Answer:
The series converges to [tex]\dfrac{1}{3}[/tex]
Step-by-step explanation:
It seems to be this series:
[tex]$ \sum_{n=1}^{\infty} \left(\dfrac{1}{2} \right)^{2n}$[/tex]
We have
[tex]$ \sum_{n=1}^{\infty} \left(\dfrac{1}{2} \right)^{2n} = \sum_{n=1}^{\infty} \left(\dfrac{1}{4} \right)^{n}$[/tex]
Using the Root test we can see that this series converges once
[tex]$ \lim_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ is convergent}$[/tex]
Then, [tex]$\lim_{n \to \infty} \sqrt[n]{\left(\dfrac{1}{4} \right)^{n}} = \lim_{n \to \infty} \dfrac{1}{4} = \dfrac{1}{4} < 1$[/tex]
The series is convergent.
Once the series is geometric, the first term is [tex]\dfrac{1}{4}[/tex] and the ratio is also [tex]\dfrac{1}{4}[/tex] in this case.
The sum of infinite geometric series is [tex]S = \dfrac{a_1}{1-r}[/tex] such that [tex]r < 1[/tex]
[tex]\therefore S = \dfrac{\frac{1}{4} }{1-\frac{1}{4}} = \dfrac{1}{3}[/tex]
How do you find the surface area
Answer:
It depends on what shape you have. Here are some formulas for different shapes.
Step-by-step explanation:
Rectangular prism: 2lw + 2lh + 2wh
Cylinder: 2 pi r² + 2 pi rh
Sphere: 4 pi r²
Cone: pi r² + pi rl
Square-based pyrimid: 1/2lp +B
I hope this helps!
Need help finding the factor of 2y^2-2y-4
Answer:
hope it helps you............
Answer:
2(y - 2)(y + 1)
Step-by-step explanation:
Given
2y² - 2y - 4 ← factor out 2 from each term
= 2(y² - y - 2) ← factor the quadratic
Consider the factors of the constant term (- 2) which sum to give the coefficient of the y- term (- 1)
The factors are - 2 and + 1, since
- 2 × 1 = - 2 and - 2 + 1 = - 1 , then
y² - y - 2 = (y - 2)(y + 1)
Then
2y² - 2y - 4 = 2(y - 2)(y + 1) ← in factored form
Polygon ABCD, shown in the figure, is dilated by a scale factor of 8 with the origin as the center of dilation, resulting in the image ABCD.
The slope of 'D'is
Reset
Next
Il rights reserved.
Properties of Dilati...
DELL
Answer:
(D) is equal to 8 so that means that u have to divide and multiply all in one
Answer:
Reflection
Step-by-step explanation:
21(2-y)+12y=44 find y
Answer:
[tex]\textbf{HELLO!!}[/tex]
[tex]21\left(2-y\right)+12y=44[/tex]
[tex]42-21y+12y=44[/tex]
[tex]~add ~similar\:elements[/tex]
[tex]42-9y=44[/tex]
[tex]Subtract~42~from~both~sides[/tex]
[tex]42-9y-42=44-42[/tex]
[tex]-9y=2[/tex]
[tex]Divide\:both\:sides\:by\:}-9[/tex]
[tex]\frac{-9y}{-9}=\frac{2}{-9}[/tex]
[tex]y=-\frac{2}{9}[/tex]
----------------------
hope it helps...
have a great day!
Kin travels 440 miles by train at an average speed of 110 mph.
Ayaan flies the same distance at an average speed of 880 mph.
Find the difference between their travel times.
Give your answer in hours.
Answer:
3 1/2 hours
Step-by-step explanation:
time = distance/speed
440/110 = 4 hours
440/880 = 1/2 hours
4 minus 1/2 is 3 1/2
Answer:
hi
Step-by-step explanation:
i just need some points sorry not sorry
Alec bakes spherical rolls of bread. Each roll is about 8cm
wide. What is the approximate volume of each roll? Use
3.14 to approximate a.
Answer:
Step-by-step explanation:
2143.57
Suppose that from a group of 9 men, 1 will be randomly chosen for a dangerous assignment, and suppose that the chosen man will be killed during the assignment with a probability of 1/6. If Mark is one of the 9 men, what is the probability that he will be chosen for the assignment and killed during the assignment
Answer:
1/54
Step-by-step explanation:
1/9 x 1/6
Find the missing length indicated
x = 65
Step-by-step explanation:
cos theta = 25/x
cos theta = x/169
25/x = x/169
x² = 169 x 25
x = 65
The missing length x = 65, using the Pythagoras Theorem.
What is the Pythagoras Theorem?
According to the Pythagoras Theorem, in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.
How to solve the question?In the question, we are asked to find the value of x.
In the right triangle ABC, by Pythagoras' Theorem,
AC² + BC² = AB²,
or, x² + BC² = (144 + 25)²,
or, BC² = 169² - x² ... (i).
In the right triangle ACD, by Pythagoras Theorem,
AD² + DC² = AC²,
or, 25² + DC² = x²,
or, DC² = x² - 25² ... (ii).
In the right triangle BCD, by Pythagoras Theorem,
BD² + DC² = BC²,
or, 144² + x² - 25² = 169² - x² {Substituting BC² = 169² - x² from (i) and DC² = x² - 25² from (ii)},
or, x² + x² = 169² + 25² - 144² {Rearranging},
or, 2x² = 28561 + 625 - 20736,
or, 2x² = 8450,
or, x² = 4225,
or, x = √4225 = 65.
Thus, the missing length x = 65, using the Pythagoras Theorem.
Learn more about the Pythagoras Theorem at
https://brainly.com/question/231802
#SPJ2
Write two rational and three irrational number that are between 3and 4
a)rational number :
1)(3+4 )/2
=7/2 =3.5
2)(3.5+4)/2
=7.5/2 =3.25
b)irrational number :
1)10/3=3.33....
2)11/3=3.66....
......I hope it will help you. ..
Answer:
The real numbers, which can be represented by the ratio of two integer numbers, are called rational numbers, say P/Q where Q is not equal to zero.
The actual numbers that cannot be expressed as the two integer ratio are called irrational numbers.
Step-by-step explanation:
a)rational number :
1)
(3+4 )/2
=7/2 =3.5
2)
(3.5+4)/2
=7.5/2 =3.25
b)irrational number :
1)
10/3=3.33....
2)
11/3=3.66....
3)
√13
how would I classify a triangle which has a angle of 49 and 82, acute, right, or obtuse?
9514 1404 393
Answer:
acute
Step-by-step explanation:
The third angle is ...
180° -49° -82° = 49°
So, the triangle has two angles the same, 49°. When two angle are the same, the triangle is an isosceles triangle.
The largest angle, 82°, is less than 90°, so is an acute angle. The classification acute, right, or obtuse is based on the measure of the largest angle.
The triangle is an acute isosceles triangle.
How much would $100 invested at 8% interest compounded continuously be
worth after 15 years? Round your answer to the nearest cent.
A(t)=Poet
O A. $332.01
O B. $220.00
O C. $317.22
D. $285.67
Answer:
Step-by-step explanation:
A = [tex]pe^{rt}[/tex]
A = 100[tex]e^{.08 *15}[/tex]
A=. $332.01
The value of the investment after 15 years is $332.01.
Option A is the correct answer.
What is compound interest?It is the interest we earned on the interest.
The formula for the amount earned with compound interest after n years is given as:
A = P [tex](1 + r/n)^{nt}[/tex]
P = principal
R = rate
t = time in years
n = number of times compounded in a year.
We have,
The continuous compounding formula is given by:
[tex]A = Pe^{rt}[/tex]
Where:
A = the ending amount
P = the principal (initial investment)
e = the mathematical constant (approximately equal to 2.71828)
r = the interest rate (as a decimal)
t = the time period (in years)
Using this formula, we can find the value of the investment after 15 years:
A = 100 \times e^{0.08 \times 15} ≈ $332.01
Therefore,
The value of the investment after 15 years is $332.01.
Learn more about compound interest here:
https://brainly.com/question/13155407
#SPJ7
Let r be the binomial random variable corresponding to the number of people that will live beyond their 90th birthday,
r ≥ 15.
We want to find
P(r ≥ 15)
using the normal approximation given 625 trials and a probability of a 4.4% success on a single trial.
Answer:
P(r ≥ 15) = 0.9943.
Step-by-step explanation:
We use the normal approximation to the binomial to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
625 trials and a probability of a 4.4% success on a single trial.
This means that [tex]n = 625, p = 0.044[/tex]
Mean and standard deviation:
[tex]mu = E(X) = np = 625*0.044 = 27.5[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{625*0.044*0.956} = 5.13[/tex]
P(r ≥ 15)
Using continuity correction, this is [tex]P(r \geq 15 - 0.5) = P(r \geq 14.5)[/tex], which is 1 subtracted by the p-value of Z when X = 14.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14.5 - 27.5}{5.13}[/tex]
[tex]Z = -2.53[/tex]
[tex]Z = -2.53[/tex] has a p-value of 0.0057
1 - 0.0057 = 0.9943
So
P(r ≥ 15) = 0.9943.
HELP ME PLEASE IF YOU DO YOU WILL GET BRAINLESS AND PLEASE EXPLAIN THE BEST YOU CAN
Answer:
<3=75°
Step-by-step explanation:
Angle 3 and angle 2x+95 are supplementary( supplementary angles add up to 180°)
So <3+2x+95=180
<3+2x=180-95
<3+2x=85( let's call this equation 1)
Next, angle 5 and angle 8x+71 are opposite angles (opposite angles are equal) therefore <5=8x+71
Now, <3 and <5 are co-interior angles(co-interior angles are supplementary)
So <3+8x+71=180
<3+8x=180-71=109
Thus, <3+8x=109(let's call this equation 2)
Now solving equation 1 and 2 simultaneously:
Make <3 the subject of equation 1
<3=85-2x
Put <3=85-2x into equation 2
85-2x+8x=109
6x=24
x=24/6=4
Now, remember that angle 2x+95 becomes
2(4)+95
8+95=103°
Therefore<3=180-105=75°
Rectangle ABCD translates 4 units down and 2 units to the right to form rectangle A'B'C'D'. The vertices of rectangle ABCD are labeled in alphabetical order going clockwise around the figure. If AB = 3 units and AD = 5 units, what is the length of B'C'?
Answer:
The length of BC is 14 units.Step-by-step explanation:
[tex]hope \: \: it \: \: helps} \beta \alpha \infty [/tex]
The length of B'C' is 0 units.
What is translation?It is the movement of the shape in left, right, up, and down direction.
The translated shape will have the same shape and shape.
There is a positive value when translated to the right and up.
There is a negative value when translated to the left and down.
We have,
The length of AD = 5 units.
Since the rectangle translates down by 4 units,
The length of A'D' =5 units.
The width of the original rectangle is AB, which is 3 units.
Since the rectangle translates to the right by 2 units,
The width of the new rectangle = 3 units.
Now,
The length of B'C' is the same as the length of AD', which is 5 units.
Subtracting 5 units from 5 units gives us a length of 0 units.
Thus,
The length of B'C' is 0 units.
Learn more about translation here:
https://brainly.com/question/12463306
#SPJ7
Represent the following sentence as an algebraic expression, where "a number" is the letter x.
\text{7 is added to a number.}
7 is added to a number.
Answer:
7+x
Step-by-step explanation:
X will be the unknown
0.7(1.5 + y) = 3.5y - 1.47
Answer:
y = 0.9
Step-by-step explanation:
1.05 + 0.7y = 3.5y - 1.47
-3.5y + 0.7y = -1.47 - 1.05
-2.8y = -2.52
y = 9/10 = 0.9
Answer:
[tex]\textbf{HELLO!!}[/tex]
[tex]0.7\left(1.5+y\right)=3.5y-1.47[/tex]
[tex]1.05+0.7y=3.5y-1.47 \gets \textsl{Expand}[/tex]
[tex]1.05+0.7y-1.05=3.5y-1.47-1.05 \gets Subtract\; 1.05 \from\:both\:sides[/tex]
[tex]0.7y=3.5y-2.52[/tex]
[tex]0.7y-3.5y=3.5y-2.52-3.5y[/tex]
[tex]\mathrm{Subtract\:}3.5y\mathrm{\:from\:both\:sides} \nwarrow[/tex]
[tex]-2.8y=-2.52[/tex]
[tex]\frac{-2.8y}{-2.8}=\frac{-2.52}{-2.8} \hookleftarrow \mathrm{Divide\:both\:sides\:by\:}-2.8[/tex]
[tex]\boxed{\boxed{\underline{\textsf{\textbf{y=0.9}}}}}[/tex]
[tex]\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet[/tex]
[tex]\textbf{HOPE IT HELPS}[/tex]
[tex]\textbf{HAVE A GREAT DAY!!}[/tex]
Ibrahim heeft een bijbaantje op de markt. Hij berekent zijn inkomsten met de formule
inkomsten in €=5+3,50 x tijd in uren. Leg de formule uit.
Answer:
Ibrahim gets 5 fixed and 3.5 per hour.
Step-by-step explanation:
Ibrahim has a side job at the market. He calculates his income with the formula income in € = 5 + 3.50 x, time in hours. Explain the formula.
Here, the fixed income is 5.
the income per hour is 3.5.
So, Ibrahim gets 5 fixed and 3.5 per hour.
A road has a scale of 1:50 000 The length of a road on the map is 8.5cm.Work out the length of the real road in kilometres
Answer:
ok so
8.5*150000
1275000 cm into kilometers is
12.75 kilometers
Hope This Helps!!!
Fran swims at a speed of 2.1 km/h in still water. The Lazy River flows at a speed of 0.7 km/h. How long will it take Fran to swim 10 km upstream?
What is Fran's speed while swimming upstream?
Answer: Fran's speed while swimming upstream = 1.4 km/h
Step-by-step explanation:
Given: Fran's swimming speed = 2.1 km/h
Speed of river = 0.7 km/h
The direction against the stream is called upstream.
Speed in Upstream = Fran's swimming speed - Speed of river
= 2.1-0.7 km/h
= 1.4 km/h
hence, Fran's speed while swimming upstream = 1.4 km/h
to train for a race, you plan to run 1 mile the first week and double the number of miles each week for five weeks. How many miles will you run for the 5th week. math problem
Answer:
16 Miles
Step-by-step explanation:
For every week you simply multiply the number of miles from the previous week by 2, therefore
Week 1: 1
Week 2: 2
Week 3: 4
Week 4: 8
Week 5: 16
For this question I am sure the answer is 81% as you divide 45 and 55. However, it is stating my answer is incorrect even though I put 0.81% as well. Did I round wrong or is the answer wrong completely?
Answer:
it says round to the nearest 10th so it wouldn't be 81, it would be 81.8%
Moving to another question will save this response.
1 points
Save Answer
Question 12
Mr Espent 65% of his salary on household expenses, and 15% of the remainder on travelling expenses and was finally left with R9 500. How much was his salary?
Answer:
rs.1680.67
Step-by-step explanation:
His salary = x
remaining % = 100 - 65 = 35%
= 100 - 15 = 85%
x × 35/100 × 85/100 = 500
x = 1680.67
please help meeeeeeee
pt 4
Answer:
The answer is
[tex]2 {x}^{2} + 3x - 1 = 0[/tex]
Why? Below I explain
Step-by-step explanation:
That formula has three variables a, b and c.
So, a = 2, b = 3 and c = -1
Because the formula is written like
[tex] \frac{ - b + - \sqrt{ {b}^{2} - 4 \times a \times c} }{2 \times a} [/tex]
Find the distance between the pair of points: (0,1) and (1,0)
Answer:
sqrt(1^2 + 2^2)
[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Lance is selling T-shirts for $10 each and hats for $12.50 each. He wants to earn at least $400 per week to cover his expenses. Which graph best represents the number of T-shirts and hats Lance should sell to meet his goal?
Answer:
Step-by-step explanation:
A plane left Kennedy airport on Tuesday morning for an 630mile 5 hour trip for the first part of the trip the average speed was 120 mph for the remainder of the trip the average speed was 130 mph how long did the plane fly at each speed
Answer:
The plane travelled for [tex]\text{$2$ hours}[/tex] at an average of speed [tex]120\; \rm mph[/tex] and [tex]\text{$3$ hours}[/tex] at an average speed of [tex]130\; \rm mph[/tex].
Step-by-step explanation:
Let [tex]x[/tex] denote the number of hours that the plane travelled at an average speed of [tex]120\; \rm mph[/tex].
Given that the trip is [tex]5\; \text{hours}[/tex] long in total, the plane would have travelled at an average speed of [tex]130\; \rm mph[/tex] for [tex](5 - x)\; \text{hours}[/tex].
The plane would have travelled [tex]120\, x[/tex] miles after [tex]x\; \text{hours}[/tex] at an average speed of [tex]120\; \rm mph[/tex]. Likewise, the plane would have travelled [tex]130\, (5 - x)\; \text{miles}[/tex] after [tex](5 - x)\; \text{hours}[/tex] at an average of [tex]130\; \text{mph}[/tex].
The plane has travelled [tex]630\; \text{miles}[/tex] in total. In other words:
[tex]120\, x + 130\, (5 - x) = 630[/tex].
Solve this equation for [tex]x[/tex]: [tex]x = 2[/tex].
In other words, the plane has travelled for [tex]\text{$2$ hours}[/tex] at an average of speed [tex]120\; \text{mph}[/tex]. It would have travelled for [tex](5 - x)\; \text{hours} = (5 - 2)\; \text{hours} = 3 \; \text{hours}[/tex] for the other part of the trip (at an average speed of [tex]130\; \text{mph}[/tex].)
Which descriptions from the list below accurately describe the relationship between ∆ABC and ∆DEF? Check all that apply.
A. Same area B. Same size C. Congruent D. None of the above
Answer:
D. None of the above
Step-by-step explanation:
The two right triangles have different sizes. Therefore, their areas cannot be the same as well.
Congruent triangles have the same three angles that are congruent to each other and three side lengths that are congruent or equal to each other. The two triangles only have equal angles bit different corresponding side lengths. Therefore, they cannot be congruent.
The correct answer is "None of the above".
Answer:
PROPORTIANAL SIDE LENGTHS
Step-by-step explanation:
I JUST TOOK THE TEST
What is the reciprocal of tanB in the triangle below?
Right triangle A B C is shown. C is the right angle and side A B is the hypotenuse.
tanC
tanA
tan-1C
tan-1A
Answer:
Tan A
Step-by-step explanation:
Tan B = opposite / Adjacent = AC / BC
Reciprocal of Tan B = 1 ÷ Tan B
1 ÷ Tan B = 1 ÷ AC/BC = 1 * BC / AC = BC / AC
Reciprocal of Tan B = BC / AC
the reciprocal of tan B is equivalent to :
Tan A = opposite / Adjacent = BC / AC
Hence, the reciprocal of Tan B is Tan A
Answer:
Note: Images are not in order. Check page number on pictures to make sure you have the right Answer.
Have a Good Day! God bless!
Step-by-step explanation:
Question 6 “A”
Question 7 “D”
Question 8 “B”
Question 9 “B”
Question 10 “A”
Note: Answers From 1 to 5 in order here:
Question 1 “ B”
Question 2 “A”
Question 3 “B”
Question 4 “D”
Question 5 “D”
What is the value of angle v?
Answer:
x = 5
Step-by-step explanation:
a) The third interior angle of this triangle is 180 - 20 x.
The three interior angles must sum up to 180 degrees.
Therefore, 60 + 7x + 5 + 180 - 20x = 180, or
65 + 180 - 13x = 180, or
65 - 13x = 0
Finally, 13x = 65, and so x = 5
In mixture A of candy ingredients there are 3 parts of milk-chocolate for every Z parts peanut separate mixture B. there are 4 parts of nougat for every 3 parts of caramel equat parts of A and combined in one mixing bow what is the ratio of peanut butter to nougat in the bowl
Answer:
D. 7:10
Step-by-step explanation:
The Correct Answer