Answer:
m=f+Frt
M=f(1+rt)
M\1+rt=F
20 Points- Which of the following is true for f of x equals the quotient of the quantity x squared plus 9 and the quantity x minus 3?
There is a removable discontinuity at x = 3.
There is a non-removable discontinuity at x = 3.
The function is continuous for all real numbers.
Answer:
There is a non-removable discontinuity at x = 3
Step-by-step explanation:
We are given that
[tex]f(x)=\frac{x^2+9}{x-3}[/tex]
We have to find true statement about given function.
[tex]\lim_{x\rightarrow 3}f(x)=\lim_{x\rightarrow 3}\frac{x^2+9}{x-3}[/tex]
=[tex]\infty[/tex]
It is not removable discontinuity.
x-3=0
x=3
The function f(x) is not define at x=3. Therefore, the function f(x) is continuous for all real numbers except x=3.
Therefore, x=3 is non- removable discontinuity of function f(x).
Hence, option B is correct.
HELP ME PLSSSSSSS!!!!!!!!!
Domain of the function
[-3,5)The area of a duck enclosure is 300 square feet, with 100 square feet occupied by a pond. Each duck in the enclosure needs more than 20 square feet of space on dry land. If x ducks can be put in the enclosure, which is the simplest inequality that represents this situation?
Answer: x = 100 duck
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
A - H, please! thank you.
Answer:
First exercise
a) 1/8=0.125
b) 5$
c) y = 0.125 * x - 5
Second exercise
a) 0.11 $/KWh
b) no flat fee
c) y = 0.11 * x
Step-by-step explanation:
(See the pictures)
Celsius to Fahrenheit
Step-by-step explanation:
149......hshdbhdhsbhsjsusvshhs
I need help figuring out what the answer is.
Answer:
A
Step-by-step explanation:
find the size of each of the unknown angles.
plz solve this question fast as soon as possible with solution.
Answer:
Angle a = 80°, Angle b = 55°, Angle c = 45°, Angle d = 80°
Step-by-step explanation:
To find the measure of Angle a, we add 55 and 45, then subtract the sum from 180.
180 - 100 = 80
Angle a is 80°.
Then, we solve for Angle b. Line segment CD is congruent to Line AB, so Angle b is congruent to 55°.
After that, we find Angle c. Line segment AC is congruent to Line segment BD, so Angle c is congruent to 45°.
Lastly, we solve for Angle d using the same method we used for Angle b and Angle c. Angle d is congruent to Angle a, so it measures 80°.
So, Angle a = 80°, Angle b = 55°, Angle c = 45°, Angle d = 80°.
PLEASE HELP ITS EASY BUT LIKE yh
Answer:
40 I told u
Step-by-step explanation:
right angles are 90 degrees
Answer :
x +25 +25 =90 degrees
x +50 =90 degrees
x = 90 -50
x = 40 degrees
What is the value of x in the product of powers below?
6^9 x 6^x =6^2
0-11
O -7
07
11
Mmm, x is equals to -7....
The value of the x is -7.
What is an equation?Two algebraic expressions having the same value and symbol '=' in between are called an equation.
We can use the rule for multiplying powers with the same base to simplify the left-hand side of the equation:
6⁹ × 6ˣ = 6⁽⁹⁺ˣ⁾
Now we can rewrite the equation as:
6⁽⁹⁺ˣ⁾ = 6²
Since the bases on both sides of the equation are the same, we can equate the exponents:
9 + x = 2
Subtracting 9 from both sides gives:
x = -7
Therefore, the value of x in the given equation is -7.
To learn more about the equation;
https://brainly.com/question/12788590
#SPJ7
help!!!!!
Describe the graph of the function. y = VX-6 +2
I NEED HELP ASAP
Answer:
First answer choice: [tex]y=\sqrt{x}[/tex] shifted right 6 units and down 2 units.
Step-by-step explanation:
Graph
A tailor had 5000 buttons.He sawed 9 buttons on each shirt and had 2048 buttons left.Then,he sold all shirts at $36 each.find the total amount collected by the tailor?
Answer: $11,808
Step-by-step explanation:
5000 - 2048 = 2952
By subtracting the total number of buttons by the number of buttons left, it can be calculated that the tailor used a total of 2952 buttons.
Each shirt has 9 buttons, therefore the number of shirts can be calculated as:
2952 ÷ 9 = 328.
Since the shirts sold at $36 each and there are 328 shirts made, the total amount can be calculated as $36 · 328 = $11,808
(I hope this is right :\)
The total amount collected by the tailor $11,808.
What is division?Division is the process of splitting a number or an amount into equal parts.
Division is one of the four basic operations of arithmetic, the ways that numbers are combined to make new numbers. The other operations are addition, subtraction, and multiplication.
here, we have,
A tailor had 5000 buttons.
He sawed 9 buttons on each shirt and had 2048 buttons left.
Then, he sold all shirts at $36 each.
now,
5000 - 2048 = 2952
By subtracting the total number of buttons by the number of buttons left, it can be calculated that the tailor used a total of 2952 buttons.
Each shirt has 9 buttons, therefore the number of shirts can be calculated as:
2952 ÷ 9 = 328.
Since the shirts sold at $36 each and there are 328 shirts made,
the total amount can be calculated as $36 · 328
= $11,808
Hence, the total amount collected by the tailor $11,808.
To learn more on division click:
brainly.com/question/21416852
#SPJ2
identify an equation in point slope form for the line perpendicular to y=-1/3x-6 that passes through (-1,5)
Find the value of x that will make A||B.
Please help!
Answer:
x=30
Step-by-step explanation:
Hi there!
For A to be parallel to B, 5x would be equal to 3x+60. (If they were parallel, these two angles would be alternate exterior angles, which are equal.)
[tex]5x=3x+60[/tex]
Subtract 3x from both sides
[tex]5x-3x=3x+60-3x\\2x=60[/tex]
Divide both sides by 2
[tex]x=30[/tex]
I hope this helps!
Complete the function for this graph.
Answer:
y = –|x - 1| + 3
Step-by-step explanation:
The "vertex" is (1 , 3)
y = –|x - 1| + 3
A group of hospital workers belonging to a union each earn the same hourly wage. The union dues are 2 percent of each paycheck regardless of whether the employee works full-time, half-time, or quarter-time. Does this mean that the amount of money deducted will be the same for all the employees?
Answer:
No, different amounts will be deducted.
Step-by-step explanation:
Because the amount deducted is a percent, it changes based on the total amount.
For example, If someone takes 10% of $100, they will have taken $10. And if they take 10% from someone who has $10, they will have taken $1.
Good luck!
write twelve thousand twelve hundred and twelve in numbers
Answer:
12, 120,012
Step-by-step explanation:
Pls help plz help pls plz help plz plz help
Answer:
The first choice, Equation A and equation C.
Step-by-step explanation:
The lines A and C are intersecting in the point (0,8). That is the solution for those lines.
Drag the operator to the correct location on the image.
Which operation results in a binomial?
The correct answer is to drag The Plus sign (+)
What is an Operator?This has to do with the use of symbols to denote mathematical equations such as addition, subtraction, etc.
Hence, we can see that the correct position to put the operator on the image to result in a binomial is to drag the plus sign (+) so that the equations can be solved,.
Read more about operators here:
https://brainly.com/question/25974538
#SPJ2
Answer:.
Step-by-step explanation:
Solve the equation and enter the value of x below. 9x + 4 + x = 54
Hello!
9x + 4 + x = 54 <=>
<=> 9x + x + 4 = 54 <=>
<=> 10x + 4 = 54 <=>
<=> 10x = 54 - 4 <=>
<=> 10x = 50 <=>
<=> x = 50 : 10 <=>
<=> x = 5 => 9 × 5 + 4 + 5 = 54
Good luck! :)
Answer:
x = 5
Step-by-step explanation:
First, combine like terms. Like terms are terms with the same variables as well as same amount of said variables:
9x + x + 4 = 54
(9x + x) + 4 = 54
10x + 4 = 54
Next, isolate the variable, x. Note the equal sign, what you do to one side, you do tot he other. Do the opposite of PEMDAS.
PEMDAS is the order of operations, and stands for:
Parenthesis
Exponents (& Roots)
Multiplication
Division
Addition
Subtraction
-
First, subtract 4 from both sides of the equation:
10x + 4 (-4) = 54 (-4)
10x = 54 - 4
10x = 50
Next, divide 10 from both sides of the equation:
(10x)/10 = (50)/10
x = 50/10 = 5
x = 5 is your answer.
~
PLEASE HELP! Which of the following ordered pairs is a solution to the given system of equations?
A. (12, 8)
B. (3, 5)
C. (-3, 3)
D. (0, 4)
please don’t use this for points.
Answer:
A.............
Step-by-step explanation:
. ..........
Answer:
C. (3,3)
Step-by-step explanation:
When These equations are both graphed the solution for these equations when they intersect is (-3,3)
Point A (6,2) is translated using the vector <-5,2>. Where is the new point located?
======================================================
Explanation:
The notation <-5,2> is the same as writing the translation rule [tex](x,y) \to (x-5,y+2)[/tex]
It says: move 5 units to the left and 2 units up
The point (6,2) moves to (1,2) when moving five units to the left. Then it ultimately arrives at (1, 4) after moving 2 units up. You could move 2 units up first and then 5 units to the left later on, and you'd still arrive at (1, 4). In this case, the order doesn't matter (some combinations of transformations this won't be the case and order will matter).
---------
Or you could write out the steps like so
[tex](x,y) \to (x-5, y+2)\\\\(6,2) \to (6-5, 2+2)\\\\(6,2) \to (1, 4)\\\\[/tex]
We see that (6,2) moves to (1, 4)
If K is the midpoint of JL, JK = 8x + 11 and KL = 14x – 1, find JL.
Answer:
[tex]JL=54[/tex]
Step-by-step explanation:
We are given that K is the midpoint of JL. Using this information, we want to find JL.
By the definition of midpoint, this means that:
[tex]JK=KL[/tex]
Substitute them for their equations:
[tex]8x+11=14x-1[/tex]
Solve for x. Subtract 8x from both sides:
[tex]11=6x-1[/tex]
Add 1 to both sides:
[tex]6x=12[/tex]
And divide both sides by 6. Hence:
[tex]x=2[/tex]
JL is the sum of JK and KL. Hence:
[tex]JK+KL=JL[/tex]
Since JK = KL, substitute either one for the other:
[tex]JK+(JK)=2JK=JL[/tex]
Substitute JK for its equation:
[tex]2(8x+11)=JL[/tex]
Since we know that x = 2:
[tex]2(8(2)+11)=2(16+11)=2(27)=54=JL[/tex]
Thus:
[tex]JL=54[/tex]
A circular garden is surrounded by a circular path of 7m width.If the area of path is 770m²,find the area of the garden without path.
help me this question ⁉️
Answer:
Answer:
Radius of the circular garden
= 210 sq
=105m
Radius of the region covering the garden and the path =105m+7m
=112m
Area of the region between two concentric circles
with radius of outer circle R, and inner circle r =π(R sq−r sq)
Hence, the area of the path
=π(112sq−105 sq)= 7/22
(12544−11025)
= 33418/7
=4774m sq
HOPE THIS WILL HELP YOU MATE
Which is equivalent to 2^5?
Answer:
Are there certain options?
Step-by-step explanation:
2^5 is in other words 2x2x2x2x2
the answer to this is 32
Hope I helped?
Answer:
32
Step-by-step explanation:
A biased 3-coloured spinner was spun 240 times. It landed on Red n times, on Orange 3n times and on Yellow 8n times.
If you spin this spinner 1000 times, how many times do you expect it to land on Red?
(Hint: Find n first)
Given:
A biased 3-colored spinner was spun 240 times. It landed on Red n times, on Orange 3n times and on Yellow 8n times.
To find:
The expected number of times it land on Red if you spin this spinner 1000 times.
Solution:
A biased 3-colored spinner was spun 240 times. It landed on Red n times, on Orange 3n times and on Yellow 8n times. So,
[tex]n+3n+8n=240[/tex]
[tex]12n=240[/tex]
[tex]n=\dfrac{240}{12}[/tex]
[tex]n=20[/tex]
The value of n is 20. It means the spinner land on red 20 times if the spinner was spun 240 times. So, the probability of getting red is:
[tex]P(Red)=\dfrac{20}{240}[/tex]
[tex]P(Red)=\dfrac{1}{12}[/tex]
If you spin this spinner 1000 times, then the expected number of times to getting red is:
[tex]E(Red)=1000\times P(Red)[/tex]
[tex]E(Red)=1000\times \dfrac{1}{12}[/tex]
[tex]E(Red)=83.333...[/tex]
[tex]E(Red)\approx 83[/tex]
Therefore, the expected number of times to land on red is 83.
If Clare earns $75 the next week from delivering newspapers and deposits it in her account, What will her account balance be then?\
answer pls
Answer: $15
Step-by-step explanation:
-$50 + $75 = $15
Which of the following inequalities matches the graph?
Answer:
the answer is C, comment if you need explanation
Step-by-step explanation:
There is $1.90 in a jar filled with
quarters, dimes, and nickels.
There are 2 more quarters than
dimes and there are 2 more
nickels than quarters.
How many of each coin are there?
Answer:
7 nickels, 5 quarters, 3 dimes
Step-by-step explanation:
7 nickels= 35 cents
5 quarters= $1.25
3 dimes= 30 cents
35+ 1.25+ 30= $1.90
Hope this helps!
Plz mark Brainliest if u can :)
emily earns $635 per week, how much is that in a year ? ( 52 weeks in a year )
Answer:
Emily will earn $33,020 in one year.
Step-by-step explanation:
635×52=33,020
which of the following are identities? check all that apply.
A. (sinx + cosx)^2= 1+sin2x
B. sin6x=2 sin3x cos3x
C. sin3x/sinxcosx = 4cosx - secx
D. sin3x-sinx/cos3x+cosx = tanx
Answer: (a), (b), (c), and (d)
Step-by-step explanation:
Check the options
[tex](a)\\\Rightarrow [\sin x+\cos x]^2=\sin ^2x+\cos ^2x+2\sin x\cos x\\\Rightarrow [\sin x+\cos x]^2=1+2\sin x\cos x\\\Rightarrow \Rightarrow [\sin x+\cos x]^2=1+\sin 2x[/tex]
[tex](b)\\\Rightarrow \sin (6x)=\sin 2(3x)\\\Rightarrow \sin 2(3x)=2\sin (3x)\cos (3x)[/tex]
[tex](c)\\\Rightarrow \dfrac{\sin 3x}{\sin x\cos x}=\dfrac{3\sin x-4\sin ^3x}{\sin x\cos x}\\\\\Rightarrow 3\sec x-4\sin ^2x\sec x\\\Rightarrow 3\sec x-4[1-\cos ^2x]\sec x\\\Rightarrow 3\sec x-4\sec x+4\cos x\\\Rightarrow 4\cos x-\sec x[/tex]
[tex](d)\\\Rightarrow \dfrac{\sin 3x-\sin x}{\cos 3x+\cos x}=\dfrac{2\cos [\frac{3x+x}{2}] \sin [\frac{3x-x}{2}]}{2\cos [\frac{3x+x}{2}]\cos [\frac{3x-x}{2}]}\\\\\Rightarrow \dfrac{2\cos 2x\sin x}{2\cos 2x\cos x}=\dfrac{\sin x}{\cos x}\\\\\Rightarrow \tan x[/tex]
Thus, all the identities are correct.
A. Not an identity
B. An identity
C. Not an identity
D. An identity
To check whether each expression is an identity, we need to verify if the equation holds true for all values of the variable x. If it is true for all values of x, then it is an identity. Let's check each option:
A. [tex]\((\sin x + \cos x)^2 = 1 + \sin 2x\)[/tex]
To check if this is an identity, let's expand the left-hand side (LHS):
[tex]\((\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x\)[/tex]
Now, we can use the trigonometric identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex] to simplify the LHS:
[tex]\(\sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + 2\sin x \cos x\)[/tex]
The simplified LHS is not equal to the right-hand side (RHS) 1 + sin 2x since it is missing the sin 2x term. Therefore, option A is not an identity.
B. [tex]\(\sin 6x = 2 \sin 3x \cos 3x\)[/tex]
To check if this is an identity, we can use the double-angle identity for sine:[tex]\(\sin 2\theta = 2\sin \theta \cos \theta\)[/tex]
Let [tex]\(2\theta = 6x\)[/tex], which means [tex]\(\theta = 3x\):[/tex]
[tex]\(\sin 6x = 2 \sin 3x \cos 3x\)[/tex]
The equation holds true with the double-angle identity, so option B is an identity.
C. [tex]\(\frac{\sin 3x}{\sin x \cos x} = 4\cos x - \sec x\)[/tex]
To check if this is an identity, we can simplify the right-hand side (RHS) using trigonometric identities.
Recall that [tex]\(\sec x = \frac{1}{\cos x}\):[/tex]
[tex]\(4\cos x - \sec x = 4\cos x - \frac{1}{\cos x} = \frac{4\cos^2 x - 1}{\cos x}\)[/tex]
Now, using the double-angle identity for sine, [tex]\(\sin 2\theta = 2\sin \theta \cos \theta\),[/tex] let [tex]\(\theta = x\):[/tex]
[tex]\(\sin 2x = 2\sin x \cos x\)[/tex]
Multiply both sides by 2: [tex]\(2\sin x \cos x = \sin 2x\)[/tex]
Now, the left-hand side (LHS) becomes:
[tex]\(\frac{\sin 3x}{\sin x \cos x} = \frac{\sin 2x}{\sin x \cos x}\)[/tex]
Using the double-angle identity for sine again, let [tex]\(2\theta = 2x\):[/tex]
[tex]\(\frac{\sin 2x}{\sin x \cos x} = \frac{2\sin x \cos x}{\sin x \cos x} = 2\)[/tex]
So, the LHS is 2, which is not equal to the RHS [tex]\(\frac{4\cos^2 x - 1}{\cos x}\)[/tex]. Therefore, option C is not an identity.
D. [tex]\(\frac{\sin 3x - \sin x}{\cos 3x + \cos x} = \tan x\)[/tex]
To check if this is an identity, we can use the sum-to-product trigonometric identities:
[tex]\(\sin A - \sin B = 2\sin \frac{A-B}{2} \cos \frac{A+B}{2}\)\(\cos A + \cos B = 2\cos \frac{A+B}{2} \cos \frac{A-B}{2}\)[/tex]
Let A = 3x and B = x:
[tex]\(\sin 3x - \sin x = 2\sin x \cos 2x\)\(\cos 3x + \cos x = 2\cos 2x \cos x\)[/tex]
Now, we can rewrite the expression:
[tex]\(\frac{\sin 3x - \sin x}{\cos 3x + \cos x} = \frac{2\sin x \cos 2x}{2\cos 2x \cos x} = \frac{\sin x}{\cos x} = \tan x\)[/tex]
The equation holds true, so option D is an identity.
To know more about identity:
https://brainly.com/question/28974915
#SPJ3