9514 1404 393
Answer:
A. 4 feet/(1 second)
Step-by-step explanation:
A "unit" is one of something. A unit rate is a rate that has 1 of something in the denominator. Look down the list at the denominators and find the value that has 1 as a denominator:
[tex]\dfrac{4\text{ feet}}{1\text{ second}}[/tex]
Find f(2) if f(x) = (x + 1)2.
9
6
5
The measure of ∠1 is 39°. What is the measure of ∠2?
Answer:
141
Step-by-step explanation:
if the sum of the two angles equals 180 subtract 39 from 180 to get the remainder of 141 which is angle 2
If one root of the quadratic equation is 2x2 +kx -6= 0 is 2
find the value of k
This is ur answer plz mark brainliest
Find mDCAˆ.
A. 92
B. 145
C. 159
D. 113
9514 1404 393
Answer:
C. 159°
Step-by-step explanation:
The exterior angle at B is half the difference of the measures of the arcs it intercepts:
(3x +19)° = 1/2((17x -3)° -91°)
6x +38 = 17x -94 . . . . . . . . . . multiply by 2, divide by °
132 = 11x . . . . . . . . . . . . . add 94-6x
x = 12 . . . . . . . . . . . . divide by 11
Then long arc AD is ...
arc AD = (17(12) -3)° = 201°
Arc DCA is the rest of the circle:
arc DCA = 360° -201° = 159°
factor 9-x^2 completely
Answer:
-(x + 3)(x - 3)
Step-by-step explanation:
Using the difference of squares we can factor this expression.
[tex](9 - x^2)\\= (3^2 - x^2)\\= (3 + x)(3 - x)\\= -(3 + x)(-3 + x)\\= -(x + 3)(x - 3)[/tex]
Let L be the circle in the x-y plane with center the origin and radius 38. Let S be a moveable circle with radius 8 . S is rolled along the inside of L without slipping while L remains fixed. A point P is marked on S before S is rolled and the path of P is studied. The initial position of P is (38,0). The initial position of the center of S is (14,0) . After S has moved counterclockwise about the origin through an angle t the position of P is:
x = 14cost + 24cos(7/12t)
y= 14sint - 24sin (7/12t)
Required:
How far does P move before it returns to its initial position?
Answer:
P moves = 70.73 m
Step-by-step explanation:
Given data
Radius = 38
initial position of P = ( 38,0 )
initial position of center S = ( 14,0)
position of P ( after s moved counterclockwise )
: x = 14cost + 24cos(7/12t)
y = 14sint - 24sin(7/12t)
Determine how far P moves before returning to its initial position
attached below is the solution
P moves = 70.74 m
If someone earns $10 every 15 minutes, how much do they earn in an hour?
Answer: 40
Step-by-step explanation:
You multiple 15X4=60
And now multiple 10x4=40
Answer:
40$
Step-by-step explanation:
There are 60 minutes in an hour so if we break it down:
$10 = 15 minutes
$10 = 15 minutes
$10 = 15 minutes
$10 = 15 minutes
-------------------------
Add them together and we get:
$40 = 60 minutes or 1 hour
Meaning they would make 40$ in 1 hour.
Need help really bad
Do,1 of X is
(4,0)
(4,1)
(5,1)
Answer:
(4,0)
Step-by-step explanation:
the dot is on 4 and the line is 0 so answer is 4,0
Henry bought a laptop for 4500 the cost of the laptop deprecate by 6% every year.If he decided to sell the laptop after 4 years at what’s price will he sell it
Answer:
give fufcy UC fugu stuff c
Step-by-step explanation:
zp staff book
You are dividing a rectangular garden into 2 equal sections by
placing a wooden plank diagonally across it, from one corner to
the opposite comer. The garden measures 4 feet by 6 feet. What
length diagonal plank should you buy, and why?
Diagonal planks are available in 1-foot increments (you can
buy a 1-foot board, or a 2-foot board, or a 3-foot board, and
so on...)
• You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
Answer:
You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
help with number 6 please. thank you.
Answer:
See Below.
Step-by-step explanation:
We are given that:
[tex]\displaystyle \frac{dT}{dt} = -k(T - T_0)[/tex]
And we want to show that:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
From the original equation, divide both sides by (T - T₀) and multiply both sides by dt. Hence:
[tex]\displaystyle \frac{dT}{T-T_0}= -k\, dt[/tex]
Take the integral of both sides:
[tex]\displaystyle \int \frac{dT}{T- T_0} = \int -k \, dt[/tex]
Integrate. For the left integral, we can use u-substitution. Note that T₀ is simply a constant. Hence:
[tex]\displaystyle \ln\left|T - T_0\right| = -kt+C[/tex]
Raise both sides to e:
[tex]\displaystyle e^{\ln\left|T-T_0\right|} = e^{-kt+C}[/tex]
Simplify:
[tex]\displaystyle \begin{aligned} \left| T- T_0\right| &= e^{-kt} \cdot e^C \\ \\ &= e^C\left(e^{-kt}\right) \\ \\ &=Ae^{-kt} & \text{Let $e^C = A$}\end{aligned}[/tex]
Since the temperature T will always be greater than or equal to the surrounding medium T₀, we can remove the absolute value. Hence:
[tex]\left(T - T_0\right) = Ae^{-kt}[/tex]
Therefore:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
Mandatory minimum character count of 20.
Which proportion correctly shows the equivalence of two fractions?
A)
19∕95 = 57∕76
B)
32∕116 = 9∕29
C)
18∕36 = 72∕144
D)
18∕36 = 144∕72
Answer:
32/166=9/29 if two ratio are equivalent to other
What is the length of BD Round to one decimal place. Thanks!
Answer:
2.7
Step-by-step explanation:
ratios help
2.5 : 5.8 :: x : 6.2
2.5/5.8 = x/6.2
solve for x :
x = approx. 2.7
Find the missing side length, and enter your answer in the box below. If
necessary, round your answer to 2 decimal places.
6
8
The missing side length is 10 unit.
What is Pythagoras theorem?The relationship between the three sides of a right-angled triangle is explained by the Pythagoras theorem, commonly known as the Pythagorean theorem. The Pythagorean theorem states that the square of a triangle's hypotenuse is equal to the sum of its other two sides' squares.
We have,
Perpendicular = 6
Base = 8
Using Pythagoras theorem
c² = P² + B²
c² = 6² + 8²
c²= 36 + 64
c² = 100
c= 10 unit.
Thus, the missing length is 10 unit.
Learn more about Pythagoras theorem here:
https://brainly.com/question/343682
#SPJ7
Write an equation of the line that passes through the pair of points (5, 8) and
(9, 16).
Answer:
D: y = 2x - 2
Step-by-step explanation:
1. [tex]\frac{16-8}{9-5}[/tex] = 2
2. y = 2x + b
3. Insert the points into the equation: 8 = 10 + b
4. b = -2
5. y = 2x - 2
=======================================================
Explanation:
Apply the slope formula
m = (y2-y1)/(x2-x1)
m = (16-8)/(9-5)
m = 8/4
m = 2
Then use this slope, along with another point such as (x,y) = (5,8) to find b
y = mx+b
8 = 2*5+b
8 = 10+b
8-10 = b
-2 = b
b = -2
Or you could use the other point (x,y) = (9,16)
y = mx+b
16 = 2*9+b
16 = 18+b
16-18 = b
-2 = b
b = -2
Either way, we get the same y intercept.
So because m = 2 is the slope and b = -2 is the y intercept, we go from y = mx+b to y = 2x-2
-------------------
To help verify the answer, note how plugging x = 5 leads us to...
y = 2x-2
y = 2*5 - 2
y = 10-2
y = 8
So x = 5 and y = 8 pair up together. This verifies (5,8) is on the line.
Through similar steps, you should find that the input x = 9 leads to the output y = 16. So that would confirm (9,16) is also on the line, and fully confirm the answer.
please help me i need the answers help me please
Answer:
scientists
Step-by-step explanation:
does anyone know the answer
Answer:
For some reason I cannot open the photo you have provided.
Step-by-step explanation:
Please try to re-upload?
Answer:
upper left...
there are zeros at (x)(x+3) (x-2)
Step-by-step explanation:
!!!HELPPP PLEASEEE!!! For this problem I thought it meant to subtract 0.1492 - 0.1515 = -0.0023 however my answer was incorrect. How do I solve this problem then? Help Please!
Answer:
0.1492-0.1515= -0.0023
find csc theta and sin theta if tan theta = 7/4 and sin theta less than 0
9514 1404 393
Answer:
sin(θ) = (-7√65)/65
csc(θ) = (-√65)/7
Step-by-step explanation:
The angle will have the given characteristics if its terminal ray passes through the 3rd-quadrant point (-4, -7). The distance from the origin to that point is ...
d = √((-4)² +(-7)²) = √65
The sine of the angle is the ratio of the y-coordinate to this value:
sin(θ) = -7/√65
sin(θ) = (-7√65)/65
The cosecant is the inverse of the sine
csc(θ) = (-√65)/7
find x
thank you thank you thank you!!
Answer:
Step-by-step explanation:
x=120°
find the missing side length in the image below
Let missing side be x
Using basic proportionality theorem
[tex]\\ \sf\longmapsto \dfrac{45}{35}=\dfrac{x}{56}[/tex]
[tex]\\ \sf\longmapsto \dfrac{9}{7}=\dfrac{x}{56}[/tex]
[tex]\\ \sf\longmapsto 7x=9(56)[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{9(56)}{7}[/tex]
[tex]\\ \sf\longmapsto x=72[/tex]
Not sure whether the answer is 9 or -11, so please help
In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments. The following information is provided.
SSTR = 200 (Sum Square Between Treatments)
SST = 800 (Total Sum Square)
The mean square within treatments (MSE) is _____.
a. 10
b. 600
c. 50
d. 200
Answer:
[tex]MSE = 10[/tex]
Step-by-step explanation:
Given
[tex]SSTR = 200[/tex]
[tex]SST = 800[/tex]
Required
Determine MSE
This is calculated as:
[tex]MSE = \frac{1}{ddf} * SSE[/tex]
Where:
[tex]SSE = SST - SSTR[/tex]
[tex]ddf \to[/tex] denominator df
So, we have:
[tex]SSE = 800 - 200[/tex]
[tex]SSE = 600[/tex]
To calculate the df, we have:
[tex]r = 13[/tex] --- observations
[tex]n = 5[/tex] treatments
So:
[tex]ddf = Total\ df - Numerator\ df[/tex]
[tex]Total = n*r-1 = 5*13 -1 = 64[/tex]
[tex]Numerator =n - 1 = 5 - 1 =4[/tex]
[tex]ddf =64-4=60[/tex]
So, we have:
[tex]MSE = \frac{1}{ddf} * SSE[/tex]
[tex]MSE = \frac{1}{60} * 600[/tex]
[tex]MSE = 10[/tex]
the function h is defined by (x)=x^2+2
find h(4n)
h(4n) =
Answer:
h(4n) =16n^2+2
Step-by-step explanation:
h(4n) = (4n)^2+2
h(4n) =16n^2+2
Find the total surface area of this square based pyramid. 10ft 10ft (in the image)
In the equation y = 39x + 50represents the number of people at a holiday dinner and y represents the total cost of
the dinner. If a family spent $518, how many people attended the dinner?
Answer:
The correct answer is - 12.
Step-by-step explanation:
Given:
Total number of people = y = 39x+50
Total amount spent y = 518
Solution:
The equation for the number of people who attended the dinner
y = 39x+50
The cost of dinner is equally divided by number of people =
then, 518 = y
placing value, 518 = 39x+50
x = (518-50)/39
= 468/39
= 12
Then number of people attended the dinner = 12
What system of equations is shown on the graph below
Answer:
A.
Step-by-step explanation:
x-2y=4 has a x-intercept of 4, a slope of 1/2, and a y-intercept of -2. 2x+y=4 has a x-intercept of -2, a slope of 2, and a y-intercept of -4.
i just need the answer no explanation
Nick nas cup of syrup. He uses cup of syrup to make a bont of granota
PartA: How many bow's or granola can Nick make with cup of syrup? (4 points)
Part 8: on your own paper, draw a fraction model that shows the total number of bouts of granola that Nick can make with cup of syrup. Make sure to label the model seks
explain your model in detail to descnbe how this model visually shows the solution for Part A. (6 points). I’ll make u brainless if u help
Answer:
Step-by-step explanation:
its easyk
Which statement describes the end behavior of this function? g(x) = 1/2|x - 3| - 7
A. As x approaches positive infinity, g(x) approaches negative infinity.
B. As x approaches negative infinity, g(x) approaches negative infinity.
C. As x approaches positive infinity, g(x) approaches positive infinity.
D. As x approaches negative infinity, g(x) is no longer continuous.
Answer:
C. As x approaches positive infinity, g(x) approaches positive infinity.
Step-by-step explanation:
We are given the following function:
[tex]g(x) = \frac{|x-3|}{2} - 7[/tex]
End behavior:
Limit of g(x) as x goes to negative and positive infinity.
Negative infinity:
[tex]\lim_{x \rightarrow -\infty} g(x) = \lim_{x \rightarrow -\infty} \frac{|x-3|}{2} - 7 = \frac{|-\infty-3|}{2} - 7 = |-\infty| = \infty[/tex]
Positive infinity:
[tex]\lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} \frac{|x-3|}{2} - 7 = \frac{|\infty-3|}{2} - 7 = |\infty| = \infty[/tex]
So in both cases, it approaches positive infinity, and so the correct option is c.