around the lawn.
To know more about perimeter, visit:
https://brainly.com/question/6465134
#SPJ1
Photovoltaic cells use _______ to produce electricity.a. water stored by a damb. heat energy of coal or petroleumc. wind energy d. solar energy
The photovoltaic cells use solar energy to produce electricity. therefore option d. solar energy is correct.
Solar energy is the energy from the sun that is converted into thermal or electrical energy. This is done by capturing the sun's rays and converting them into usable energy. Photovoltaic cells use the solar energy that is incident on the surface of the cell, which is then converted into electrical energy. This electrical energy can then be used to power lights, appliances, and other electronics.
The process of photovoltaic cells converting solar energy into electrical energy begins with the photon particles of the sun's rays being absorbed by the photovoltaic cells. The absorbed energy is then converted into direct current (DC) electricity by a process called the photovoltaic effect. This DC electricity is then used to power various appliances and other devices that are connected to the photovoltaic cells.
The photovoltaic cells convert solar energy into electricity by taking advantage of the fact that the photons of light have energy. When the photons hit the semiconductor material, electrons become freed from the material and are allowed to flow in one direction. This flow of electrons produces electricity. The electrons flow through wires to power the lights, appliances, and other electronics connected to the photovoltaic cells.
In summary, photovoltaic cells use solar energy to produce electricity by capturing the sun's rays and converting them into usable electrical energy. This electrical energy is then used to power lights, appliances, and other electronics.
for such more question on solar energy
https://brainly.com/question/31045772
#SPJ11
A resistor of 4Ω is connected to a series combination of two batteries, 8 V and 4 V. Calculate:
a) The current I.
b) The potential difference Uba
c) The potential difference Uba', when switch S is open.
Answer:
Explanation:
o calculate the current I, we can use Ohm's Law which states that I = V/R, where V is the total voltage across the resistor and R is the resistance of the resistor.
a) The total voltage across the resistor can be found by adding the voltage of the two batteries in series, which gives a total voltage of 8V + 4V = 12V.
So, I = V/R = 12V/4Ω = 3A.
b) The potential difference Uba is simply the voltage difference between the two batteries in the series combination, which is 8V - 4V = 4V.
c) When switch S is open, the circuit is broken and the potential difference Uba' becomes equal to the voltage of the 8V battery. So, Uba' = 8V.