Answer:
it doesnt add up. the question doesnt make sense.
Step-by-step explanation:
Answer:
157
Step-by-step explanation:
To find the average score, add all individual scores and divide the sum by the number of individual scores.
She has 5 individual scores. Let's say her scores are A, B, C, D, and E.
average score = (A + B + C + D + E)/5
Now we plug in the average and the 4 known scores for A through D, and we solve for E.
average score = (A + B + C + D + E)/5
136.8 = (135 + 144 + 116 + 132 + E)/5
E = 157
Answer: 157
Andrea is buying fruit for a fruit salad. Strawberries cost $2 a pound, and blueberries cost $6 a pound. She plans to buy at least 5 pounds of berries and spend no more than $30. Which of the following is a possible combination for the number of pounds of berries she can buy?
6 pounds of strawberries and 1 pound of blueberries
I did the quiz
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Find the point on the terminal side of θ = negative three pi divided by four that has an x coordinate of -1. Show your work for full credit. Please explain the exact process of how you get your answer because I do not understand it at all. If you don't explain properly or try to just snatch some points I will try to delete your answer.
Answer:
See below.
Step-by-Step Explanation:
Please refer to the attachment.
If you have any questions, feel free to comment!
Answer:
(-1,-1)
Step-by-step explanation:
theta = -3 pi/4
Changing to degrees =
theta = -3 * 180/4 =-135
x coordinate of -1
The y value would be
= 45
tan 45 = y /1
y = tan 45
y = 1
But we are in the third coordinate so x and y are negative
The coordinates are
(-1,-1)
please help give bralienst not need explation
Answer:
4.5 cm
Step-by-step explanation:
The ruler says it all..... (why do you need help with this? What grade????)
Hope this helps, have a good day :)
Answer:Its 4.5 centimeters
Step-by-step explanation:
If you owe your friend $3 and you have $15, which expression would help you find out how much money you would have left?
Answer:
12
Step-by-step explanation:
15 - 3 = 12
Answer:
both of them are right
Step-by-step explanation:
Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 8, x1 = 2
Answer:
The first and second iteration of Newton's Method are 3 and [tex]\frac{11}{6}[/tex].
Step-by-step explanation:
The Newton's Method is a multi-step numerical method for continuous diffentiable function of the form [tex]f(x) = 0[/tex] based on the following formula:
[tex]x_{i+1} = x_{i} -\frac{f(x_{i})}{f'(x_{i})}[/tex]
Where:
[tex]x_{i}[/tex] - i-th Approximation, dimensionless.
[tex]x_{i+1}[/tex] - (i+1)-th Approximation, dimensionless.
[tex]f(x_{i})[/tex] - Function evaluated at i-th Approximation, dimensionless.
[tex]f'(x_{i})[/tex] - First derivative evaluated at (i+1)-th Approximation, dimensionless.
Let be [tex]f(x) = x^{2}-8[/tex] and [tex]f'(x) = 2\cdot x[/tex], the resultant expression is:
[tex]x_{i+1} = x_{i} -\frac{x_{i}^{2}-8}{2\cdot x_{i}}[/tex]
First iteration: ([tex]x_{1} = 2[/tex])
[tex]x_{2} = 2-\frac{2^{2}-8}{2\cdot (2)}[/tex]
[tex]x_{2} = 2 + \frac{4}{4}[/tex]
[tex]x_{2} = 3[/tex]
Second iteration: ([tex]x_{2} = 3[/tex])
[tex]x_{3} = 3-\frac{3^{2}-8}{2\cdot (3)}[/tex]
[tex]x_{3} = 2 - \frac{1}{6}[/tex]
[tex]x_{3} = \frac{11}{6}[/tex]
BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER
Answer:
The first picture's answer would be (6, 21)
Step-by-step explanation:
You have to find the points on the 8th and the 9th day, and then you would add them together, and then divide by two finding the average, which would be 24 and 18, so when added, you get 42, divided by 2 you get 21. You look on the graph for the point with 21, and you find it is on 6.
How many solutions does the following system have x+y=3, 2x+2y-5
Answer:
Step-by-step explanation:
x + y = 3
2x + 2y = 5
-2x - 2y = -6
2x + 2y = 5
0 not equal to -1
no solution
The areas of two similar octagons are 4 m² and 9 m². What is the scale factor of their side lengths? PLZ PLZ HELP PLZ
Answer:
2 :3
Step-by-step explanation:
To take the scale factor from the area to length we take the square root of each
sqrt(4) : sqrt(9)
2 :3
hich statement best describes the domain and range of p(x) = 6–x and q(x) = 6x? p(x) and q(x) have the same domain and the same range. p(x) and q(x) have the same domain but different ranges. p(x) and q(x) have different domains but the same range. p(x) and q(x) have different domains and different ranges.
Answer:
[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.
Step-by-step explanation:
[tex]p(x) = 6-x[/tex] and
[tex]q(x) = 6x[/tex]
First of all, let us have a look at the definition of domain and range.
Domain of a function [tex]y =f(x)[/tex] is the set of input value i.e. the value of [tex]x[/tex] for which the function [tex]f(x)[/tex] is defined.
Range of a function [tex]y =f(x)[/tex] is the set of output value i.e. the value of [tex]y[/tex] or [tex]f(x)[/tex] for the values of [tex]x[/tex] in the domain.
Now, let us consider the given functions one by one:
[tex]p(x) = 6-x[/tex]
Let us sketch the graph of given function.
Please find attached graph.
There are no values of [tex]x[/tex] for which p(x) is not defined so domain is All real numbers.
So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Its range is also All Real Numbers
So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
[tex]q(x) = 6x[/tex]
Let us sketch the graph of given function.
Please find attached graph.
There are no values of [tex]x[/tex] for which [tex]q(x)[/tex] is not defined so domain is All real numbers.
So, domain is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Its range is also All Real Numbers
So, Range is [tex](-\infty, \infty)[/tex] or [tex]x\in R[/tex]
Hence, the correct answer is:
[tex]p(x)[/tex] and [tex]q(x)[/tex] have the same domain and the same range.
Find the solution set of the inequality and the number: 12 − 6x > 24 A. , C. ≤, D. ≥, E. =
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
Subtract 12 from each side
12-12 − 6x > 24-12
-6x > 12
Divide each side by -6, remembering to flip the inequality
-6x/-6 < 12/-6
x < -2
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
12 - 12 − 6x > 24 - 12
-6x > 12
-6x/(-6) < 12/(-6)
x < -2
HELPPPPP ASAPPPP
Select the correct answer.
A volleyball player sets a volleyball straight up into the air. The height of the volleyball, h(t), is modeled by this equation, where e represents the
time, in seconds, after that ball was set.
= -16t2 + 20t + 6
The volleyball reaches its maximum height after 0.625 seconds. What is the maximum height of the volleyball
A. 11.625 feet
B. 12.25 feet
C. 8.5 feet
D. 1.625 feet
Answer:
The maximum height of the volleyball is 12.25 feet.
Step-by-step explanation:
The height of the volleyball, h(t), is modeled by this equation, where t represents the time, in seconds, after that ball was set :
[tex]h(t)=-16t^2+20t+6[/tex] ....(1)
The volleyball reaches its maximum height after 0.625 seconds.
For maximum height,
Put [tex]\dfrac{dh}{dt}=0[/tex]
Now put t = 0.625 in equation (1)
[tex]h(t)=-16(0.625)^2+20(0.625)+6\\\\h(t)=12.25\ \text{feet}[/tex]
So, the maximum height of the volleyball is 12.25 feet.
Answer:
The correct answer is B. 12.25 feet.
Step-by-step explanation:
I got it right on the Edmentum test.
Complete the table for the given rule. Rule: y = x + 3. X ? Y 4. X ? Y 8. X ? Y 5
Answer:
X 1 for Y 4
X 5 for Y 8
X 2 for Y 5
Step-by-step explanation:
We can substitute the values of Y in the formula and then subtract three from both sides.
22)
Subtract (4 - 21) - (3 - 51)
A)
1+3i
B)
1-71
7+3i
D)
7-7i
Answer:
1 +3i
Step-by-step explanation:
(4 - 2i) - (3 - 5i)
Subtract the reals
4 - 3 =1
Subtract the imaginary
-2i - -5i
-2i + 5i = 3i
1 +3i
Answer:
A
Step-by-step explanation:
Subtract all real numbers
4 - 3 = 1
Subtract all imaginary numbers
-2i - (-5i) = 3i
Put back together
1 + 3i
Best of Luck!
How do you evaluate this?
[tex]_6C_3=\dfrac{6!}{3!3!}=\dfrac{4\cdot5\cdot6}{2\cdot3}=20[/tex]
6. If the equations kx - y = 2 and 6x - 2y = 3 have a solution then state the value of k a) K = 3 b) k 3 c ) K 0 d) k = 0 7.
Answer:
k ≠ 3Step-by-step explanation:
Given the system of equation;
kx - y = 2 ------------------- 1
6x - 2y = 3 -------------------- 2
Rewriting the equations in the format ax+by+c = 0
Equation 1 becomes kx - y - 2 = 0
Equation 2 becomes 6x - 2y - 3 = 0
where a₁ = k, b₁ = -1 and c₁ = -2 and a₂ = 6, b₂ = -2 and c₂ = -3
For the system of equation to have a unique solution the following must be true;
a₁/a₂ ≠ b₁/b₁
Substituting the coefficients into the condition, we will have;
k/6 ≠ -1/-2
k/6 ≠ 1/2
Cross multiplying we will have;
2k ≠ 6
k ≠ 6/2
k ≠ 3
This means that k can be any other real values except 3 for the system of equation to have a unique solution.
as part of a group exercise, four students each randomly selected 3 cards with angle measures written on them. The table shows the results.
Answer:
Option (A)
Step-by-step explanation:
As we know sum of interior angles of a triangle = 180°
If the sum of angles written on 3 cards is equal to 180°, will make a triangle.
Total of Alisha's cards = 100° + 90° + 170°
= 360°
Total of Aella's cards = 60° + 25° + 95°
= 180°
Total of Andrew's cards = 35° + 35° + 35°
= 105°
Total of Ah Lam's cards = 90° + 60° + 35°
= 185°
Since total of Aella's cards is 180°, triangle is possible with the angles given on the cards of Aella only.
Therefore, Option (A) will be the answer.
need help asap please help let quick eeeeeeeeeeeeeeee
Answer:
5/14
Step-by-step explanation:
1[tex]\frac{3}{4}[/tex] = 7/4
4[tex]\frac{9}{10}[/tex] = 49/10
[tex]\frac{7}{4}[/tex] / [tex]\frac{49}{10}[/tex]
[tex]\frac{7}{4}[/tex] x [tex]\frac{10}{49}[/tex] = [tex]\frac{70}{196}[/tex]
or
[tex]\frac{1}{2}[/tex] x [tex]\frac{5}{7}[/tex] = [tex]\frac{5}{14}[/tex]
Answer:
e
Step-by-step explanation:
e
The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?
Answer:
300.05 miles
Step-by-step explanation:
initial fee= $39.99
final bill = $ 100
cost =$ 0.20 per mile
remaining amount = $ 60.01
solution,
she drive = remaining amount / cost
=60.01/0.20
=300.05 miles
Answer:
500 miles
Step-by-step explanation:
Let us use cross multiplication to find the unknown amount.
Given:
1) Cost for 1 mile=$0.20
2)Cost for x miles=$100
Solution:
No of miles Cost
1) 1 $0.20
2)x $100
By cross multiplying,
100 x 1= 0.20x
x=100/0.20
x=500 miles
Thank you!
A signal light is green for 4 minutes, yellow for 10 seconds, and red for 3 minutes. If you drive up to this light, what is the probability that it will be green when you reach the intersection? Round your answer to two decimal places.
Answer:
0.56 is the required probability.
Step-by-step explanation:
Time for which signal shows green light = 4 minutes
Time for which signal shows yellow light = 10 seconds
Time for which signal shows red light = 3 minutes
To find:
Probability that the signal will show green light when you reach the destination = ?
Solution:
First of all, let us convert each time to same unit before doing any calculations.
Time for which signal shows green light = 4 minutes = 4 [tex]\times[/tex] 60 seconds = 240 seconds
Time for which signal shows yellow light = 10 seconds
Time for which signal shows red light = 3 minutes = 3 [tex]\times[/tex] 60 seconds = 180 seconds
Now, let us have a look at the formula for probability of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
Here, E is the event that green light is shown by the signal.
Number of favorable cases mean the time for which green light is shown and Total number of cases is the total time (Time for which green light is shown + Time for which Yellow light is shown + Time for which red light is shown)
So, the required probability is:
[tex]P(E) = \dfrac{240}{240+10+180}\\\Rightarrow P(E) = \dfrac{240}{430}\\\Rightarrow \bold{P(E) \approx 0.56 }[/tex]
round 38562 to one significant figure
Answer:
plz refer the attachment
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
ROUND 38562 to ONE significant figure.
Answer:
= 4000
Rounding Significant Figures Rules
~ ↓↓↓↓↓↓↓ ~
Non-zero digits are always significant
Zeros between non-zero digits are always significantLeading zeros are never significantTrailing zeros are only significant if the number contains a decimal pointExamples of Significant Figures❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
❀*May*❀
Select the correct answer from each drop-down menu.
A cross section is the intersection of a
Solid or point and a plane or plane. Helpp
Answer:
solid, plane
Step-by-step explanation:
A cross section is the intersection of a solid and a plane.
Answer:
A cross section is the intersection of a solid and a plane.
Step-by-step explanation:
Got this right on plato, hope it helps :P
The monthly cost (in dollars) of water use is a linear function of the amount of water used (in hundreds of cubic feet, HCF). The cost for using 15 HCF of water is 32.84, and the cost for using 43 HCF is 79.04. What is the cost for using 36 HCF of water?
Answer:
67.49
Step-by-step explanation:
Let the number of HCF be x.
Let the cost be y.
You are given 2 points of a line: (15, 32.84) and (43, 79.04).
Now we find the equation of the line that passes through those points.
y - y1 = m(x - x1)
y - 32.84 = [(79.04 - 32.84)/(43 - 15)](x - 15)
y - 32.84 = (46.2/28)(x - 15)
y - 32.84 = 1.65(x - 15)
y = 1.65x - 24.75 + 32.84
y = 1.65x + 8.09
Now we let x = 36 and solve for y.
y = 1.65(36) + 8.09
y = 67.49
PLEASE PLEASE PLEASE HELP ME ANSWER THIS QUESTION QUICK!! The picture of the question is down below.
Answer:
x = -2 or x = 2
Step-by-step explanation:
The solution is the points of intersection of the line and the parabola.
x = -2 or x = 2
Answer:
x = -2 and x=2
Step-by-step explanation:
The solution to the system is where the two graphs intersect
The meet at x = -2 and x=2
a ball is thrown upward with an initial height of 3 feet with an initial upward velocity 37 ft/s the balls heigh in feet after t second is given by h=3=+37t-16t^2
Answer:
[tex]t = 1.45[/tex] or [tex]t = 0.86[/tex]
Step-by-step explanation:
Given
[tex]h=3+37t-16t^2[/tex]
Required
Find all values of t when height is 23 feet
To solve this, we simply substitute 23 for h
[tex]23=3+37t-16t^2[/tex]
Collect like terms
[tex]16t^2 - 37t - 3 + 23=0[/tex]
[tex]16t^2 - 37t +20=0[/tex]
Solve t using quadratic formula;
[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]
Where a = 16, b =-37 and c = 20
[tex]t = \frac{-(-37)\±\sqrt{(-37)^2 - 4*16*20}}{2*16}[/tex]
[tex]t = \frac{37\±\sqrt{(-37)^2 - 4*16*20}}{2*16}[/tex]
[tex]t = \frac{37\±\sqrt{1369 - 1280}}{32}[/tex]
[tex]t = \frac{37\±\sqrt{89}}{32}[/tex]
[tex]t = \frac{37\±9.43}{32}[/tex]
[tex]t = \frac{37+9.43}{32}[/tex] or [tex]t = \frac{37-9.43}{32}[/tex]
[tex]t = \frac{46.43}{32}[/tex] or [tex]t = \frac{27.57}{32}[/tex]
[tex]t = \frac{46.43}{32}[/tex] or [tex]t = \frac{27.57}{32}[/tex]
[tex]t = 1.45[/tex] or [tex]t = 0.86[/tex]
Lori buys a $586 certificate of deposit (CD) that earns 6.6% interest that compounds monthly. How much will the CD be worth in 13 years? Express your answer rounded correctly to the nearest cent. Do not include units on your answer.
Answer:
$1344.9Step-by-step explanation:
This problem can be solved using the compound interest formula
[tex]A= P(1+r)^t[/tex]
Given data
A, final amount =?
P, principal = $586
rate, r= 6.6% = 0.066
Time, t= 13 years
Substituting our values into the expression we have
[tex]A= 586(1+0.066)^1^3\\\ A= 586*(1.066)^13\\\ A= 586*2.295\\\ A= 1344.87[/tex]
To the nearest cent the in 13 years the CD will be worth $1344.9
Simplify (3n - 2m)^2 = Can someone break this down for me? I don't understand why I'm having issues with this.
Answer:
9n² - 12mn + 4m²
Step-by-step explanation:
(a+b)² = a² + 2ab + b²
(3n - 2m )² = (3n-2m)(3n-2m) = 3n*3n + 3n*-2m -2m*3n - 2m*-2m
= 9n² - 6nm -6mn + 4m²
= 9n² - 12mn + 4n²
Answer:
Once you simplify the given expression, your answer will be 9n² - 12mn + 4m
Step-by-step explanation:
In this problem, we are given an expression.
(3n - 2m)²
when an expression or equation is raised to the power of 2, then you are going to multiply the base term by itself. For example, if you have 2² or 16², then would you do 2 × 2 and 16 × 16 in order to solve the expressions. We will do the same for this expression.
(3n - 2m)² = (3n - 2m) × (3n - 2m)
We will use the foil method to solve this expression
(3n - 2m)(3n - 2m)
9n² - 6mn - 6mn + 4m
Combine like terms together.
9n² - 12mn + 4m
So, the simplified form of the expression is 9n² - 12mn + 4m
Find the value of x to the nearest tenth. A) 5 B) 9.2 C) 3.3 D) 2.9
Answer:
B) 9.2
Step-by-step explanation:
tan(57)=x/6 multiply 6 on both sides
6.tan(57)=x use calculator to find answer
9.2 rounded
Answer:9.2 is correct
Step-by-step explanation:
Is 100 a good estimate for the difference of 712 and 589? If it is, explain why it is a good estimate. If it is not, explain why it is a bad estimate.
Stepwise regression is a variable screening method, not a model building method.
A. True
B. False
Answer:
A. True
Step-by-step explanation:
Stepwise regression is a variable-selection method for independent variables.
Stepwise regression helps us to recognize and choose the most handy descriptive variables from a list of several reasonable independent variables.
It entails a series of steps that is drafted to locate the most handy X-variable to incorporate in a regression model. During each step of the course of action or method, each X - variable is estimated by applying a set criterion to determine if it is meant to exist in the model.
The basis for selection can be choosing a variable which satisfies the stipulated criterion or removing a variable that least satisfies the criterion. A typical illustration of such criterion is the t value.