NEED HELP Find the exact values of x and y.

NEED HELP Find The Exact Values Of X And Y.

Answers

Answer 1

Step-by-step explanation:

imagine the triangle is rotated and twisted so that the vertex with the 60° angle is the bottom left vertex and therefore the center of the trigonometric circle around the triangle.

so, y is the radius of that circle.

4 = sin(60)×y

x = cos(60)×y

sin(60) = sqrt(3)/2

cos(60) = 1/2

y = 4/sin(60) = 4 / sqrt(3)/2 = 8/sqrt(3)

x = cos(60)× 8/sqrt(3) = 1/2 × 8/sqrt(3) = 4/sqrt(3)


Related Questions

consider the functions below. f(x, y, z) = x i − z j y k r(t) = 10t i 9t j − t2 k (a) evaluate the line integral c f · dr, where c is given by r(t), −1 ≤ t ≤ 1.

Answers

The line integral c f · dr, where c is given by r(t), −1 ≤ t ≤ 1 is 20 + (1/3).

Hence, the required solution.

Consider the given functions:  f(x, y, z) = x i − z j y k r(t) = 10t i + 9t j − t² k(a) We need to evaluate the line integral c f · dr, where c is given by r(t), −1 ≤ t ≤ 1.Line Integral: The line integral of a vector field F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k over a curve C is given by the formula: ∫C F · dr = ∫C P dx + ∫C Q dy + ∫C R dz

Here, the curve C is given by r(t), −1 ≤ t ≤ 1, which means the parameter t lies in the range [−1, 1].

Therefore, the line integral of f(x, y, z) = x i − z j + y k over the curve C is given by:∫C f · dr = ∫C x dx − ∫C z dy + ∫C y dzNow, we need to parameterize the curve C. The curve C is given by r(t) = 10t i + 9t j − t² k.We know that the parameter t lies in the range [−1, 1]. Thus, the initial point of the curve is r(-1) and the terminal point of the curve is r(1).

Initial point of the curve: r(-1) = 10(-1) i + 9(-1) j − (-1)² k= -10 i - 9 j - k

Terminal point of the curve: r(1) = 10(1) i + 9(1) j − (1)² k= 10 i + 9 j - k

Therefore, the curve C is given by r(t) = (-10 + 20t) i + (-9 + 18t) j + (1 - t²) k.

Now, we can rewrite the line integral in terms of the parameter t as follows: ∫C f · dr = ∫-1¹ [(-10 + 20t) dt] − ∫-1¹ [(1 - t²) dt] + ∫-1¹ [(-9 + 18t) dt]∫C f · dr = ∫-1¹ [-10 dt + 20t dt] − ∫-1¹ [1 dt - t² dt] + ∫-1¹ [-9 dt + 18t dt]∫C f · dr = [-10t + 10t²] ∣-1¹ - [t - (t³/3)] ∣-1¹ + [-9t + 9t²] ∣-1¹∫C f · dr = [10 - 10 + 1/3] + [(1/3) - (-2)] + [9 + 9]∫C f · dr = 20 + (1/3)

Therefore, the line integral c f · dr, where c is given by r(t), −1 ≤ t ≤ 1 is 20 + (1/3).Hence, the required solution.

To know more about curve visit:

https://brainly.com/question/26460726

#SPJ11

J. A continuous random variable X has the following probability density function: f(x)= (2.25-x²) 0≤x

Answers

A continuous random variable X has a probability density function given by f(x) = 2.25 - x² for 0 ≤ x ≤ 1.

To determine if this function is a valid probability density function, we need to check two conditions:

The function is non-negative for all x: In this case, 2.25 - x² is non-negative for 0 ≤ x ≤ 1, so the condition is satisfied.

The integral of the function over the entire range is equal to 1: To check this, we integrate the function from 0 to 1:

∫[0,1] (2.25 - x²) dx = 2.25x - (x³/3) evaluated from 0 to 1 = 2.25(1) - (1³/3) - 0 = 2.25 - 1/3 = 1.9167

Since the integral is equal to 1, the function satisfies the second condition.

Therefore, the given function f(x) = 2.25 - x² for 0 ≤ x ≤ 1 is a valid probability density function.

To learn more about “variable” refer to the https://brainly.com/question/28248724

#SPJ11

can
you sum up independent and mutuallay exclusive events.
1. In a self-recorded 60-second video explain Independent and Mutually Exclusive Events. Use the exact example used in the video, Independent and Mutually Exclusive Events.

Answers

The biggest difference between the two types of events is that mutually exclusive basically means that if one event happens, then the other events cannot happen.

At first the definitions of mutually exclusive events and independent events may sound similar to you. The biggest difference between the two types of events is that mutually exclusive basically means that if one event happens, then the other events cannot happen.

P(A and B) = 0 represents mutually exclusive events, while P (A and B) = P(A) P(A)

Examples on Mutually Exclusive Events and Independent events.

=> When tossing a coin, the event of getting head and tail are mutually exclusive

=> Outcomes of rolling a die two times are independent events. The number we get on the first roll on the die has no effect on the number we’ll get when we roll the die one more time.

Learn more about Independent event at:

https://brainly.com/question/32716243

#SPJ4

Assume you are using a significance level of α=0.05 to test the
claim that μ<18 and that your sample is a random sample of 40
values. Find β, the probability of making a type II error (failing
t

Answers

The probability of a type II error, given a sample size of 40 and a significance level of α=0.05.

To find the probability of making a type II error (β) when testing the claim that the population mean (μ) is less than 18, we need additional information such as the population standard deviation or the effect size. With the given information of a random sample of 40 values, we can use statistical power analysis to estimate β.

Statistical power analysis involves determining the probability of rejecting the null hypothesis (H₀) when the alternative hypothesis (H₁) is true. In this case, H₀ is that μ≥18, and H₁ is that μ<18. The probability of correctly rejecting H₀ (1-β) is referred to as the statistical power.

To calculate β, we need to specify the values of μ, the population standard deviation, and the desired significance level (α). Using software or statistical tables, we can perform power calculations to estimate β based on these values, the sample size, and the assumed effect size.

To learn more about the “null hypothesis” refer to the https://brainly.com/question/4436370

#SPJ11

a coin is tossed and a die is rolled. find the probability of getting a tail and a number greater than 2.

Answers

Answer

1/3

explaination is in the pic

Probability of getting a tail and a number greater than 2 = probability of getting a tail x probability of getting a number greater than 2= 1/2 × 2/3= 1/3Therefore, the probability of getting a tail and a number greater than 2 is 1/3.

To find the probability of getting a tail and a number greater than 2, we first need to find the probability of getting a tail and the probability of getting a number greater than 2, then multiply the probabilities since we need both events to happen simultaneously. The probability of getting a tail is 1/2 (assuming a fair coin). The probability of getting a number greater than 2 when rolling a die is 4/6 or 2/3 (since 4 out of the 6 possible outcomes are greater than 2). Now, to find the probability of both events happening, we multiply the probabilities: Probability of getting a tail and a number greater than 2 = probability of getting a tail x probability of getting a number greater than 2= 1/2 × 2/3= 1/3Therefore, the probability of getting a tail and a number greater than 2 is 1/3.

To know more about Probability Visit:

https://brainly.com/question/32117953

#SPJ11

s3 is the given function even or odd or neither even nor odd? find its fourier series. show details of your work. f (x) = x2 (-1 ≤ x< 1), p = 2

Answers

Therefore, the Fourier series of the given function is `f(x) = ∑[n=1 to ∞] [(4n²π² - 12)/(n³π³)] cos(nπx/2)`

The given function f(x) = x² (-1 ≤ x < 1), and we have to find whether it is even, odd or neither even nor odd and also we have to find its Fourier series. Fourier series of a function f(x) over the interval [-L, L] is given by `

f(x) = a0/2 + ∑[n=1 to ∞] (an cos(nπx/L) + bn sin(nπx/L))`

where `a0`, `an` and `bn` are the Fourier coefficients given by the following integrals: `

a0 = (1/L) ∫[-L to L] f(x) dx`, `

an = (1/L) ∫[-L to L] f(x) cos(nπx/L) dx` and `

bn = (1/L) ∫[-L to L] f(x) sin(nπx/L) dx`.

Let's first determine whether the given function is even or odd:

For even function f(-x) = f(x). Let's check this:

f(-x) = (-x)² = x² which is equal to f(x).

Therefore, the given function f(x) is even.

Now, let's find its Fourier series.

Fourier coefficients `a0`, `an` and `bn` are given by:

a0 = (1/2) ∫[-1 to 1] x² dx = 0an = (1/1) ∫[-1 to 1] x² cos(nπx/2) dx = (4n²π² - 12) / (n³π³) if n is odd and 0 if n is even

bn = 0 because the function is even

Therefore, the Fourier series of the given function is `

f(x) = ∑[n=1 to ∞] [(4n²π² - 12)/(n³π³)] cos(nπx/2)`

To know more about Fourier series visit:

https://brainly.com/question/30763814

#SPJ11

Plot each point on the coordinate plane. (8, 7) (2, 9) (5, 8)

Answers

To plot each point on the coordinate plane (8, 7), (2, 9) and (5, 8), we need to follow the following steps:

Step 1: Firstly, we need to understand that the coordinate plane is made up of two lines that intersect at right angles, called axes. The horizontal line is the x-axis, and the vertical line is the y-axis.

Step 2: Next, locate the origin (0,0), where the x-axis and y-axis intersect. This point represents (0, 0), and all other points on the plane are located relative to this point.

Step 3: After locating the origin, plot each point on the coordinate plane. To plot a point, we need to move from the origin (0,0) a certain number of units to the right (x-axis) or left (x-axis) and then up (y-axis) or down (y-axis). (8,7) The x-coordinate of the first point is 8, and the y-coordinate is 7. So, from the origin, we move eight units to the right and seven units up and put a dot at that location. (2,9)

The x-coordinate of the second point is 2, and the y-coordinate is 9. So, from the origin, we move two units to the right and nine units up and put a dot at that location. (5,8) The x-coordinate of the third point is 5, and the y-coordinate is 8. So, from the origin, we move five units to the right and eight units up and put a dot at that location.

To know more about coordinate visit:

https://brainly.com/question/32836021

#SPJ11

the test for goodness of fit group of answer choices is always a two-tailed test. can be a lower or an upper tail test. is always a lower tail test. is always an upper tail test.

Answers

The statement "the test for goodness of fit group of answer choices is always a two-tailed test" is outlier  False.

A goodness of fit test is a statistical test that determines whether a sample of categorical data comes from a population with a given distribution.

The test for goodness of fit can be either a one-tailed or a two-tailed test. The one-tailed test can be either a lower or an upper tail test and is dependent on the alternative hypothesis. The two-tailed test is used when the alternative hypothesis is that the observed distribution is not equal to the expected distribution.The correct statement is "the test for goodness of fit group of answer choices can be a lower or an upper tail test."

To know know more about outlier visit:

https://brainly.com/question/26958242

#SPJ11

Choose the equation you would use to find the altitude of the airplane. o tan70=(x)/(800) o tan70=(800)/(x) o sin70=(x)/(800)

Answers

The equation that can be used to find the altitude of an airplane is sin70=(x)/(800). The altitude of an airplane can be found using the equation sin70=(x)/(800). In order to find the altitude of an airplane, we must first understand what the sin function represents in trigonometry.

In trigonometry, sin function represents the ratio of the length of the side opposite to the angle to the length of the hypotenuse. When we apply this definition to the given situation, we see that the altitude of the airplane can be represented by the opposite side of a right-angled triangle whose hypotenuse is 800 units long. This is because the altitude of an airplane is perpendicular to the ground, which makes it the opposite side of the right triangle. Using this information, we can substitute the values in the formula to find the altitude.

To know more about equation visit:

brainly.com/question/29657983

#SPJ11

Showing That a Function is an Inner Product In Exercises 5, 6, 7, and 8, show that the function defines an inner product on R, where u = (u, uz, ug) and v = (V1, V2, V3). 5. (u, v) = 2u1 V1 + 3u202 + U3 V3

Answers

It satisfies the second property.3. Linearity:(u, v + w) = 2u1(V1 + W1) + [tex]3u2(V2 + W2) + u3(V3 + W3)= 2u1V1 + 3u2V2 + u3V3 + 2u1W1 + 3u2W2 + u3W3= (u, v) + (u, w)[/tex]

To show that a function is an inner product, we have to verify the following properties:Positivity of Inner product: The inner product of a vector with itself is always positive. Symmetry of Inner Product: The inner product of two vectors remains unchanged even if we change their order of multiplication.

The inner product of two vectors is distributive over addition and is homogenous. In other words, we can take a factor out of a vector while taking its inner product with another vector. Now, we have given that:(u, v) = 2u1V1 + 3u2V2 + u3V3So, we have to check whether it satisfies the above three properties or not.1. Positivity of Inner Product:If u = (u1, u2, u3), then(u, u) = 2u1u1 + 3u2u2 + u3u3= 2u12 + 3u22 + u32 which is always greater than or equal to zero. Hence, it satisfies the first property.2. Symmetry of Inner Product: (u, v) = 2u1V1 + 3u2V2 + u3V3(u, v) = 2V1u1 + 3V2u2 + V3u3= (v, u)Thus, it satisfies the second property.3. Linearity:[tex](u, v + w) = 2u1(V1 + W1) + 3u2(V2 + W2) + u3(V3 + W3)= 2u1V1 + 3u2V2 + u3V3 + 2u1W1 + 3u2W2 + u3W3= (u, v) + (u, w)[/tex]

To know more about Symmetry visit :-

https://brainly.com/question/1597409

#SPJ11

ple es abus odules nopto NC Library sources Question 15 6 pts x = z(0) + H WAIS scores have a mean of 75 and a standard deviation of 12 If someone has a WAIS score that falls at the 3rd percentile, what is their actual score? What is the area under the normal curve? enter Z (to the second decimal point) finally, report the corresponding WAIS score to the nearest whole number If someone has a WAIS score that tas at the 54th percentile, what is their actual scone? What is the area under the normal curve? anter 2 to the second decimal point finally, report s the componding WAS score to the nea whole number ple es abus odules nopto NC Library sources Question 15 6 pts x = z(0) + H WAIS scores have a mean of 75 and a standard deviation of 12 If someone has a WAIS score that falls at the 3rd percentile, what is their actual score? What is the area under the normal curve? enter Z (to the second decimal point) finally, report the corresponding WAIS score to the nearest whole number If someone has a WAIS score that tas at the 54th percentile, what is their actual scone? What is the area under the normal curve? anter 2 to the second decimal point finally, report s the componding WAS score to the nea whole number

Answers

WAIS score at the 3rd percentile: The actual score is approximately 51, and the area under the normal curve to the left of the corresponding Z-score is 0.0307.

WAIS score at the 54th percentile: The actual score is approximately 77, and the area under the normal curve to the left of the corresponding Z-score is 0.5636.

To calculate the actual WAIS scores and the corresponding areas under the normal curve:

For the WAIS score at the 3rd percentile:

Z-score for the 3rd percentile is approximately -1.88 (lookup in z-table).

Using the formula x = z(σ) + μ, where z is the Z-score, σ is the standard deviation, and μ is the mean:

x = -1.88 * 12 + 75 ≈ 51.44 (actual WAIS score)

The area under the normal curve to the left of the Z-score is approximately 0.0307 (lookup in z-table).

For the WAIS score at the 54th percentile:

Z-score for the 54th percentile is approximately 0.16 (lookup in z-table).

Using the formula x = z(σ) + μ, where z is the Z-score, σ is the standard deviation, and μ is the mean:

x = 0.16 * 12 + 75 ≈ 76.92 (actual WAIS score)

The area under the normal curve to the left of the Z-score is approximately 0.5636 (lookup in z-table).

Therefore,

The corresponding WAIS score for the 3rd percentile is 51.

The corresponding WAIS score for the 54th percentile is 77.

To learn more about normal curve visit : https://brainly.com/question/27271372

#SPJ11

the domain of the relation l is the set of all real numbers. for x, y ∈ r, xly if x < y.

Answers

The given relation l can be described as follows; xly if x < y. The domain of the relation l is the set of all real numbers.

Let us suppose two real numbers 2 and 4 and compare them. If we apply the relation l between 2 and 4 then we get 2 < 4 because 2 is less than 4. Thus 2 l 4. For another example, let's take two real numbers -5 and 0. If we apply the relation l between -5 and 0 then we get -5 < 0 because -5 is less than 0. Thus, -5 l 0.It can be inferred from the examples above that all the ordered pairs which will satisfy the relation l can be written as (x, y) where x.

To know more about the domain visit:

https://brainly.com/question/12264811

#SPJ11

factor the expression and use the fundamental identities to simplify. there is more than one correct form of the answer. 6 tan2 x − 6 tan2 x sin2 x

Answers

We will substitute this value of sin²x in our expression which will give;6 tan²x(1 - sin²x)6 tan²x(1 - (1 - cos²x))6 tan²x cos²x.

We need to simplify the given expression which is given below;

6 tan2 x − 6 tan2 x sin2 x

In order to solve this expression, we will first write it in a factored form which will be;

6 tan²x(1 - sin²x)

We know that the identity for sin²x is;sin²x + cos²x = 1

Which can be rearranged to give;

sin²x = 1 - cos²x

Now we will substitute this value of sin²x in our expression which will give;6 tan²x(1 - sin²x)6 tan²x(1 - (1 - cos²x))6 tan²x cos²x.

Know more about the expression here:

https://brainly.com/question/723406

#SPJ11

Find the absolute maximum and absolute minimum values of the function f(x,y) = x^2+y^2-3y-xy on the solid disk x^2+y^2≤9.

Answers

The absolute maximum value of the function f(x, y) = [tex]x^2 + y^2 - 3y - xy[/tex] on the solid disk [tex]x^2 + y^2[/tex]≤ 9 is 18, achieved at the point (3, 0). The absolute minimum value is -9, achieved at the point (-3, 0).

What are the maximum and minimum values of f(x, y) = [tex]x^2 + y^2 - 3y - xy[/tex]on the disk [tex]x^2 + y^2[/tex] ≤ 9?

To find the absolute maximum and minimum values of the function f(x, y) =[tex]x^2 + y^2 - 3y - xy[/tex]on the solid disk [tex]x^2 + y^2[/tex] ≤ 9, we need to consider the critical points inside the disk and the boundary of the disk.

First, let's find the critical points by taking the partial derivatives of f(x, y) with respect to x and y and setting them equal to zero:

[tex]\frac{\delta f}{\delta x}[/tex] = 2x - y = 0 ...(1)

[tex]\frac{\delta f}{\delta y}[/tex] = 2y - 3 - x = 0 ...(2)

Solving equations (1) and (2) simultaneously, we get x = 3 and y = 0 as the critical point (3, 0). Now, we evaluate the function at this point to find the maximum and minimum values.

f(3, 0) = [tex](3)^2 + (0)^2[/tex] - 3(0) - (3)(0) = 9

So, the point (3, 0) gives us the absolute maximum value of 9.

Next, we consider the boundary of the solid disk[tex]x^2 + y^2[/tex] ≤ 9, which is a circle with radius 3. We can parameterize the circle as follows: x = 3cos(t) and y = 3sin(t), where t ranges from 0 to 2π.

Substituting these values into the function f(x, y), we get:

=f(3cos(t), 3sin(t)) = [tex](3cos(t))^2 + (3sin(t))^2[/tex] - 3(3sin(t)) - (3cos(t))(3sin(t))

= [tex]9cos^2(t) + 9sin^2(t)[/tex] - 9sin(t) - 9cos(t)sin(t)

= 9 - 9sin(t)

To find the minimum value on the boundary, we minimize the function 9 - 9sin(t) by maximizing sin(t). The maximum value of sin(t) is 1, which occurs at t = [tex]\frac{\pi}{2}[/tex] or t = [tex]\frac{3\pi}{2}[/tex].

Substituting t = [tex]\frac{\pi}{2}[/tex] and t = [tex]\frac{3\pi}{2}[/tex] into the function, we get:

f(3cos([tex]\frac{\pi}{2}[/tex]), 3sin([tex]\frac{\pi}{2}[/tex])) = 9 - 9(1) = 0

f(3cos([tex]\frac{3\pi}{2}[/tex]), 3sin([tex]\frac{3\pi}{2}[/tex])) = 9 - 9(-1) = 18

Hence, the point (3cos([tex]\frac{\pi}{2}[/tex]), 3sin([tex]\frac{\pi}{2}[/tex])) = (0, 3) gives us the absolute minimum value of 0, and the point (3cos([tex]\frac{3\pi}{2}[/tex]), 3sin([tex]\frac{3\pi}{2}[/tex])) = (0, -3) gives us the absolute maximum value of 18 on the boundary.

In summary, the absolute maximum value of the function f(x, y) = [tex]x^2 + y^2[/tex] - 3y - xy on the solid disk [tex]x^2 + y^2[/tex] ≤ 9 is 18, achieved at the point (3, 0). The absolute minimum value is 0, achieved at the point (0, 3).

Learn more about critical points and boundary analysis absolute maximum and minimum values.

brainly.com/question/31402315

#SPJ11

Solve for measure of angle A.

Answers

Angle a= 1/2(140-96)
1/2(44)
22

The measure of angle a is:

a = (140° - 96°) / 2 = 44° / 2 = 22°

Therefore, the answer is 22.

1

If two secant lines intersect outside a circle, the measure of the angle formed by the two lines is one half the positive difference of the measures of the intercepted arcs.

In the given diagram, we can see that the intercepted arcs are 96° and 140°. Therefore, the measure of angle a is:

a = (140° - 96°) / 2 = 44° / 2 = 22°

Therefore, the answer is 22.

Answer: 22

To know more about vectors

https://brainly.com/question/28028700

#SPJ3

NEED ASAP
2. Find the margin error E. (5pts) 90% confidence level, n = 12, s = 1.23 3. Find the margin of error. (5pts) lower limit= 25.65 Upper limit= 28.65

Answers

The margin error E at a 90% confidence level is approximately 0.584.

The margin error E at a 90% confidence level, with a sample size of n = 12 and a standard deviation of s = 1.23, can be calculated as follows:

The formula for calculating the margin of error (E) at a specific confidence level is given by:

E = z * (s / √n)

Where:

- E represents the margin of error

- z is the z-score corresponding to the desired confidence level

- s is the sample standard deviation

- n is the sample size

To calculate the margin error E for a 90% confidence level, we need to find the z-score associated with this confidence level. The z-score can be obtained from the standard normal distribution table or by using statistical software. For a 90% confidence level, the z-score is approximately 1.645.

Plugging in the values into the formula, we have:

E = 1.645 * (1.23 / √12)

  ≈ 1.645 * (1.23 / 3.464)

  ≈ 1.645 * 0.355

  ≈ 0.584

Therefore, the margin error E at a 90% confidence level is approximately 0.584.

To know more about margin error, refer here:

https://brainly.com/question/29419047#

#SPJ11

Answer the following questions using the information provided below and the decision tree.

P(s1)=0.56P(s1)=0.56       P(F∣s1)=0.66P(F∣s1)=0.66       P(U∣s2)=0.68P(U∣s2)=0.68



a) What is the expected value of the optimal decision without sample information?
$

For the following questions, do not round P(F) and P(U). However, use posterior probabilities rounded to 3 decimal places in your calculations.

b) If sample information is favourable (F), what is the expected value of the optimal decision?

$

c) If sample information is unfavourable (U), what is the expected value of the optimal decision?
$

Answers

The expected value of the optimal decision without sample information is 78.4, if sample information is favourable (F), the expected value of the optimal decision is 86.24, and if sample information is unfavourable (U), the expected value of the optimal decision is 75.52.

Given information: P(s1) = 0.56P(s1) = 0.56P(F|s1) = 0.66P(F|s1) = 0.66P(U|s2) = 0.68P(U|s2) = 0.68

a) To find the expected value of the optimal decision without sample information, consider the following decision tree: Thus, the expected value of the optimal decision without sample information is: E = 100*0.44 + 70*0.56 = 78.4

b) If sample information is favorable (F), the new decision tree would be as follows: Thus, the expected value of the optimal decision if the sample information is favourable is: E = 100*0.44*0.34 + 140*0.44*0.66 + 70*0.56*0.34 + 40*0.56*0.66 = 86.24

c) If sample information is unfavourable (U), the new decision tree would be as follows: Thus, the expected value of the optimal decision if the sample information is unfavourable is: E = 100*0.44*0.32 + 70*0.44*0.68 + 140*0.56*0.32 + 40*0.56*0.68 = 75.52

To know more about expected value visit:

https://brainly.com/question/13749480

#SPJ11

answer pls A set of data with a correlation coefficient of -0.855 has a a.moderate negative linear correlation b. strong negative linear correlation c.weak negative linear correlation dlittle or no linear correlation

Answers

Option b. strong negative linear correlation is the correct answer. A correlation coefficient of -1 represents a perfect negative linear relationship, where as one variable increases, the other variable decreases in a perfectly straight line.

A set of data with a correlation coefficient of -0.855 has a strong negative linear correlation.

The correlation coefficient measures the strength and direction of the linear relationship between two variables. In this case, since the correlation coefficient is -0.855, which is close to -1, it indicates a strong negative linear correlation.

A correlation coefficient of -1 represents a perfect negative linear relationship, where as one variable increases, the other variable decreases in a perfectly straight line. The closer the correlation coefficient is to -1, the stronger the negative linear relationship. In this case, with a correlation coefficient of -0.855, it suggests a strong negative linear correlation between the two variables.

Therefore, option b. strong negative linear correlation is the correct answer.

Learn more about correlation here

https://brainly.com/question/13879362

#SPJ11

find the riemann sum for f(x) = x − 1, −6 ≤ x ≤ 4, with five equal subintervals, taking the sample points to be right endpoints.

Answers

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is shown below:

The subintervals have a width of `Δx = (4 − (−6))/5 = 2`.

Therefore, the five subintervals are:`[−6, −4], [−4, −2], [−2, 0], [0, 2],` and `[2, 4]`.

The right endpoints of these subintervals are:`−4, −2, 0, 2,` and `4`.

Thus, the Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is:`

f(−4)Δx + f(−2)Δx + f(0)Δx + f(2)Δx + f(4)Δx`$= (−5)(2) + (−3)(2) + (−1)(2) + (1)(2) + (3)(2)$$= −10 − 6 − 2 + 2 + 6$$= −10$.

Therefore, the Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

To know more about Riemann sum visit:

https://brainly.com/question/29673931

#SPJ11

Consider a uniform discrete distribution on the interval 1 to 10. What is P(X= 5)? O 0.4 O 0.1 O 0.5

Answers

For a uniform discrete distribution on the interval 1 to 10, P(X= 5) is :

0.1.

Given a uniform discrete distribution on the interval 1 to 10.

The probability of getting any particular value is 1/total number of outcomes as the distribution is uniform.

There are 10 possible outcomes. Hence the probability of getting a particular number is 1/10.

Therefore, we can write :

P(X = x) = 1/10 for x = 1,2,3,4,5,6,7,8,9,10.

Now, P(X = 5) = 1/10

P(X = 5) = 0.1.

Hence, the probability that X equals 5 is 0.1.

Therefore, the correct option is O 0.1.

To learn more about probability visit : https://brainly.com/question/13604758

#SPJ11

Homework: Section 5.2 Homework Question 11, 5.2.26 Part 1 of 2 HW Score: 40%, 6 of 15 points O Points: 0 of 1 Save A survey showed that 75% of adults need correction (eyeglasses, contacts, surgery, et

Answers

The probability that at least 12 of them need correction is 12.67%

Calculating the probability at least 12 of them need correction

From the question, we have the following parameters that can be used in our computation:

Sample, n = 13

Proportion, p = 75%

The required probability is represented as

P(At least 12) = P(12) + P(13)

Where

P(x) = C(n, x) * pˣ * (1 - p)ⁿ ⁻ ˣ

So, we have

P(At least 12) = C(13, 12) * (75%)¹² * (1 - 75%) + C(13, 13) * (75%)¹³

Evaluate

P(At least 12) = 12.67%

Hence, the probability is 12.67%

Read more about probability at

https://brainly.com/question/31649379

#SPJ4

Question

A survey showed that 75% of adults need correction (eyeglasses, contacts, surgery, etc.) for their eyesight. If 13 adults are randomly selected, find the probability that at least 12 of them need correction for their eyesight

find the rectangular equation for the surface by eliminating the parameters from the vector-valued function. r(u, v) = 3 cos(v) cos(u)i 3 cos(v) sin(u)j 5 sin(v)k

Answers

The rectangular equation for the surface by eliminating the parameters is z = (5/3) (x² + y²)/9.

To find the rectangular equation for the surface by eliminating the parameters from the vector-valued function r(u,v), follow these steps;

Step 1: Write the parametric equations in terms of x, y, and z.  

Given: r(u, v) = 3 cos(v) cos(u)i + 3 cos(v) sin(u)j + 5 sin(v)k

Let x = 3 cos(v) cos(u), y = 3 cos(v) sin(u), and z = 5 sin(v)

So, the parametric equations become; x = 3 cos(v) cos(u) y = 3 cos(v) sin(u) z = 5 sin(v)

Step 2: Eliminate the parameter u from the x and y equations.  

Squaring both sides of the x equation and adding it to the y equation squared gives; x² + y² = 9 cos²(v) ...(1)

Step 3: Express cos²(v) in terms of x and y.  Dividing both sides of equation (1) by 9 gives;

cos²(v) = (x² + y²)/9

Substituting this value of cos²(v) into the z equation gives; z = (5/3) (x² + y²)/9

So, the rectangular equation for the surface by eliminating the parameters from the vector-valued function is z = (5/3) (x² + y²)/9.

The rectangular equation for the surface by eliminating the parameters from the vector-valued function is found.

Know more about the vector-valued function

https://brainly.com/question/30887090

#SPJ11

Consider a continuous random variable x, which is uniformly distributed between 65 and 85. The probability of x taking on a value between 75 to 90 is ________. 0.50 0.075 0.75 1.00

Answers

The probability of x taking on a value between 75 to 90 is 0.25.

Given that x is a continuous random variable uniformly distributed between 65 and 85.To find the probability that x lies between 75 and 90, we need to find the area under the curve between the values 75 and 85, and add to that the area under the curve between 85 and 90.

The curve represents a rectangular shape, the height of which is the maximum probability. So, the height is given by the formula height of the curve = 1/ (b-a) = 1/ (85-65) = 1/20.Area under the curve between 75 and 85 is = (85-75) * (1/20) = (10/20) = 0.5Area under the curve between 85 and 90 is = (90-85) * (1/20) = (5/20) = 0.25.

To know more about variable visit:

https://brainly.com/question/15740935

#SPJ11

Solve the equation for solutions over the interval [0°, 360°). csc ²0+2 cot0=0 ... Select the correct choice below and, if necessary, fill in the answer box to complete your ch OA. The solution set

Answers

The solution set over the interval [0°, 360°) is {120°, 240°}. The correct choice is (c) {120°, 240°}.

The given equation is csc²θ + 2 cotθ = 0 over the interval [0°, 360°).

To solve this equation, we first need to simplify it using trigonometric identities as follows:

csc²θ + 2 cotθ

= 0(1/sin²θ) + 2(cosθ/sinθ)

= 0(1 + 2cosθ)/sin²θ = 0

We can then multiply both sides by sin²θ to get:

1 + 2cosθ = 0

Now, we can solve for cosθ as follows:

2cosθ = -1cosθ

= -1/2

We know that cosθ = 1/2 at θ = 60° and θ = 300° in the interval [0°, 360°).

However, we have cosθ = -1/2, which is negative and corresponds to angles in the second and third quadrants. To find the solutions in the interval [0°, 360°), we can use the following formula: θ = 180° ± αwhere α is the reference angle. In this case, the reference angle is 60°.

So, the solutions are:θ = 180° + 60° = 240°θ = 180° - 60° = 120°

Therefore, the solution set over the interval [0°, 360°) is {120°, 240°}. The correct choice is (c) {120°, 240°}.

To know more about solution visit

https://brainly.com/question/32845329

#SPJ11

Find the probability that in a random sample of size n=3 from the beta population of\alpha =3and\beta =2, the largest value will be less than 0.90.
Please explain in full detail!

Answers

The probability that in a random sample of size n=3 from the beta population of α=3 and β=2, the largest value will be less than 0.90 is approximately 0.784.

To calculate the probability, we need to understand the nature of the beta distribution and the properties of random sampling. The beta distribution is a continuous probability distribution defined on the interval [0, 1] and is commonly used to model random variables that have values within this range.

In this case, the beta population has parameters α=3 and β=2. These parameters determine the shape of the distribution. In general, higher values of α and β result in a distribution that is more concentrated around the mean, which in this case is α / (α + β) = 3 / (3 + 2) = 0.6.

Now, let's consider the random sample of size n=3. We want to find the probability that the largest value in this sample will be less than 0.90. To do this, we can calculate the cumulative distribution function (CDF) of the beta distribution at 0.90 and raise it to the power of 3, since all three values in the sample need to be less than 0.90.

Using statistical software or tables, we find that the CDF of the beta distribution with parameters α=3 and β=2 evaluated at 0.90 is approximately 0.923. Raising this value to the power of 3 gives us the probability that all three values in the sample are less than 0.90, which is approximately 0.784.

Therefore, the probability that in a random sample of size n=3 from the beta population of α=3 and β=2, the largest value will be less than 0.90 is approximately 0.784.

Learn more about probability

brainly.com/question/32117953

#SPJ11

Evaluate the integral.e3θ sin(4θ) dθ Please show step by step neatly

Answers

The required solution is,(1/36) [3e3θ sin (4θ) - 8e3θ cos (4θ)] + C.

Given integral is,∫e3θ sin (4θ) dθLet u = 4θ then, du/dθ = 4 ⇒ dθ = (1/4) du

Substituting,∫e3θ sin (4θ) dθ = (1/4) ∫e3θ sin u du

On integrating by parts, we have:

u = sin u, dv = e3θ du ⇒ v = (1/3)e3θ

Therefore,∫e3θ sin (4θ) dθ = (1/4) [(1/3) e3θ sin (4θ) - (4/3) ∫e3θ cos (4θ) dθ]

Now, let's integrate by parts for the second integral. Let u = cos u, dv = e3θ du ⇒ v = (1/3)e3θ

Therefore,∫e3θ sin (4θ) dθ = (1/4) [(1/3) e3θ sin (4θ) - (4/3) [(1/3) e3θ cos (4θ) + (16/9) ∫e3θ sin (4θ) dθ]]

Let's solve for the integral of e3θ sin(4θ) dθ in terms of itself:

∫e3θ sin (4θ) dθ = [(1/4) (1/3) e3θ sin (4θ)] - [(4/4) (1/3) e3θ cos (4θ)] - [(4/4) (16/9) ∫e3θ sin (4θ) dθ]∫e3θ sin (4θ) dθ [(4/4) (16/9)] = [(1/4) (1/3) e3θ sin (4θ)] - [(4/4) (1/3) e3θ cos (4θ)]∫e3θ sin (4θ) dθ (64/36) = (1/12) e3θ sin (4θ) - (1/3) e3θ cos (4θ) + C⇒ ∫e3θ sin (4θ) dθ = (1/36) [3e3θ sin (4θ) - 8e3θ cos (4θ)] + C

To know more about integral:

https://brainly.com/question/31059545

#SPJ11

A teachers’ association publishes data on salaries in the public school system annually. The mean annual salary of ​(public) classroom teachers is ​$54.7 thousand.Assume a standard deviation of $8.0 thousand.
What is the probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be at most​ $1 thousand i.e., between $53.7 thousand and $55.7 thousand? (Round answer to the nearest ten-thousandth, the fourth decimal place.)

Answers

The required probability is 0.0828.

The probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be at most $1 thousand is 0.0828 (rounded to four decimal places).

Solution:

Given that,Mean annual salary of (public) classroom teachers = $54.7 thousand Standard deviation = $8.0 thousand

The sample size of the classroom teachers = 64Sample error = $1 Thousand The standard error is given by the formula;[tex] \large \frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{64}}[/tex]  = 1

And the Z-score is given by the formula;[tex] \large Z = \frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]Substituting the given values, we getZ = [tex] \large \frac{55.7-54.7}{1}[/tex] = 1

The probability of sampling error is the area between 53.7 and 55.7. Thus, to find the probability we have to calculate the area under the normal curve from z = -1 to z = +1.

That is;P ( -1 ≤ Z ≤ 1) = 0.6826The probability of the sampling error exceeding $1,000 is the area outside the range of 53.7 to 55.7. Thus, to find the probability we have to calculate the area under the normal curve from z = -∞ to z = -1 and from z = +1 to z = +∞.

That is;P(Z < -1 or Z > 1) = P(Z < -1) + P(Z > 1)P(Z < -1) = 0.1587 (from the standard normal table)P(Z > 1) = 0.1587Hence, P(Z < -1 or Z > 1) = 0.1587 + 0.1587 = 0.3174

Therefore, the probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be at most $1 thousand is 0.6826 and

the probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be more than $1 thousand is 0.3174.

The probability that the sampling error made in estimating the population mean salary of all classroom teachers by the mean salary of a sample of 64 classroom teachers will be at most $1 thousand is 0.0828 (rounded to four decimal places).

To learn more about : probability

https://brainly.com/question/251701

#SPJ8

Does the following linear programming problem exhibit infeasibility, unboundedness, alternate optimal solutions or is the problem solvable with one solution? Min 1X + 1Y s.t. 5X + 3Y lessthanorequalto 30 3x + 4y greaterthanorequalto 36 Y lessthanorequalto 7 X, Y greaterthanorequalto 0 alternate optimal solutions one feasible solution point infeasibility unboundedness

Answers

This line has a slope of -1 and passes through the feasible region at two points: (0,0) and (7,0). Therefore, there are two alternate optimal solutions: (0,0) and (7,0) . Hence, the given LP problem exhibits alternate optimal solutions, not infeasibility, unboundedness, or one feasible solution point.

The given Linear Programming problem exhibits alternate optimal solutions. Linear Programming (LP) is a mathematical technique that optimizes an objective function with constraints.

The main goal of LP is to maximize or minimize the objective function subject to certain constraints.

Let's examine the given LP problem and the solution to it.Min 1X + 1Y s.t. 5X + 3Y ≤ 30 3x + 4y ≥ 36 Y ≤ 7 X, Y ≥ 0 We convert the constraints to equations in the standard form:5X + 3Y + S1 = 303x + 4Y - S2 = 36Y - X + S3 = 0Where S1, S2, and S3 are the slack variables.

The solution to the problem can be obtained by using a graphical method. Here's a graph of the problem:Alternate Optimal SolutionsThe feasible region of the LP problem is shown on the graph as a shaded area. The feasible region is unbounded, which means that there is no maximum or minimum value for the objective function.

Instead, there are infinitely many optimal solutions that satisfy the constraints. In this case, the alternate optimal solutions occur at the points where the line with the objective function (1X + 1Y) is parallel to the boundary of the feasible region.

To know more about Slope  visit :

https://brainly.com/question/3605446

#SPJ11

The volume of the solid obtained by rotating the region bounded by y=x^2, and y=9-x about the line x=6 can be computed using either the washer method or the method of cylindrical shells. Answer the following questions.
*Using the washer method, set up the integral.
*Using the method of cylindrical shells, set up the integral.
*Choose either integral to find the volume.

Answers

The volume of the solid obtained by rotating the region bounded by y = x² and y = 9 - x about the line x = 6 can be computed using both the washer method and the method of cylindrical shells.

To set up the integral using the washer method, we need to consider the radius of the washer at each point. The radius is given by the difference between the two curves: r = (9 - x) - x². The limits of integration will be the x-values at the points of intersection, which are x = 1 and x = 3. The integral to find the volume using the washer method is then:

V_washer = π∫[1, 3] [(9 - x) - x²]² dx

On the other hand, to set up the integral using the method of cylindrical shells, we consider vertical cylindrical shells with radius r and height h. The radius is given by x - 6, and the height is given by the difference between the two curves: h = (9 - x) - x². The limits of integration remain the same: x = 1 to x = 3. The integral to find the volume using the method of cylindrical shells is:

V_cylindrical shells = 2π∫[1, 3] (x - 6) [(9 - x) - x²] dx

Both methods will yield the same volume for the solid.

Learn more about volume

brainly.com/question/28058531

#SPJ11

Suppose a certain trial has a 60% passing rate. We randomly sample 200 people that took the trial. What is the approximate probability that at least 65% of 200 randomly sampled people will pass the trial?

Answers

The approximate probability that at least 65% of the 200 randomly sampled people will pass the trial is approximately 0.9251 or 92.51%

What is the approximate probability that at least 65% of 200 randomly sampled people will pass the trial?

To calculate the approximate probability that at least 65% of the 200 randomly sampled people will pass the trial, we can use the binomial distribution and the cumulative distribution function (CDF).

In this case, the probability of success (passing the trial) is p = 0.6, and the sample size is n = 200.

We want to calculate P(X ≥ 0.65n), where X follows a binomial distribution with parameters n and p.

To approximate this probability, we can use a normal distribution approximation to the binomial distribution when both np and n(1-p) are greater than 5. In this case, np = 200 * 0.6 = 120 and n(1-p) = 200 * (1 - 0.6) = 80, so the conditions are satisfied.

We can use the z-score formula to standardize the value and then use the standard normal distribution table or a calculator to find the probability.

The z-score for 65% of 200 is:

z = (0.65n - np) / √np(1-p))

z = (0.65 * 200 - 120) /√(120 * 0.4)

z = 1.44

Looking up the probability corresponding to a z-score of 1.44in the standard normal distribution table, we find that the probability is approximately 0.0749.

However, we want the probability of at least 65% passing, so we need to subtract the probability of less than 65% passing from 1.

P(X ≥ 0.65n) = 1 - P(X < 0.65n)

P(X ≥ 0.65)  =1 - 0.0749

P(X ≥ 0.65) = 0.9251

P = 0.9251 or 92.51%

Learn more on probability here;

https://brainly.com/question/23286309

#SPJ4

Other Questions
6. Compare summary measures of inequality for all available countries on the figure below.Figure:a) Plot the data for the ratio measures by changing the variable selected in the drop-down menu Gini coefficient. The three ratio measures we looked at previously are called Interdecile P90/P10, Interdecile P90/P50, and Interdecile P50/P10, respectively. (If you click the Compare variables option, you can plot more than one variable (except the Gini coefficient) on the same chart.)b) For each measure, give an intuitive explanation of how it is measured and what it tells us about income inequality. (For example: What do the larger and smaller values of this measure mean? Which parts of the income distribution does this measure use?)c) Do countries that rank highly on the Gini coefficient also rank highly on the ratio measures, or do the rankings change depending on the measure used? Based on your answers, explain why it is important to look at more than one summary measure of a distribution.Figure 5.4 OECD countries ranked according to their Gini coefficient (2015).The Gini coefficient and the ratios we have used are common measures of inequality, but there are other ways to measure income inequality. suppose the previous forecast was 30 units, actual demand was 50 units, and = 0.15; compute the new forecast using exponential smoothing. uppose, you are the owner of Chillox Burger Shop. As the owner, you have to monitor all types of business related activities. Moreover, you would like to expand your business in the UK and hire some employees from there. What are the elements you need to consider to design the expatriate compensation packages? Justify your answer with the given situation. (10 Marks) How much energy is stored by the electric field between twosquare plates, 9.5 cm on a side, separated by a 2.5-mm air gap? Thecharges on the plates are equal and opposite and of magnitude 16nC.Exp legal restrictions preventing persons of color from sharing public accommodations with whites are (Financing Component) On Jan. 1, 20x1, ABC Co. enters into a Contract with a customer to transfer a license for a fixed fee of P100,000 payable as follows: a. 20% upon signing of contract. b. Balance due in 4 equal annual installments starting Dec. 31, 20x1. The discount rate is 12%. ABC incurs direct contract costs of P20,000 in 20x1. ABC transfers the license to the customer on Jan. 3, 20x2. The license provides the customer with the right to use ABC's intellectual property as it exists at grant date. Requirement: Compute for the profits in 20x1 and 20x2 respectively. Which of the following bones is adjacent to both the coronal and lambdoid sutures? A. Occipital bone. B. Sphenoid bone. C. Parietal bone. D. Zygomatic bone This is an example of episodic memory:A.your age on your last birthdayB.the events leading up to your high school graduationC.the sports scores from this week's newspaperD.Freud is considered the father of psychology. What is the amount of heat energy released when 50.0 grams of water is cooled from 20.0C to 10.0C?a) 5.00 x 10 Jb) 2.09 x 10 Jc) 1.67 x 10^5 Jd) 1.13 x 10^6 J 1. 2020, Q1 data:Consumption = $13.18 b GDPI = 3.27 bExports = 2.48 b Imports = 3.29 bGovernment expenditure: 3.34 ba) GDP =b) Net exports =c) Based on your value of net exports, is there a trade deficit or surplus? Find the cost of each item in 5 years, assuming an inflation rate of 8% (compounded continuously). (Round your answers to the nearest cent.)(a) cup of coffee, $3.75$(b) Sunday paper, $2.25$(c) Big Mac, $4.10$(d) gallon of gas, $3.85$(e) HDTV set, $1,900$(f) small car, $17,000$(g) car, $28,000$(h) tuition, $27,000$ ource Summary (100points)The purpose of the Source Summary is toeffectively summarize and attribute information from a source. Usethe library databases to retrieve an article from the Course Theme Which curve shifts and in which direction when the following events occur in the massage therapy market? a) Many people are sore because of ski season. Demand increases. Supply decreases. Demand decreases. Supply increases. Neither curve changes. b. The tuition at massage schools increases. Demand decreases. Supply increases. Supply decreases. Neither curve changes. Demand increases. c. A new scientific study shows that massage is beneficial and helps with a lot of medical conditions. Supply decreases. Demand increases. Demand decreases. Neither curve changes. Supply increases. changes that can be made to the hud 1 good faith estimate Determine the margin of error for a confidence interval to estimate the population mean with n = 39 and a = 39 for the following confidence levels. a) 93% b) 96% c) 97% Click the icon to view the cumu Which of the following characteristics would be an indicator that a company would benefit from switching to activity based costing O Only one homogenous product is produced on a continuous basis O The existing cost system is reliable and predictable O Overhead costs are high and increasing with no apparent reason The costs of implementing ABC outweigh the benefits oving to the next question prevents changes to this answer. Research on obesity reveals that...Question 20 options:1) obese women may face occupational segregation due to market discrimination.2) barriers for obese men are lower by comparison than those of obese women.3) obesity plays a role in the labor market participation for women, but not for obese men.4) all of the above5) only answer choices B and C In order to analyze how people explain others' behavior, Fritz Heider developed: a.) cognitive dissonance theory b.) scapegoat theory c.) attribution theory what is the form of business ownership where you are taxed only at the personal level? Assume that due to wildfire a lot of trees are destroyed in an economy. On the other hand there is a high demand for newly constructed houses. How does this combined situation affect the price and quantity of timber? Make sure to discuss the three steps process for analyzing such questions, the potential impact on supply if any, the potential impact on demand if any and finally the impact on price and quantity as a result.