(m) sin (2.5). (Hint: [Hint: What is lim n=1 t-o t sin t [?]

Answers

Answer 1

We can directly evaluate sin(2.5) using a calculator or mathematical software, and we find that sin(2.5) is approximately 0.598.

The limit of t sin(t) as t approaches 0 is equal to 0. This limit can be proven using the squeeze theorem. The squeeze theorem states that if f(t) ≤ g(t) ≤ h(t) for all t in a neighborhood of a, and if the limits of f(t) and h(t) as t approaches a both exist and are equal to L, then the limit of g(t) as t approaches a is also L.

In this case, we have f(t) = -t, g(t) = t sin(t), and h(t) = t, and we want to find the limit of g(t) as t approaches 0. It is clear that f(t) ≤ g(t) ≤ h(t) for all t, and as t approaches 0, the limits of f(t) and h(t) both equal 0. Therefore, by the squeeze theorem, the limit of g(t) as t approaches 0 is also 0.

Now, applying this result to the given question, we can conclude that sin(2.5) is not related to the limit of t sin(t) as t approaches 0. Therefore, we can directly evaluate sin(2.5) using a calculator or mathematical software, and we find that sin(2.5) is approximately 0.598.

Learn more about squeeze theorem here:

https://brainly.com/question/23964263

#SPJ11

This is complete question

(m) sin (2.5). (Hint: [Hint: What is lim n=1 t-o t sin t [?]


Related Questions

Find the set if the universal set U= (-8, -3, -1, 0, 2, 4, 5, 6, 7, 9), A (-8, -3, -1, 2, 5), B = (-3, 2, 5, 7), and C = (-1,4,9). (AUB)' O (0, 4, 6, 9) (-8, -3, -1, 2, 5, 7) (-8,-1, 4, 6, 9) (4, 6, 9) Question 44 Answer the question. Consider the numbers-17.-√76, 956,-√4.5.9. Which are irrational numbers? O√4.5.9 0-√76 O√√76.√√4 956, -17, 5.9.

Answers

To find the set (AUB)', we need to take the complement of the union of sets A and B with respect to the universal set U.
The union of sets A and B is AUB = (-8, -3, -1, 2, 5, 7).
Taking the complement of AUB with respect to U, we have (AUB)' = U - (AUB) = (-8, -3, -1, 0, 4, 6, 9).
Therefore, the set (AUB)' is (-8, -3, -1, 0, 4, 6, 9).

The correct answer is (c) (-8, -1, 4, 6, 9).
Regarding the numbers -17, -√76, 956, -√4.5.9, the irrational numbers are -√76 and -√4.5.9.
The correct answer is (b) -√76.

 To  learn  more  about sets click here:brainly.com/question/30705181

#SPJ11



(a) Prove or disprove: If SC Xis a compact subset of a metric spaceX,p, then S is closed and bounded. (b) True or false? Justify your answer: A closed, bounded subset SC X of a metric space X,p>, is compact. (c) Given the set T:= {(x, y) E R²: ry S1). Is T a compact set? Show your working. If you say it is not compact, then find the smallest compact set containing T. 2 (d) Given a metric spaceX.p>, and two compact subsets S.TEX. Prove that SUT is compact.

Answers

(a) To prove or disprove if a SCX is a compact subset of a metric space X, p, then S is closed and bounded.

First, we need to define a compact set, which is a set such that every open cover has a finite subcover.

So, let’s prove that S is closed and bounded by using the definition of compactness as follows:

Since S is compact,

there exists a finite subcover such that S is covered by some open balls with radii of ε₁, ε₂, ε₃… εₙ,

i.e. S ⊂ B(x₁, ε₁) ∪ B(x₂, ε₂) ∪ B(x₃,ε₃) ∪ … ∪ B(xₙ, εₙ)

where each of these balls is centered at x₁, x₂, x₃… xₙ.

Now, let ε be the maximum of all the[tex]( ε_i)[/tex]’s,

i.e. ε = max{ε₁, ε₂, ε₃… εₙ}.

Then, for any two points in S, say x and y, d(x,y) ≤ d(x,x_i) + d(x_i, y) < ε/2 + ε/2 = ε.

Therefore, S is bounded.

Also, since each of the balls is open, it follows that S is an open set. Hence, S is closed and bounded.

(b) To prove or disprove if a closed, bounded subset SCX of a metric space X,p> is compact. The answer is true and this is called the Heine-Borel theorem.

Proof: Suppose S is a closed and bounded subset of X.

Then, S is contained in some ball B(x,r) with radius r and center x.

Let U be any open cover of S. Since U covers S, there exists some ball B[tex](x_i,r_i)[/tex] in U that contains x.

Thus, B(x,r) is covered by finitely many balls from U. Hence, S is compact.

Therefore, a closed, bounded subset S C X of a metric space X,p>, is compact.

(c) To determine whether the set T:={(x, y) E R²: ry S1)} is a compact set or not. T is not compact.

Proof: Consider the sequence (xₙ, 1/n), which is a sequence in T. This sequence converges to (0,0), but (0,0) is not in T. Thus, T is not closed and hence not compact.

The smallest compact set containing T is the closure of T, denoted by cl(T),

which is the smallest closed set containing T. The closure of T is {(x, y) E R²: r ≤ 1}.

(d) To prove that if a metric space X, p> contains two compact subsets S and T, then SUT is compact.

Proof: Let U be any open cover of SUT. Then, we can write U as a union of sets, each of the form AxB, where A is an open subset of S and B is an open subset of T.

Since S and T are compact, there exist finite subcovers, say A₁ x B₁, A₂ x B₂, … Aₙ x Bₙ, of each of them that cover S and T, respectively.

Then, the union of these finite subcovers, say A₁ x B₁ ∪ A₂ x B₂ ∪ … ∪ Aₙ x Bₙ, covers SUT and is finite. Therefore, SUT is compact.

to know more about metric visit:

https://brainly.in/question/48204170

#SPJ11

Expand f(x) = e¹/2 in a Laguerre series on [0, [infinity]]

Answers

The function f(x) =[tex]e^(1/2)[/tex] can be expanded in a Laguerre series on the interval [0, ∞]. This expansion represents the function as an infinite sum of Laguerre polynomials, which are orthogonal functions defined on this interval.

The Laguerre series expansion is a way to represent a function as an infinite sum of Laguerre polynomials multiplied by coefficients. The Laguerre polynomials are orthogonal functions that have specific properties on the interval [0, ∞]. To expand f(x) = [tex]e^(1/2)[/tex] in a Laguerre series, we first need to express the function in terms of the Laguerre polynomials.

The Laguerre polynomials are defined as L_n(x) =[tex]e^x * (d^n/dx^n)(x^n * e^(-x)[/tex]), where n is a non-negative integer. These polynomials satisfy orthogonality conditions on the interval [0, ∞]. To obtain the expansion of f(x) in a Laguerre series, we need to determine the coefficients that multiply each Laguerre polynomial.

The coefficients can be found using the   orthogonality property of Laguerre polynomials. By multiplying both sides of the Laguerre series expansion by an arbitrary Laguerre polynomial and integrating over the interval [0, ∞], we can obtain an expression for the coefficients. These coefficients depend on the function f(x) and the Laguerre polynomials.

In the case of f(x) = [tex]e^(1/2),[/tex] we can express it as a Laguerre series by determining the coefficients for each Laguerre polynomial. The resulting expansion represents f(x) as an infinite sum of Laguerre polynomials, which allows us to approximate the function within the interval [0, ∞] using a finite number of terms. The Laguerre series expansion provides a useful tool for analyzing and approximating functions in certain mathematical contexts.

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

A geometric sequence has Determine a and r so that the sequence has the formula an = a · rn-1¸ a = Number r = Number a778, 125, a10 = -9,765, 625

Answers

The formula for the nth term of a geometric sequence is an = a * rn-1, where a represents first term, r represents common ratio.The values of a and r for given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).

We are given three terms of the sequence: a7 = 778, a2 = 125, and a10 = -9,765,625. We need to find the values of a and r that satisfy these conditions. To determine the values of a and r, we can use the given terms of the sequence. We have the following equations:

a7 = a * r^6 = 778

a2 = a * r = 125

a10 = a * r^9 = -9,765,625

We can solve this system of equations to find the values of a and r. Dividing the equations a7 / a2 and a10 / a7, we get:

(r^6) / r = 778 / 125

r^5 = 778 / 125

(r^9) / (r^6) = -9,765,625 / 778

r^3 = -9,765,625 / 778

Taking the fifth root of both sides of the first equation and the cube root of both sides of the second equation, we can find the value of r:

r = (778 / 125)^(1/5)

r = (-9,765,625 / 778)^(1/3)

Once we have the value of r, we can substitute it back into one of the equations to find the value of a. Using the equation a2 = a * r = 125, we can solve for a:

a = 125 / r

Therefore, the values of a and r for the given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).

To learn more about geometric sequence click here : brainly.com/question/27852674

#SPJ11

HELP
what is the distance of segment ST?

Answers

The calculated distance of segment ST is (c) 22 km

How to determine the distance of segment ST?

From the question, we have the following parameters that can be used in our computation:

The similar triangles

The distance of segment ST can be calculated using the corresponding sides of similar triangles

So, we have

ST/33 = 16/24

Next, we have

ST = 33 * 16/24

Evaluate

ST = 22

Hence, the distance of segment ST is (c) 22 km

Read more about triangles at

https://brainly.com/question/32215211

#SPJ1

valuate the difference quotient for the given function. Simplify your answer. X + 5 f(x) f(x) = f(3) x-3 x + 1' Need Help?

Answers

The simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).

To evaluate the difference quotient for the given function f(x) = (x + 5) / (x - 3), we need to find the expression (f(x) - f(3)) / (x - 3). First, let's find f(3) by substituting x = 3 into the function: f(3) = (3 + 5) / (3 - 3)= 8 / 0

The denominator is zero, which means f(3) is undefined. Now, let's find the difference quotient: (f(x) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - undefined) / (x - 3)

Since f(3) is undefined, we cannot simplify the difference quotient further. Therefore, the simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).

To learn more about difference quotient, click here: brainly.com/question/31059956

#SPJ11

Copy and complete this equality to find these three equivalent fractions

Answers

Answer:

First blank is 15, second blank is 4

Step-by-step explanation:

[tex]\frac{1}{5}=\frac{1*3}{5*3}=\frac{3}{15}[/tex]

[tex]\frac{1}{5}=\frac{1*4}{5*4}=\frac{4}{20}[/tex]

If a = (3,4,6) and b= (8,6,-11), Determine the following: a) a + b b) -4à +86 d) |3a-4b| Question 3: If point A is (2,-1, 6) and point B (1, 9, 6), determine the following a) AB b) AB c) BA

Answers

The absolute value of the difference between 3a and 4b is √1573. The values of a + b = (11, 10, -5), -4a + 86 = (74, 70, 62), and |3a - 4b| = √1573.

Given the vectors a = (3,4,6) and b = (8,6,-11)

We are to determine the following:

(a) The sum of two vectors is obtained by adding the corresponding components of each vector. Therefore, we added the x-component of vector a and vector b, which resulted in 11, the y-component of vector a and vector b, which resulted in 10, and the z-component of vector a and vector b, which resulted in -5.

(b) The difference between -4a and 86 is obtained by multiplying vector a by -4, resulting in (-12, -16, -24). Next, we added each component of the resulting vector (-12, -16, -24) to the corresponding component of vector 86, resulting in (74, 70, 62).

(d) The absolute value of the difference between 3a and 4b is obtained by subtracting the product of vectors b and 4 from the product of vectors a and 3. Next, we obtained the magnitude of the resulting vector by using the formula for the magnitude of a vector which is √(x² + y² + z²).

We applied the formula and obtained √1573 as the magnitude of the resulting vector which represents the absolute value of the difference between 3a and 4b.

Therefore, the absolute value of the difference between 3a and 4b is √1573. Hence, we found that

a + b = (11, 10, -5)

-4a + 86 = (74, 70, 62), and

|3a - 4b| = √1573

To know more about the absolute value, visit:

brainly.com/question/17360689

#SPJ11

Version K RMIT UNIVERSITY School of Science (Mathematical Sciences) ENGINEERING MATHEMATICS AUTHENTIC PRACTICAL ASSESSMENT 2 - QUESTION 4 4. (a) (i) Calculate (4 + 6i)². K (1 mark) (ii) Hence, and without using a calculator, determine all solutions of the quadratic equation z²+4iz +1-12i = 0. (4 marks) (b) Determine all solutions of (z)² + 2z + 1 = 0. (5 marks) The printable question file (pdf) is here 10 pts

Answers

The required values of solutions of the quadratic equation are:

a) i) 48i -20,  ii) ( -4i + √8i - 20/2, -4i - √8i - 20/2 )

b) -1, 1+√7i/2, 1-√7i/2.

Here, we have,

we get,

a)

i) (4 + 6i)²

= 4² + 2.4.6i + 6i²

= 16 + 48i + 36(-1)

= 48i - 20

ii) z²+4iz +1-12i = 0

so, we get,

z = -4i ± √ 4i² - 4(1)(1-2i)

solving, we get,

z = -4i ± √8i - 20/2

  = ( -4i + √8i - 20/2, -4i - √8i - 20/2 )

b)

(Z)² + 2z + 1 = 0

now, we know that, Z = 1/z

so, we have,

2z³+z²+1 = 0

simplifying, we get,

=> (2z² - z+1) (z+1) = 0

=> (z+1) = 0   or, (2z² - z+1)= 0

=> z = -1 or, z = 1±√7i/2

so, we have,

z = -1, 1+√7i/2, 1-√7i/2.

To learn more on equation click:

https://brainly.com/question/33059639

#SPJ4

A manufacturer has fixed costs (such as rent and insurance) of $3000 per month. The cost of producing each unit of goods is $2. Give the linear equation for the cost of producing x units per month. KIIS k An equation that can be used to determine the cost is y=[]

Answers

The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.

Let's solve the given problem.

The manufacturer's cost of producing each unit of goods is $2 and fixed costs are $3000 per month.

The total cost of producing x units per month can be expressed as y=mx+b, where m is the variable cost per unit, b is the fixed cost and x is the number of units produced.

To find the equation for the cost of producing x units per month, we need to substitute m=2 and b=3000 in y=mx+b.

We get the equation as y=2x+3000.

The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.

We are given that the fixed costs of the manufacturer are $3000 per month and the cost of producing each unit of goods is $2.

Therefore, the total cost of producing x units can be calculated as follows:

Total Cost (y) = Fixed Costs (b) + Variable Cost (mx) ⇒ y = 3000 + 2x

The equation for the cost of producing x units per month can be expressed as y = 2x + 3000.

To know more about the manufacturer's cost visit:

https://brainly.com/question/24530630

#SPJ11

Find a plane containing the point (-5,6,-6) and the line y(t) M 18z+72y-872-86y=0 Calculator Check Answer 7-5t 3-6t - -6-6t x

Answers

In unit-vector notation, this magnetic field should have a value of (-1.805, 0, 0) Tesla.

The uniform magnetic field required to make an electron travel in a straight line through the gap between the two parallel plates is given by the equation B = (V1 - V2)/dv.

Plugging in the known values for V1, V2, and d gives us a result of B = 1.805 T. Since the velocity vector of the electron is perpendicular to the electric field between the plates, the magnetic field should be pointing along the direction of the velocity vector.

Therefore, the magnetic field that should be present between the two plates should point along the negative direction of the velocity vector in order to cause the electron to travel in a straight line.

In unit-vector notation, this magnetic field should have a value of (-1.805, 0, 0) Tesla.

To know more about unit vector click-
https://brainly.com/question/2094736
#SPJ11

Give the domain and range of the relation. ((10, 2), (-7. 1), (3,-9). (3.-7)) A domain= (2,-9, 1.-7); range = (10, 3,-7) B) domain (10, 3, -7, -3); range = (2, 9, 1.-7) domain={10, 3, -7); range=(2, -9, 1, -7) (D) domain (10, 3, -7, 13); range=(2, 9, 1.-7) E

Answers

The correct answer is option C. The domain is {10, 3, -7}, and the range is {2, -9, 1, -7}.

The domain of a relation refers to the set of all possible input values or x-coordinates, while the range represents the set of all possible output values or y-coordinates. Given the points in the relation ((10, 2), (-7, 1), (3, -9), (3, -7)), we can determine the domain and range.
Looking at the x-coordinates of the given points, we have 10, -7, and 3. Therefore, the domain is {10, 3, -7}.
Considering the y-coordinates, we have 2, 1, -9, and -7. Hence, the range is {2, -9, 1, -7}.
Thus, option C is the correct answer with the domain as {10, 3, -7} and the range as {2, -9, 1, -7}.

Learn more about domain here
https://brainly.com/question/28135761



#SPJ11

Suppose y₁ is a non-zero solution to the following DE y' + p(t)y = 0. If y2 is any other solution to the above Eq, then show that y2 = cy₁ for some c real number. (Hint. Calculate the derivative of y2/y1). (b) Explain (with enough mathematical reasoning from this course) why there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero!

Answers

There is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero. (a) Given DE is y' + p(t)y = 0. And let y₁ be a non-zero solution to the given DE, then we need to prove that y₂= cy₁, where c is a real number.

For y₂, the differential equation is y₂' + p(t)y₂ = 0.

To prove y₂ = cy₂, we will prove y₂/y₁ is a constant.

Let c be a constant such that y₂ = cy₁.

Then y₂/y₁ = cAlso, y₂' = cy₁' y₂' + p(t)y₂ = cy₁' + p(t)(cy₁) = c(y₁' + p(t)y₁) = c(y₁' + p(t)y₁) = 0

Hence, we proved that y₂/y₁ is a constant. So, y₂ = cy₁ where c is a real number.

Therefore, we have proved that if y₁ is a non-zero solution to the given differential equation and y₂ is any other solution, then y₂ = cy1 for some real number c.

(b)Let y = f(x) be equal to the negative of its derivative, they = -f'(x)

Also, it is given that y = 1 at x = 0.So,

f(0) = -f'(0)and f(0) = 1.This implies that if (0) = -1.

So, the solution to the differential equation y = -y' is y = Ce-where C is a constant.

Putting x = 0 in the above equation,y = Ce-0 = C = 1

So, the solution to the differential equation y = -y' is y = e-where y = 1 when x = 0.

Therefore, there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero.

To know more about real numbers

https://brainly.com/question/17201233

#SPJ11

For vectors x = [3,3,-1] and y = [-3,1,2], verify that the following formula is true: (4 marks) 1 1 x=y=x+y|²₁ Tx-³y|² b) Prove that this formula is true for any two vectors in 3-space. (4 marks)

Answers

We are given vectors x = [3, 3, -1] and y = [-3, 1, 2] and we need to verify whether the formula (1 + 1)x·y = x·x + y·y holds true. In addition, we are required to prove that this formula is true for any two vectors in 3-space.

(a) To verify the formula (1 + 1)x·y = x·x + y·y, we need to compute the dot products on both sides of the equation. The left-hand side of the equation simplifies to 2x·y, and the right-hand side simplifies to x·x + y·y. By substituting the given values for vectors x and y, we can compute both sides of the equation and check if they are equal.

(b) To prove that the formula is true for any two vectors in 3-space, we can consider arbitrary vectors x = [x1, x2, x3] and y = [y1, y2, y3]. We can perform the same calculations as in part (a), substituting the general values for the components of x and y, and demonstrate that the formula holds true regardless of the specific values chosen for x and y.

To know more about vectors click here: brainly.com/question/24256726

#SPJ11

The following sets are subsets of the vector space RS. 1 a) Is S₁ = { } b) Does S₂ = 1 3 linearly independent? 3 span R$?

Answers

Given that the following sets are subsets of the vector space RS.

1. a) S₁ = { }The set S₁ is the empty set.

Hence it is not a subspace of the vector space RS.2. b) S₂ = {(1,3)}

To verify whether the set S₂ is linearly independent, let's assume that there exist scalars a, b such that:

a(1,3) + b(1,3) = (0,0)This is equivalent to (a+b)(1,3) = (0,0).

We need to find the values of a and b such that the above condition holds true.

There are two cases to consider.

Case 1: a+b = 0

We get that a = -b and any a and -a satisfies the above condition.

Case 2: (1,3) = 0

This is not true as the vector (1,3) is not the zero vector.

Therefore, the set S₂ is linearly independent.

3. span R$?

Since the set S₂ contains a single vector (1,3), the span of S₂ is the set of all possible scalar multiples of (1,3).

That is,span(S₂) = {(a,b) : a,b ∈ R} = R².

To know more about vector visit:

https://brainly.com/question/24256726

#SPJ11

Find a unit vector u in the direction opposite of (-10, -7,-2). u=

Answers

To find a unit vector u in the direction opposite of (-10, -7, -2), follow the steps provided below;Step 1: Determine the magnitude of the vector (-10, -7, -2).To find a unit vector in the direction opposite of the vector (-10, -7, -2), we need to first calculate the magnitude of the given vector and then normalize it.

The magnitude of a vector (x, y, z) is given by the formula:The magnitude of vector `v = (a, b, c)` is `|v| = sqrt(a^2 + b^2 + c^2)`.Therefore, the magnitude of vector (-10, -7, -2) is:|v| = sqrt((-10)^2 + (-7)^2 + (-2)^2)|v| = sqrt(100 + 49 + 4)|v| = sqrt(153)Step 2: Convert the vector (-10, -7, -2) to unit vectorDivide each component of the vector (-10, -7, -2) by its magnitude.|u| = sqrt(153)u = (-10/sqrt(153), -7/sqrt(153), -2/sqrt(153))u ≈ (-0.817, -0.571, -0.222)Therefore, the unit vector u in the direction opposite of (-10, -7, -2) is (-0.817, -0.571, -0.222).

to know more about magnitude, visit

https://brainly.com/question/30337362

#SPJ11

The unit vector u in the opposite direction of (-10, -7,-2) is u = (10/√149, 7/√149, 2/√149).

To find a unit vector u in the opposite direction of (-10, -7,-2) first we need to normalize (-10, -7,-2).

Normalization is defined as dividing the vector with its magnitude, which results in a unit vector in the same direction as the original vector.

A unit vector has a magnitude of 1.

After normalization, the vector is then multiplied by -1 to get the unit vector in the opposite direction.

Here is how we can find the unit vector u:1.

Find the magnitude of the vector

(-10, -7,-2):|(-10, -7,-2)| = √(10² + 7² + 2²)

= √(149)2.

Normalize the vector by dividing it by its magnitude and get a unit vector in the same direction:

(-10, -7,-2) / √(149) = (-10/√149, -7/√149,-2/√149)3.

Multiply the unit vector by -1 to get the unit vector in the opposite direction:

u = -(-10/√149, -7/√149,-2/√149) = (10/√149, 7/√149, 2/√149)

Hence, the unit vector u in the opposite direction of (-10, -7,-2) is u = (10/√149, 7/√149, 2/√149).

To know more about unit vector, visit:

https://brainly.com/question/28028700

#SPJ11

Let v₁ and v2 be the 4 x 1 columns of MT and suppose P is the plane through the origin with v₁ and v₂ as direction vectors. (a) Find which of v₁ and v2 is longer in length and then calculate the angle between ₁ and v2 using the dot product method. [3 marks] (b) Use Gram-Schmidt to find e2, the vector perpendicular to v₁ in P, express e2 with integer entries, and check that e₁e2 = 0. [3 marks] 1 (c) Now take v3 := 0- and use 0 Gram-Schimdt again to find an ez is orthogonal to e₁ and e2 but is in the hyperplane with v₁, v2 and v3 as a basis. [4 marks] 3 1 -1 1 -5 5 5 2 -3

Answers

e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂). This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.

(a) To find which of v₁ and v₂ is longer in length, we calculate the magnitudes (lengths) of v₁ and v₂ using the formula:

|v| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)

Let's denote the components of v₁ as v₁₁, v₁₂, v₁₃, and v₁₄, and the components of v₂ as v₂₁, v₂₂, v₂₃, and v₂₄.

Magnitude of v₁:

|v₁| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)

Magnitude of v₂:

|v₂| = √(v₂₁² + v₂₂² + v₂₃² + v₂₄²)

Compare |v₁| and |v₂| to determine which one is longer.

To calculate the angle between v₁ and v₂ using the dot product method, we use the formula:

θ = arccos((v₁ · v₂) / (|v₁| |v₂|))

Where v₁ · v₂ is the dot product of v₁ and v₂.

(b) To find e₂, the vector perpendicular to v₁ in P using Gram-Schmidt, we follow these steps:

Set e₁ = v₁.

Calculate the projection of v₂ onto e₁:

projₑ₂(v₂) = (v₂ · e₁) / (e₁ · e₁) * e₁

Subtract the projection from v₂ to get the perpendicular component:

e₂ = v₂ - projₑ₂(v₂)

Make sure to normalize e₂ if necessary.

To check that e₁ · e₂ = 0, calculate the dot product of e₁ and e₂ and verify if it equals zero.

(c) To find e₃ orthogonal to e₁ and e₂, but in the hyperplane with v₁, v₂, and v₃ as a basis, we follow similar steps:

Set e₃ = v₃.

Calculate the projection of e₃ onto e₁:

projₑ₃(e₁) = (e₁ · e₃) / (e₁ · e₁) * e₁

Calculate the projection of e₃ onto e₂:

projₑ₃(e₂) = (e₂ · e₃) / (e₂ · e₂) * e₂

Subtract the projections from e₃ to get the perpendicular component:

e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂)

Make sure to normalize e₃ if necessary.

This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.

To know more about the orthogonal visit:

https://brainly.com/question/30772550

#SPJ11

Find the least-squares solution of the system ]] TR = L [1 2 -2 = 2 12

Answers

the least-squares solution of the system is R = 22/9.To find the least-squares solution of the system TR = L, where T is the coefficient matrix, R is the vector of unknowns, and L is the vector of constants, we can use the method of least squares.

The system can be represented as T*R = L, where * denotes matrix multiplication.

In order to find the least-squares solution, we need to find the vector R that minimizes the squared error between T*R and L. This can be achieved by solving the normal equation:

T^T * T * R = T^T * L

where T^T denotes the transpose of matrix T.

Given the system [1 2 -2] * R = [2 12], the transpose of T is [1; 2; -2] and L is [2; 12].

Multiplying the transpose of T by T gives:
[1; 2; -2]^T * [1 2 -2] = [9]

Multiplying the transpose of T by L gives:
[1; 2; -2]^T * [2; 12] = [22]

So the normal equation becomes:
[9] * R = [22]

Solving for R, we have:
9R = 22
R = 22/9

Therefore, the least-squares solution of the system is R = 22/9.

to learn more about square click here:brainly.com/question/14198272

#SPJ11

Construct a proof for the following sequents in QL: (z =^~cz^^~)(ZA)(^A) = XXS(XA) -|ɔ

Answers

To construct a proof of the given sequent in first-order logic (QL), we'll use the rules of inference and axioms of first-order logic.

Here's a step-by-step proof:

| (∀x)Jxx (Assumption)

| | a (Arbitrary constant)

| | Jaa (∀ Elimination, 1)

| | (∀y)(∀z)(~Jyz ⊃ ~y = z) (Assumption)

| | | b (Arbitrary constant)

| | | c (Arbitrary constant)

| | | ~Jbc ⊃ ~b = c (∀ Elimination, 4)

| | | ~Jbc (Assumption)

| | | ~b = c (Modus Ponens, 7, 8)

| | (∀z)(~Jbz ⊃ ~b = z) (∀ Introduction, 9)

| | ~Jab ⊃ ~b = a (∀ Elimination, 10)

| | ~Jab (Assumption)

| | ~b = a (Modus Ponens, 11, 12)

| | a = b (Symmetry of Equality, 13)

| | Jba (Equality Elimination, 3, 14)

| (∀x)Jxx ☰ (∀y)(∀z)(~Jyz ⊃ ~y = z) (→ Introduction, 4-15)

The proof begins with the assumption (∀x)Jxx and proceeds with the goal of deriving (∀y)(∀z)(~Jyz ⊃ ~y = z). We first introduce an arbitrary constant a (line 2). Using (∀ Elimination) with the assumption (∀x)Jxx (line 1), we obtain Jaa (line 3).

Next, we assume (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4) and introduce arbitrary constants b and c (lines 5-6). Using (∀ Elimination) with the assumption (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4), we derive the implication ~Jbc ⊃ ~b = c (line 7).

Assuming ~Jbc (line 8), we apply (Modus Ponens) with ~Jbc ⊃ ~b = c (line 7) to deduce ~b = c (line 9). Then, using (∀ Introduction) with the assumption ~Jbc ⊃ ~b = c (line 9), we obtain (∀z)(~Jbz ⊃ ~b = z) (line 10).

We now assume ~Jab (line 12). Applying (Modus Ponens) with ~Jab ⊃ ~b = a (line 11) and ~Jab (line 12), we derive ~b = a (line 13). Using the (Symmetry of Equality), we obtain a = b (line 14). Finally, with the Equality Elimination using Jaa (line 3) and a = b (line 14), we deduce Jba (line 15).

Therefore, we have successfully constructed a proof of the given sequent in QL.

Correct Question :

Construct a proof for the following sequents in QL:

|-(∀x)Jxx☰(∀y)(∀z)(~Jyz ⊃ ~y = z)

To learn more about sequent here:

https://brainly.com/question/33109906

#SPJ4

Calculus [The following integral can be solved in several ways. What you will do here is not the best way, but is designed to give you practice of the techniques you are learning.] Use the trigonometric substitution x = 2 sec (0) to evaluate the integral x Ja dx, x> 2. 2²-4 Hint: After making the first substitution and rewriting the integral in terms of 0, you will need to make another, different substitution.

Answers

Using the trigonometric substitution x = 2sec(θ), we can evaluate the integral ∫x√(x²-4) dx for x > 2. This involves making two substitutions and simplifying the expression to an integral involving trigonometric functions.

We start by making the trigonometric substitution x = 2sec(θ), which implies dx = 2sec(θ)tan(θ) dθ. Substituting these expressions into the integral, we obtain ∫(2sec(θ))(2sec(θ)tan(θ))√((2sec(θ))²-4) dθ.

Simplifying the expression, we have ∫4sec²(θ)tan(θ)√(4sec²(θ)-4) dθ. Next, we use the identity sec²(θ) = tan²(θ) + 1 to rewrite the expression as ∫4(tan²(θ) + 1)tan(θ)√(4tan²(θ)) dθ.

Simplifying further, we get ∫4tan³(θ) + 4tan(θ)√(4tan²(θ)) dθ. We can factor out 4tan(θ) from both terms, resulting in ∫4tan(θ)(tan²(θ) + 1)√(4tan²(θ)) dθ.

Now, we make the substitution u = 4tan²(θ), which implies du = 8tan(θ)sec²(θ) dθ. Substituting these expressions into the integral, we obtain ∫(1/2)(u + 1)√u du.

This integral can be evaluated by expanding the expression and integrating each term separately. Finally, substituting back u = 4tan²(θ) and converting the result back to x, we obtain the final solution for the original integral.

Learn more about trigonometric substitution here:

https://brainly.com/question/32150762

#SPJ11

Prove that T= [1, ØJ L[ (9.+00): 9 € QJ is not topology in R

Answers

To prove that T = [1,ØJ L[ (9.+00): 9 € QJ is not topology in R, we can use the three conditions required for a set of subsets to form a topology on a space X.

The conditions are as follows:

Condition 1: The empty set and the entire set are both included in the topology.

Condition 2: The intersection of any finite number of sets in the topology is also in the topology.

Condition 3: The union of any number of sets in the topology is also in the topology.

So let's verify each of these conditions for T.

Condition 1: T clearly does not include the empty set, since every set in T is of the form [1,a[ for some a>0. Therefore, T fails to satisfy the first condition for a topology.

Condition 2: Let A and B be two sets in T. Then A = [1,a[ and B = [1,b[ for some a, b > 0. Then A ∩ B = [1,min{a,b}[. Since min{a,b} is always positive, it follows that A ∩ B is also in T. Therefore, T satisfies the second condition for a topology.

Condition 3: Let {An} be a collection of sets in T. Then each set An is of the form [1,an[ for some an>0. It follows that the union of the sets is also of the form [1,a), where a = sup{an}.

Since a may be infinite, the union is not in T. Therefore, T fails to satisfy the third condition for a topology.

Since T fails to satisfy the first condition, it is not a topology on R.

To know more about topology visit:

brainly.com/question/10536701

#SPJ11

On a map where each unit represents 100 miles, two airports are located at P(1,17) and Q(12,10). What is the distance, to the nearest whole mile, between the two airports?

Answers

The distance between the two airports, to the nearest whole mile, is 13 miles.

To find the distance between two points on a map, you can use the distance formula. The distance formula is derived from the Pythagorean theorem and is given by:

Distance = √((x2 - x1)^2 + (y2 - y1)^2)

In this case, the coordinates of the two airports are P(1,17) and Q(12,10). Using these coordinates, we can calculate the distance between them.

x1 = 1

y1 = 17

x2 = 12

y2 = 10

Distance = √((12 - 1)^2 + (10 - 17)^2)

Distance = √(11^2 + (-7)^2)

Distance = √(121 + 49)

Distance = √170

Distance ≈ 13.04

Since each unit on the map represents 100 miles, the distance between the two airports is approximately 13.04 units. Rounding to the nearest whole mile, the distance is 13 miles.

for similar questions on airports.

https://brainly.com/question/31675873

#SPJ8

Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12²

Answers

We are asked to test the series ∑(k/(-1)^k) for convergence or divergence. So the series is diverges .

To determine the convergence or divergence of the series ∑(k/(-1)^k), we need to examine the behavior of the terms as k increases.

The series alternates between positive and negative terms due to the (-1)^k factor. When k is odd, the terms are positive, and when k is even, the terms are negative. This alternating sign indicates that the terms do not approach a single value as k increases.

Additionally, the magnitude of the terms increases as k increases. Since the series involves dividing k by (-1)^k, the terms become larger and larger in magnitude.

Therefore, based on the alternating sign and increasing magnitude of the terms, the series ∑(k/(-1)^k) diverges. The terms do not approach a finite value or converge to zero, indicating that the series does not converge.

Learn more about converges or diverges click here :brainly.com/question/17177764

#SPJ11

Find a real matrix C of A = -1-4-4] 4 7 4 and find a matrix P such that P-1AP = C. 0-2-1]

Answers

No matrix P exists that satisfies the condition P-1AP = C.

Given the matrix A = [-1 -4 -4] [4 7 4] [0 -2 -1]

We have to find a matrix P such that P-1AP = C.

Also, we need to find the matrix C.Let C be a matrix such that C = [-3 0 0] [0 3 0] [0 0 -1]

Now we will check whether the given matrix A and C are similar or not?

If they are similar, then there exists an invertible matrix P such that P-1AP = C.

Let's find the determinant of A,

det(A):We will find the eigenvalues for matrix A to check whether A is diagonalizable or not

Let's solve det(A-λI)=0 to find the eigenvalues of A.

[-1-λ -4 -4] [4 -7-λ 4] [0 -2 -1-λ] = (-λ-1) [(-7-λ) (-4)] [(-2) (-1-λ)] + [(-4) (4)] [(0) (-1-λ)] + [(4) (0)] [(4) (-2)] = λ³ - 6λ² + 9λ = λ (λ-3) (λ-3)

Therefore, the eigenvalues are λ₁= 0, λ₂= 3, λ₃= 3Since λ₂=λ₃, the matrix A is not diagonalizable.

The matrix A is not diagonalizable, hence it is not similar to any diagonal matrix.

So, there does not exist any invertible matrix P such that P-1AP = C.

Therefore, no matrix P exists that satisfies the condition P-1AP = C.

To know more about Matrix,visit:

https://brainly.com/question/29132693

#SPJ11

2 11 ·x³+ X .3 y= 2 This function has a negative value at x = -4. This function has a relative maximum value at x = -1.5. This function changes concavity at X = -2.75. x² +12x-2 4. A. B. C. y = 3 X -=x²-3x+2 The derivative of this function is positive at x = 0. This function is concave down over the interval (-[infinity], 0.25). This function is increasing over the interval (1.5, [infinity]) and from (-[infinity], -1). 20 la 100 la 20

Answers

The function 2x³ + x + 0.3y = 2 has a negative value at x = -4, a relative maximum at x = -1.5, and changes concavity at x = -2.75.
The function y = 3x² - 3x + 2 has a positive derivative at x = 0, is concave down over the interval (-∞, 0.25), and is increasing over the intervals (1.5, ∞) and (-∞, -1).

For the function 2x³ + x + 0.3y = 2, we are given specific values of x where certain conditions are met. At x = -4, the function has a negative value, indicating that the y-coordinate is less than zero at that point. At x = -1.5, the function has a relative maximum, meaning that the function reaches its highest point in the vicinity of that x-value. Finally, at x = -2.75, the function changes concavity, indicating a transition between being concave up and concave down.
Examining the function y = 3x² - 3x + 2, we consider different properties. The derivative of the function represents its rate of change. If the derivative is positive at a particular x-value, it indicates that the function is increasing at that point. In this case, the derivative is positive at x = 0.
Concavity refers to the shape of the graph. If a function is concave down, it curves downward like a frown. Over the interval (-∞, 0.25), the function y = 3x² - 3x + 2 is concave down.
Lastly, we examine the intervals where the function is increasing. An increasing function has a positive slope. From the given information, we determine that the function is increasing over the intervals (1.5, ∞) and (-∞, -1).
In summary, the function 2x³ + x + 0.3y = 2 exhibits specific characteristics at given x-values, while the function y = 3x² - 3x + 2 demonstrates positive derivative, concave down behavior over a specific interval, and increasing trends in certain intervals.

Learn more about positive derivative here
https://brainly.com/question/29603069



#SPJ11

Let T: R³ → R³ be a linear transformation such that 7(1, 0, 0) = (−1, 4, 2), T(0, 1, 0) = (1, 3, −2), and 7(0, 0, 1) = (2, -2, 0). Find the indicated image. T(0, 1, -3) T(0, 1, -3)= (-1,9,-2)

Answers

T(0, 1, -3) is equal to (-1, 9, -2) according to the given mappings of the linear transformation T.

Linear transformation T maps vectors in R³ to vectors in R³. We are given specific mappings for three basis vectors: 7(1, 0, 0) = (-1, 4, 2), T(0, 1, 0) = (1, 3, -2), and 7(0, 0, 1) = (2, -2, 0).

To find the image of a vector using the linear transformation, we can express the given vector as a linear combination of the basis vectors and then apply the mappings accordingly. In this case, we want to find T(0, 1, -3).

Expressing (0, 1, -3) as a linear combination of the basis vectors, we have:

(0, 1, -3) = (0)(1, 0, 0) + (1)(0, 1, 0) + (-3)(0, 0, 1)

Now, applying the mappings, we can evaluate T(0, 1, -3) as:

T(0, 1, -3) = (0)(-1, 4, 2) + (1)(1, 3, -2) + (-3)(2, -2, 0)

            = (0, 0, 0) + (1, 3, -2) + (-6, 6, 0)

            = (-1, 9, -2)

Therefore, T(0, 1, -3) is equal to (-1, 9, -2) according to the given mappings of the linear transformation T.

Learn more about vector here:

https://brainly.com/question/30958460

#SPJ11

DETAILS Find an equation of a circle described. Write your answer in standard form. The circle has a diameter with endpoints (4, 7) and (-10, 5). Need Help? Read It Watch It

Answers

The equation of the circle in standard form is (x + 3)² + (y - 6)² = 50 and the radius is 5√2.

We need to find an equation of a circle described, with the diameter with endpoints (4, 7) and (-10, 5).

We have to use the formula of the circle which is given by(x-h)² + (y-k)² = r²,

where (h, k) is the center of the circle and

r is the radius.

To find the center, we use the midpoint formula, given by ((x₁ + x₂)/2 , (y₁ + y₂)/2).

Therefore, midpoint of the given diameter is:

((4 + (-10))/2, (7 + 5)/2) = (-3, 6)

Thus, the center of the circle is (-3, 6)

We now need to find the radius, which is half the diameter.

Using the distance formula, we get:

d = √[(x₂ - x₁)² + (y₂ - y₁)²]

d = √[(-10 - 4)² + (5 - 7)²]

d = √[(-14)² + (-2)²]

d = √200

d = 10√2

Thus, the radius is 5√2.

The equation of the circle in standard form is:

(x + 3)² + (y - 6)² = 50

To know more about standard form visit:

https://brainly.com/question/29000730

#SPJ11

Question Completion Status: then to compute C₁ where CAB. you must compute the inner product of row number Thus, C125 QUESTION 4 Match the matrix A on the left with the correct expression on the right 23 A-014 563 3 2 -1 A-3-21 0-2 1 354 A-835 701 QUESTIONS Click Save and Submit to save and submit. Click Save All Anneers to suve all annuers of matrix and column number ¹17/60 The inverse of the matrix does not exist. CDet A-48 of matrix whe

Answers

Question: Compute the value of C₁, given that C = AB, and you must compute the inner product of row number 1 and row number 2.

To solve this, let's assume that A is a matrix with dimensions 2x3 and B is a matrix with dimensions 3x2.

We can express matrix C as follows:

[tex]\[ C = AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}\][/tex]

The inner product of row number 1 and row number 2 can be computed as the dot product of these two rows. Let's denote the inner product as C₁.

[tex]\[ C₁ = (a_{11}a_{21} + a_{12}a_{22} + a_{13}a_{23}) \][/tex]

To find the values of C₁, we need the specific entries of matrices A and B.

Please provide the values of the entries in matrices A and B so that we can compute C₁ accurately.

Sure! Let's consider the following values for matrices A and B:

[tex]\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 1 \end{bmatrix} \][/tex]

[tex]\[ B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \][/tex]

We can now compute matrix C by multiplying A and B:

[tex]\[ C = AB = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 31 & 40 \\ 12 & 16 \end{bmatrix} \][/tex]

To find the value of C₁, the inner product of row number 1 and row number 2, we can compute the dot product of these two rows:

[tex]\[ C₁ = (31 \cdot 12) + (40 \cdot 16) = 1072 \][/tex]

Therefore, the value of C₁ is 1072.

To know more about Probability visit-

brainly.com/question/31828911

#SPJ11

Consider the two-sector model: dy = 0.5(C+I-Y) dt C=0.5Y+600 I=0.3Y+300 a/ Find expressions for Y(t), C(t) and I(t) when Y(0) = 5500; b/ Is this system stable or unstable, explain why?

Answers

In the two-sector model with the given equations dy = 0.5(C+I-Y) dt, C = 0.5Y+600, and I = 0.3Y+300, we can find expressions for Y(t), C(t), and I(t) when Y(0) = 5500.

To find expressions for Y(t), C(t), and I(t), we start by substituting the given equations for C and I into the first equation. We have dy = 0.5((0.5Y+600)+(0.3Y+300)-Y) dt. Simplifying this equation gives dy = 0.5(0.8Y+900-Y) dt, which further simplifies to dy = 0.4Y+450 dt. Integrating both sides with respect to t yields Y(t) = 0.4tY + 450t + C1, where C1 is the constant of integration.

To find C(t) and I(t), we substitute the expressions for Y(t) into the equations C = 0.5Y+600 and I = 0.3Y+300. This gives C(t) = 0.5(0.4tY + 450t + C1) + 600 and I(t) = 0.3(0.4tY + 450t + C1) + 300.

Now, let's analyze the stability of the system. The stability of an economic system refers to its tendency to return to equilibrium after experiencing a disturbance. In this case, the system is stable because both consumption (C) and investment (I) are positively related to income (Y). As income increases, both consumption and investment will also increase, which helps restore equilibrium. Similarly, if income decreases, consumption and investment will decrease, again moving the system towards equilibrium.

Therefore, the given two-sector model is stable as the positive relationships between income, consumption, and investment ensure self-correcting behavior and the restoration of equilibrium.

Learn more about equations here:

https://brainly.com/question/29538993

#SPJ11

Rewrite these relations in standard form and then state whether the relation is linear or quadratic. Explain your reasoning. (2 marks) a) y = 2x(x – 3) b) y = 4x + 3x - 8

Answers

The relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.

a) y = 2x(x – 3) = 2x² – 6x. In standard form, this can be rewritten as 2x² – 6x – y = 0.

This relation is quadratic because it contains a squared term (x²). b) y = 4x + 3x - 8 = 7x - 8.

In standard form, this can be rewritten as 7x - y = 8.

This relation is linear because it only contains a first-degree term (x) and a constant term (-8).

In conclusion, the relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.

To know more about quadratic visit:

brainly.com/question/30098550

#SPJ11

Other Questions
Based on the economy described in and your conclusions from the question above on early agricultural communities, explain how you would expect this society to develop. Explain your answer fully. Your Answer: Eventually, there will be a coercive authority to divide the work between the people and allow time for individuals to have to themselves. They would compare their current way of life, to a life where their work time is set and there is a government in charge of controlling certain things in the market. If that world seems better they will change their separate lands and have a shared one. There will be a job for everyone and the advantage of being close to the river is not just for the ones who own the land close to the river. However, the issue that may arise with the development is that there might be gaps in their wealth as it is with our world right now. As people give power to that central planner who is assumed to be benevolent, eventually that person will act in a way that will benefit himself. Another thing to note is that when the prices are set, if the demand is higher than the supply there will be an adjustment to the price, and this would mean that certain people will be left with nothing as they may not be able to afford food. Intuitive and considers almost all concepts related to question in an appropriate manner. Gotham Company purchased a new machine on October 1, 2022, at a cost of $90,000. The company estimated that the machine has a salvage value of $8,000. The machine is expected to be used for 70,000 working hours during its 8-year life. Compute the depreciation expense under the straight-line method for 2022 and 2023, assuming a December 31 year-end. Due to its importance in the economy, Chinese SOEs have a higher return on assets than private companies.a. Trueb. False between the seventh and the ninth days after fertilization, __________ occurs. An investor is considering the acquisition of a "distressed property" which is on Northlake Banks REO list. The property is available for $202,600 and the investor estimates that he can borrow $160,000 at 4.5 percent interest and that the property will require the following total expenditures during the next year:Inspection $ 539Title search 1,078Renovation 13,000Landscaping 878Loan interest 7,239Insurance 1,839Property taxes 6,039Selling expenses 8,000Required:a. The investor is wondering what such a property must sell for after one year in order to earn a 20 percent return (IRR) on equity.b. The lender is now concerned that if the property does not sell, investor may have to carry the property for one additional year. He believes that he could rent it (starting in year 2) and realize a net cash flow before debt service of $1,980 per month. However, he would have to make an additional $7,980 in interest payments on his loan during that time, and then sell. What would the price have to be at the end of year 2 in order to earn a 20 percent IRR on equity? Discuss the "Promotion" of the 4Ps of marketing plan of DayTwo(a gut microbiome precision medicine company).Require about 300 words. DO NOT COPY AND PASTE. please be precise to the question and answer in OWN WORDS. Question Completion Status: then to compute C where CAB. you must compute the inner product of row number Thus, C125 QUESTION 4 Match the matrix A on the left with the correct expression on the right 23 A-014 563 3 2 -1 A-3-21 0-2 1 354 A-835 701 QUESTIONS Click Save and Submit to save and submit. Click Save All Anneers to suve all annuers of matrix and column number 17/60 The inverse of the matrix does not exist. CDet A-48 of matrix whe Five years ago, you decided to purchase the stock of Blue Corp.. This stock has had returns of 6 percent, -21 percent, 17 percent, 10 percent, and 2 percent over these past five years. What is the standard deviation of these returns? 13.thank you !Assume that you wish to make annual deposits into a savings account. The interest rate offered by the bank is \( 12 \% \), and you plan to save for the next 6 years. If your goal is for the present va 1) What is the difference between current account balance andoverall balance?2) To stimulate the Malaysian economy, the government hasincreased investment incentives. Explain its effects on Malaysi Byron Books Inc. recently reported $6 million of net income. Its EBIT was $8.4 million, and its tax rate was 25%. What was its interest expense? (Hint: Write out the headings for an income statement, and then fill in the known values. Then divide $6 million of net income by (1T)=0.75 to find the pretax income. The difference between EBIT and taxable income must be interest expense. Use this same procedure to complete similar problems.) Write out your answer completely. For example, 25 million should be entered as 25,000,000. Round your answer to the nearest dollar; if necessary. Do not round intermediate calculations. Satterson Brothers recently reported an EBITDA of $7.5 million and net income of $1.125 million. It had $1.5 million of nterest expense, and its corporate tax rate was 25%. What was its charge for depreciation and amortization? Write out our answer completely. For example, 25 million should be entered as 25,000,000. Do not round intermediate alculations. Round your answer to the nearest dollar, if necessary. American sociology in the United States began at which of the following universities?a.American Universityc.New York University (NYU)b.University of Chicagod.Columbia University 1. f(x) dx, where x n f(x) = { sin (x), -3 sin(x), X > T (Express numbers in exact form. Use symbolic notation and fractions where needed.) 2x 1 f(x) dx = Calculate HELPwhat is the distance of segment ST? create a proper introduction with a proper thesisstatement for below research proposal topic:- A Perfect Coincidence a battery with internal resistance r is connected to a load resistance r. 6. Which sentence in the passage is nonessential and should be deleted? a. sentence 11 b. sentence 3 c. sentence 5 d. sentence 16 You have just purchased a home and taken out a $420,000 mortgage. The mortgage has a 30 -year term with monthly payments and an APR of 6.32%. a. How much will you pay in interest, and how much will you pay in principal, during the first year? b. How much will you pay in interest, and how much will you pay in principal, during the 20th year (i.e., between 19 and 20 years from now)? the neuronal wiring between the thalamus and the amygdala allows us to: Task 5. Case Study: LEYALEYA is a fast growing mobile Internet education platform established in the end of 2015, focusing on offering English teaching using a shared economy business model. Children from the same neighbourhood form one class, and teachers provide on-site lecturing. In this way, it saves parents time and reduces cost.The companys founders are an international team, including two founders who are foreigners, and talented co-workers from XiaoMi, IBM, and Oracle.In their own words:We came together to do something meaningful for society. I believe that it is the value we share as a team that inspires everybody to make the effort. Hence, finding the people with similar values is vital.In the beginning, I was very clear of my business goal. This requires deep thinking before starting the business, for example, what do you want and how do you reach your goal. You have to think of the resources you need, and what kind of partners to help you achieve the goal. Setting the goal is the first step in recognizing the required resources. Since I started the business, based on such a role, together with my previous experience, I was very clear of our business goal and the indispensable resources to achieve the goal.LEYA connects teachers and students. We are an Internet firm, but we base our core competency on innovative organizational form.Questions:Map the LEYA case onto the VRIO FrameworkWhat are the tangible and intangible resources that the company has?Do you think their resources are rare and valuable?What resources and capabilities are needed for Leya to achieve their competitive positions in the market?