Answer:
[tex]d=\displaystyle\frac{C}{\pi}[/tex]
Step-by-step explanation:
Hi there!
[tex]\pi =\displaystyle\frac{C}{d}[/tex]
Multiply each side by d:
[tex]d\pi =\displaystyle\frac{C}{d}*d\\\\d\pi=C[/tex]
Divide both sides by π:
[tex]d=\displaystyle\frac{C}{\pi}[/tex]
I hope this helps!
Use the properties of logarithms to prove log, 1000 = log2 10.
Given:
Consider the equation is:
[tex]\log_81000=\log_210[/tex]
To prove:
[tex]\log_81000=\log_210[/tex] by using the properties of logarithms.
Solution:
We have,
[tex]\log_81000=\log_210[/tex]
Taking left hand side (LHS), we get
[tex]LHS=\log_81000[/tex]
[tex]LHS=\dfrac{\log 1000}{\log 8}[/tex] [tex]\left[\because \log_ab=\dfrac{\log_x a}{\log_x b}\right][/tex]
[tex]LHS=\dfrac{\log (10)^3}{\log 2^3}[/tex]
[tex]LHS=\dfrac{3\log 10}{3\log 2}[/tex] [tex][\because \log x^n=n\log x][/tex]
[tex]LHS=\dfrac{\log 10}{\log 2}[/tex]
[tex]LHS=\log_210[/tex] [tex]\left[\because \log_ab=\dfrac{\log_x a}{\log_x b}\right][/tex]
[tex]LHS=RHS[/tex]
Hence proved.
Abel bought a mini hi-fi set for S600.
He sold it to Bob at a loss of 20%.
Bob sold it to Charles and made a profit of 5%. How much did Charles pay for it?
Answer:
$504
$600* .8 = $480
$480 * 1.05 = $504
Step-by-step explanation:
Answer:
Step-by-step explanation:
Abel:
Cost price = $ 600
Loss = 20%
Selling price = [tex]\frac{100-loss}{100}*Cost \ price[/tex]
[tex]= \frac{(100-20)}{100}*600\\\\=\frac{80}{100}*600[/tex]
= 80 * 6 = $ 480
Cost price for Bob = Selling price of Abel = $ 480
Bob's cost Price = $480
Selling price = [tex]\frac{100+Profit}{100}*CP\\\\[/tex]
[tex]= \frac{100+5}{100}*480\\=\frac{105}{100}*480[/tex]
= $ 504
Amount paid by Charles =$ 504
write 2^60 as an exponent with a base of 16
Recall that 2⁴ = 16. So you have
2⁶⁰ = 2⁴ˣ¹⁵ = (2⁴)¹⁵ = 16¹⁵
reciprocal of. 0×7/11
Answer:
it doesn't exist
Step-by-step explanation:
the expression 0×7/11 is equivalent to 0. 1/0 isn't possible, so its reciprocal doesn't exist.
The graph of a function f(x) is shown below:
What is the domain of f(x)? (1 point)
integers from - 1< x <2
integers from -3 < y < 3
integers from -3 < y <3
integers from -1 < x < 2
Answer:
It's all integers x such that -1<=x<=2.
Step-by-step explanation:
The domain is the x values for which the relation exists.
Lets read from left to right.
First point I see from left exists at x=-1, next one at x=0, then x=1, and finally at x=2.
So it's all integers x such that -1<=x<=2.
*<= means less than or equal to
please help with this too
Answer:
The area of the sector in circle G formed by segments [tex]\overline{AG}[/tex], and [tex]\overline {GB}[/tex] is approximately 125.66 square units
Step-by-step explanation:
The given parameters are;
The radius of the circle with center G, r = 15
The measure of the given angle, m∠AGB = 64°
The area of a sector is given as follows;
Area of a sector of a circle = (θ/360°) × π × r²
Therefore;
The area of the sector in circle G formed by segments [tex]\overline{AG}[/tex], and [tex]\overline {GB}[/tex] is given as follows;
The area of the sector in circle G = (64°/360°) × π × 15² ≈ 125.66 square units
What is the slope-intercept form is?
Which rate is equivalent to $800 per 40 hours?
does anyone know this?
Answer:
The volume is approximately 50 m^3
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h where r is the radius and h is the height
The radius is 1/2 of the diameter r = 8/2 = 4
V = pi ( 4)^2 (1)
V = 16 pi
Letting pi be approximated by 3.14
V = 3.14 * 16
V = 50.24
The volume is approximately 50 m^3
TRIANGLES please help!! :)
Answer:
A
Step-by-step explanation:
First, the list of congruence theorems are:
SSS
SAS
ASA
AAS
HL
SSA is not on the list, so we can cross that out
Next, ASA implies that two angles are congruent, but we only know that one pair of angles (the right angles) are congruent, so we can cross that out
After that, the angle is not connecting the congruent sides, so D is not an option
Finally, we know that the longest sides (AD / AC) are congruent to each other, one other pair of legs/sides are congruent, and the triangles are both right triangles. Therefore, we can apply HL here
Anyone knows the answer?
Answer:
a) yes
b) y = -x
c) yes it goes thru the origin (0,0)
Step-by-step explanation:
a) x**2 + y**2 = 17
(-4)**2 + (-1)**2 = 17
16 + 1 = 17 YES
b) the slope of DE is
(y1 - y2)/(x1 - x2)
(-1 -4)/(-4 -1) = -5/-5 = 1, so a perpendicular segment will have a
slope of - 1/current slope or -1.
The midpoint of DE is
x = (x1 + x2)/2 = (-4 +1)/2 = -3/2
y = (y1 + y2)/2 = (-1 +4)/2 = 3/2 so
y = mx + b
y = -x + b plug in the point (-3/2,3/2)
3/2 = -(-3/2) + b
b = 0 SO y = -x
c) The circle equation dictates that it has no offset so centers around the origin (0,0) and the equation of the bisector y = -x indeed fits (0,0).
Over what interval is the function in this graph constant?
Answer:
hjjjnnnhjjjjj
Step-by-step explanation:
answer is d
The graph of $y=ax^2+bx+c$ passes through points $(0,5)$, $(1,10)$, and $(2,19)$. Find $a+b+c$.
Answer:
[tex]a+b+c=10[/tex]
Step-by-step explanation:
We are given that the graph of the equation:
[tex]y=ax^2+bx+c[/tex]
Passes through the three points (0, 5), (1, 10), and (2, 19).
And we want to find the value of (a + b + c).
First, since the graph passes through (0, 5), its y-intercept or c is 5. Hence:
[tex]y=ax^2+bx+5[/tex]
Next, since the graph passes through (1, 10), when x = 1, y = 10. Substitute:
[tex](10)=a(1)^2+b(1)+5[/tex]
Simplify:
[tex]5=a+b[/tex]
The point (2, 19) tells us that when x = 2, y = 19. Substitute:
[tex](19)=a(2)^2+b(2)+5[/tex]
Simplify:
[tex]14=4a+2b[/tex]
This yields a system of equations:
[tex]\begin{cases} 5 = a + b \\ 14 = 4a + 2b\end{cases}[/tex]
Solve the system. We can do so using elimination (or any other method you prefer). Multiply the first equation by negative two:
[tex]-10=-2a-2b[/tex]
Add the two equations together:
[tex](-10)+(14)=(-2a+4a)+(-2b+2b)[/tex]
Combine like terms:
[tex]4 = 2a[/tex]
Hence:
[tex]a=2[/tex]
Using the first equation:
[tex]5=(2)+b\Rightarrow b=3[/tex]
Therefore, our equation is:
[tex]y=2x^2+3x+5[/tex]
Thus, the value of (a + b + c) will be:
[tex]a+b+c = (2) + (3) + (5) = 10[/tex]
There are nine different marbles in a bag. Supposed you reach in and draw one at a time. And do this three times. How many ways can you draw the three marbles if you do not replace the marble each time
Answer: 504 ways
Step-by-step explanation:
Given
There are nine different marbles in a bag
For the first time, there are 9 possible ways to draw a marble
After removal of first marble, there are 8 possible ways to draw a marble
for the third time, there are 7 possible ways
so, total ways to draw three marble are
[tex]\Rightarrow 9\times 8\times 7=504\ \text{ways}[/tex]
A parallelogram is cut out of a 12 inch by 8 inch sheet of paper there are four right triangles remnats two have the dimensions 2 inches by 9 inches and the other two have the dimensions 3 inches by 6 inches
Answer:
96 in²
36 in²
60 in²
6.51 in
Step-by-step explanation:
Given that :
Dimension of paper = 12 in by 8 in
Dimension of right triangles :
2 in by 9 in ; 3 in by 6 in
Area of sheet of paper = 12 in * 8 in = 96 in²
Area of triangle = 1/2 base * height
Therefore, area of remnant right triangle :
2 * 1/2 * 2 * 9 = 18 in²
2 * 1/2 * 3 * 6 = 18 in²
Combined area of triangle left = 18in + 18in = 36 in²
Area of parallelogram = Area of sheet - Area of triangles left
Area of parallelogram = 96in² - 36in² = 60 in²
Base, b of parallelogram = 9.22 in
Area of parallelogram = base * altitude,h
60in² = 9.22h
h = 60 / 9.22 = 6.51 in
Who know how to do this??
Answer:
Step-by-step explanation:
With some research I found that the medians (QK, RJ, and SI) are broken into 2:1 ratios.
So what this means is that QD is twice as long as DK.
QD = 2DK
QD = 2 * 6.5
QD = 13
Dividing with powers of 10
Write the words that represent s + 21.
Answer:
A number s plus 21
Step-by-step explanation:
s+21
A number s plus 21
6. Which of the following equations has a slope of -2 and passes
through the point (3,-4).
O) y=-2x - 4
O) y=-2x + 2
O) y = -2x+3
O) y = -2x - 1
Answer:
y=-2x+2
Step-by-step explanation:
substitute either the x or y value into the equations, if you substitute x=3 and get back y=-4, the equation is correct
HELPPPP MEEEE OUTTTT!!!
Answer:
Solution given:
Relationship between base and hypotenuse is given by Cos angle
Cos Angle(?)=base/hypotenuse
Angle{?}=Cos-¹(40/58)
Angle{?}=46°
The indicated angle is 46°
Find the 20th term of the following sequence.
-6, -4,-2, O,...
Step-by-step explanation:
An=-6+(20-1)×2
=-6+19(2)
=-6+38
=32
plz help me to do this
Find x in the right triangle (not drawn to scale):
please help
yuffytdgtutidrysryrdf
Answer:
19 + 1 + 9 + 1
put any of those in the slots
Answer:
19 + 1 + 9 + 1
peace
Can someone help me with this math homework please!
Answer:
10
Step-by-step explanation:
f ( 1 ) = 18
First term ( a ) = 18
f ( n + 1 ) = f ( n ) - 2
When, n = 1
f ( 1 + 1 ) = f ( 1 ) - 2
f ( 2 ) = 18 - 2
f ( 2 ) = 16
f ( 2 ) - f ( 1 )
= 16 - 18
= - 2
Common difference ( d ) = - 2
f ( 5 )
= a + 4d
= 18 + 4 ( - 2 )
= 18 - 8
= 10
A 90 ° angle is divided into 2 angles.
Find the size of the angles.
5x+10 and 6x-41
Answer:
So required ans is 5*11+10=65 6x-41=25
Step-by-step explanation:
You can do as,
5x+10+6x-41=90
11x-31=90
11x=31+90
11x=121
x=121/11
x=11
Now that you know the vertex, find the y-values that pair with a few x-values that are less than 2 and a few that are greater than 2.
Plsssss help!!!!!!!
Which of the following statements does not prove that ABCD is a parallelogram.
Given: A(-4, 7), B(3,0), C(2,-5) and D(-5, 2).
Answer:
answer A
Step-by-step explanation:
A=(-4,7)
C=(2,-5)
midpoint = U=((-4+2)/2, (7+(-5))/2)=(-1,1))
B=(3,0)
D=(-5,2)
midpoint = V=((3+(-5))/2,(0+2)/2)=( -1,1)
Diagonals have the same middle, the quadrilater is a parallogram.
Consider two parabolas: One has equation 1 ( 4)( 4) 2 y x x =−+ . The other has the same xintercepts, but goes through the point (2,−12) How far apart are the vertices of the two parabolas
Answer:
Following are the responses to the given question:
Step-by-step explanation:
[tex]\to y=(\frac{1}{2})(x-4)(x+4)\\\\\to y=(\frac{1}{2}) (x^2-16)\\\\\to y=(\frac{1}{2})(x-0)^2-8\\\\vertex \to (0,-8)[/tex]
The general x-intercept parabola equation [tex]y=k(x-4)(x+4)[/tex]
Parabola crosses the dot (2,-12)
[tex]\to k(2-4)(2+4)=-12\\\\\to k(-2)(6)=-12\\\\\to -12k=-12\\\\\to k=\frac{-12}{-12}\\\\\to k=1[/tex]
The parabolic equation which crosses the position [tex](2,-12)[/tex] is[tex]y=(x-4)(x+4)[/tex]
[tex]\to y=(x-4)(x+4)\\\\\to y=x^2-16\\\\\to y=(x-0)^2-16\\\\vertex \to (0,-16)[/tex]
The distance among the vertices of the two parabolas:
[tex]= \sqrt{(0 - 0)^2+(-8-(-16))^2}\\\\ = \sqrt{0+(-8+16))^2}\\\\ =\sqrt{0+(8)^2}\\\\=\sqrt{(8)^2}\\\\= 8\\\\[/tex]
simplify
(−5abc − 6ac + 7cb) − (10abc + 6ac − 8bc)
Answer:
-15abc - 12ac + 15bc
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
(-5abc - 6ac + 7cb) - (10abc + 6ac - 8bc)
Step 2: Simplify
[Distributive Property] Distribute negative: -5abc - 6ac + 7cb - 10abc - 6ac + 8bcCombine like terms: -15abc - 12ac + 15bc