Answer: High-frequency sound waves are perceived as high-pitched sounds, while low-frequency sound waves are perceived as low-pitched sounds. The audible range of sound frequencies is between 20 and 20000 Hz, with greatest sensitivity to those frequencies that fall in the middle of this range.
Explanation: Obviously explained in the answer
Pete is investigating the solubility of salt (NaCl) in water. He begins to add 50 grams of salt to 100 grams of
room temperature tap water in a beaker. After adding all of the salt and stirring for several minutes, Pete
notices a solid substance in the bottom of the beaker. Which statement best explains why there is a solid
substance in the bottom of the beaker?
A. The salt he is using is not soluble in water.
B. The salt is changing into a new substance that is not soluble in water,
C. The dissolving salt is causing impurities in the water to precipitate to the bottom
D. The water is saturated and the remaining salt precipitates to the bottom
Answer:
would the answer be c
Explanation: that what i think in my opian
Answer:
A
Explanation:
The wave functions for states of the hydrogen atom with orbital quantum number l=0 are much simpler than for most other states, because the angular part of the wave.
a. True
b. False
Copy the diagram. add a voltmeter to show how you would measure the voltage of the cell
Answer: the answer is 23voltage
Explanation: because the voltage and time put together is 23
1 airplane
travel due north at 300 km while another airplane travels Due South and 300 km are there speed the same or their velocities the same
Answer:
Explanation:
Speed is scalar and velocity is vector. Vector values imply direction as well as magnitude. Therefore, speed and velocity are not the same. The speeds of these 2 planes are the same at 300km/hr, but the velocity of the plane traveling north is +300km/hr while the velocity of the plane traveling south is -300km/hr if we define north as positive and south as negative.
5. Tests performed on a 16.0 cm strip of the donated aorta reveal that it stretches 3.37 cm when a 1.80 N pull is exerted on it. (a) What is the force constant of this strip of aortal material
Answer:
53.41 N/m
Explanation:
From Hooke's law,
Applying,
F = ke............. Equation 1
Where F = Force, e = extension, k = force constant of the aortal material
Make k the subject of the equation
k = F/e............. Equation 2
From the question,
Given: F = 1.8 N, e = 3.37 cm = 0.0337 m
Substitute these values into equation 2
k = 1.8/(0.0337)
k = 53.41 N/m
Hence the force constant of the aortal material is 53.41 N/m
b) When the muscles connected to the crystalline lens contract fully, its focal length is 16.5000 cm. With this focal length, how far away must an object be to form sharply focused images on the retina? (Note: this distance is called the far point of vision.)
c) When the muscles connected to the crystalline lens relax, the focal length is 9.0000 cm. With this focal length, how close must an object be to form sharply focused images on the retina? (Note: this distance is called the near point of vision.)
d) As people age, the crystalline lens hardens (a condition called presbyopia or “old-age” eyes) and can only vary in focal length from 12 to 15.60 cm. Calculate range of vision (the new near point and far point) for this older eye.
e) Based on part d) why might an older person hold the newspaper at arm’s length to read it?
Answer:
I have to go to work and figure it out
A(n) 28.3 g bullet is shot into a(n) 5004 g wooden block standing on a frictionless surface. The block, with the bullet in it, acquires a speed of 1.7 m/s. Calculate the speed of the bullet before striking the block. Answer in units of m/s
Answer:
the speed of the bullet before striking the block is 302.3 m/s.
Explanation:
Given;
mass of the bullet, m₁ = 28.3 g = 0.0283 kg
mass of the wooden block, m₂ = 5004 g = 5.004 kg
initial velocity of the block, u₂ = 0
final velocity of the bullet-wood system, v = 1.7 m/s
let the initial velocity of the bullet before striking the block = u₁
Apply the principle of conservation of linear momentum to determine the initial velocity of the bullet.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.0283u₁ + 5.004 x 0 = 1.7(0.0283 + 5.004)
0.0283u₁ = 8.5549
u₁ = 8.5549 / 0.0283
u₁ = 302.3 m/s
Therefore, the speed of the bullet before striking the block is 302.3 m/s.
How many times will the temperature of oxygen with a mass of 1 kg increase if its volume is increased by 4 times, and the pressure is decreased by 2 times?
Round off the answer to the nearest whole number.
Answer:
9.2 Relating Pressure, Volume,
Figure 1. In 1783, the first (a) hydrogen-filled balloon flight, (b) manned hot air balloon flight, and (c) manned hydrogen-filled balloon flight occurred. When the hydrogen-filled balloon depicted in (a) landed, the frightened villagers of Gonesse reportedly destroyed it with pitchforks and knives. The launch of the latter was reportedly viewed by 400,000 people in Paris.
Explanation:
hope its help :)
nicsfrom #philippines
A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together and move 1.97 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.
Answer:
The coefficient of friction between the cars and the road is 0.859.
Explanation:
The two cars collide each other inelastically, then we can determine the resulting velocity by the Principle of Momentum Conservation:
[tex]m_{A}\cdot v_{A} + m_{B}\cdot v_{B} = (m_{A} + m_{B})\cdot v[/tex] (1)
Where:
[tex]m_{A}[/tex], [tex]m_{B}[/tex] - Masses of the cars, in kilograms.
[tex]v_{A}[/tex], [tex]v_{B}[/tex] - Initial velocities of the cars, in meters per second.
[tex]v[/tex] - Velocity of the resulting system, in meters per second.
If we know that [tex]m_{A} = 2120\,kg[/tex], [tex]v_{A} = 13.4\,\frac{m}{s }[/tex], [tex]m_{B} = 2810\,kg[/tex] and [tex]v_{B} = 0\,\frac{m}{s}[/tex], then the velocity of the resulting system:
[tex]v = \frac{m_{A}\cdot v_{A}+m_{B}\cdot v_{B}}{m_{A}+m_{B}}[/tex]
[tex]v = \frac{(2120\,kg)\cdot \left(13.4\,\frac{m}{s} \right)+(2810\,kg)\cdot \left(0\,\frac{m}{s} \right)}{2120\,kg + 2810\,kg}[/tex]
[tex]v = 5.762\,\frac{m}{s}[/tex]
By Principle of Energy Conservation and Work-Energy Theorem, we understand that the initial translational kinetic energy ([tex]K[/tex]), in joules, is dissipated due to work done by friction ([tex]W_{f}[/tex]), in joules, that is to say:
[tex]K = W_{f}[/tex] (2)
[tex]\frac{1}{2}\cdot (m_{A}+m_{B})\cdot v^{2} = \mu\cdot (m_{A}+m_{B})\cdot g \cdot s[/tex]
[tex]\frac{1}{2}\cdot v^{2} = \mu \cdot g\cdot s[/tex] (2b)
Where:
[tex]\mu[/tex] - Coefficient of friction, no unit.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]s[/tex]- Travelled distance, in meters.
If we know that [tex]v = 5.762\,\frac{m}{s}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]s = 1.97\,m[/tex], then the coefficient of friction is:
[tex]\mu = \frac{v^{2}}{2\cdot g\cdot s}[/tex]
[tex]\mu = \frac{\left(5.762\,\frac{m}{s} \right)^{2}}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.97\,m)}[/tex]
[tex]\mu = 0.859[/tex]
The coefficient of friction between the cars and the road is 0.859.
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]
An amusement park ride whisks you vertically upward. You travel at a constant speed of 15 m/s during the entire ascent. You drop your phone 4.0 s after you (and your phone) begin your ascent from ground level.
a. How high above the ground is your phone when you drop it?
b. Find the maximum height above the ground reached by your phone.
Answer:
a. 60 m
b. 71.48 m
Explanation:
Below are the calculations:
a. The phone's height above the ground = Speed x Time
The phone's height above the ground = 15 x 4 = 60 m
b. Speed when phone drops, u = 15 m/s
At maximum height, v = 0
Use below formula:
v² = u² -2gh
0 = 15² + 2 × 9.8 × h
h = 11.48 m
Total height = 60 + 11.48 = 71.48 m
steps btw if possible
asap pls I will give u everyting
Answer:
(4) 50 ohms (5) 11.76 ohms
Explanation:
In the parallel combination, the equivalent resistance is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+....[/tex]
4. When three 150 ohms resistors are connected in parallel, the equivalent is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}\\\\R=50\ \Omega[/tex]
5. Three resistors of 20 ohms, 40 ohms and 100 ohms are connected in parallel, So,
[tex]\dfrac{1}{R}=\dfrac{1}{20}+\dfrac{1}{40}+\dfrac{1}{100}\\\\=11.76\ \Omega[/tex]
Hence, this is the required solution.
1. a. What is the pressure on a surface when a force of 500 N acts on an area of 2 m2
250 pascal
Explanation:
Pressure is defined as the force me unit area
Mathematically:
Pressure = Force/area
i.e = P=F/A
Transfer of thermal energy between air molecules in closed room is an example of
conduction
convection
radiation
Answer and I will give you brainiliest
Answer: Conduction
Explanation: Conduction is the process by which heat energy is transmitted through collisions between neighboring atoms or molecules. Conduction occurs more readily in solids and liquids, where the particles are closer to together, than in gases, where particles are further apart.
If you drive first at 40 km/h west and later at 60 km/h west, your average velocity is 50 km/h west.
and what else? is that all?
One way families influence healthy technology use is when siblings explain the use of media to each other. Which of these outfits would you expect if this guideline was followed?
Answer:
The answer would be C.
Explanation:
This is what I would expect when you show someone else how to do something then is also known as teaching.
Please Mark as Brainliest
Hope this Helps
Which of the following describes the relationship between the weight of fluid
displaced by an object and the buoyant force exerted on the object?
A. Archimedes' principle
B. Flow rate equation
C. Pascal's principle
D. Bernoulli's principle
why material selection is important to design and manufacturing?
Answer:
. You want your product to be as strong and as long lasting as possible. There are also the safety implications to consider. You see, dangerous failures arising from poor material selection are still an all too common occurrence in many industries. yep that the answer have a Great day
Explanation:
(◕ᴗ◕✿)
plz answer the question
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle
A child on a tricycle is moving at a speed of 1.40 m/s at the start of a 2.25 m high and 12.4 m long incline. The total mass is 48.0 kg, air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N, and the speed at the lower end of the incline is 6.50 m/s. Determine the work done (in J) by the child as the tricycle travels down the incline.
Answer:
The work done by the child as the tricycle travels down the incline is 416.96 J
Explanation:
Given;
initial velocity of the child, [tex]v_i[/tex] = 1.4 m/s
final velocity of the child, [tex]v_f[/tex] = 6.5 m/s
initial height of the inclined plane, h = 2.25 m
length of the inclined plane, L = 12.4 m
total mass, m = 48 kg
frictional force, [tex]f_k[/tex] = 41 N
The work done by the child is calculated as;
[tex]\Delta E_{mech} = W - f_{k} \Delta L\\\\W = \Delta E_{mech} + f_{k} \Delta L\\\\W = (K.E_f - K.E_i) + (P.E_f - P.E_i) + f_{k} \Delta L\\\\W = \frac{1}{2} m(v_f^2 - v_i^2) + mg(h_f - h_i) + f_{k} \Delta L\\\\W = \frac{1}{2} \times 48(6.5^2 - 1.4^2) + 48\times 9.8(0-2.25) + (41\times 12.4)\\\\W = 966.96 \ - \ 1058.4 \ + \ 508.4\\\\W = 416.96 \ J[/tex]
Therefore, the work done by the child as the tricycle travels down the incline is 416.96 J
Suppose the coefficient of static friction between a quarter and the back wall of a rocket car is 0.383. At what minimum rate would the car have to accelerate so that a quarter placed on the back wall would remain in place?
Answer:
25.59 m/s²
Explanation:
Using the formula for the force of static friction:
[tex]f_s = \mu_s N[/tex] --- (1)
where;
[tex]f_s =[/tex] static friction force
[tex]\mu_s =[/tex] coefficient of static friction
N = normal force
Also, recall that:
F = mass × acceleration
Similarly, N = mg
here, due to min. acceleration of the car;
[tex]N = ma_{min}[/tex]
From equation (1)
[tex]f_s = \mu_s ma_{min}[/tex]
However, there is a need to balance the frictional force by using the force due to the car's acceleration between the quarter and the wall of the rocket.
Thus,
[tex]F = f_s[/tex]
[tex]mg = \mu_s ma_{min}[/tex]
[tex]a_{min} = \dfrac{mg }{ \mu_s m}[/tex]
[tex]a_{min} = \dfrac{g }{ \mu_s }[/tex]
where;
[tex]\mu_s = 0.383[/tex] and g = 9.8 m/s²
[tex]a_{min} = \dfrac{9.8 \ m/s^2 }{0.383 }[/tex]
[tex]\mathbf{a_{min}= 25.59 \ m/s^2}[/tex]
c) You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. (a)
What speed, period, and radial acceleration will it have? (b) How much work must be done to the
satellite to put it in orbit? (c) How much additional work would have to be done to make the
Answer:
Scalar
Explanation:
No direction
Its volume is 20 cm3, and its mass is 100 grams. What is the sample’s density?
please help me and i will mark u as brainlist
Answer:
a) 8 secs I think
b)2m/s^2
Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3.3 m long, its mass is 0.52 kg, and the force exerted on it by the children is 47 N. (a) What is the linear mass density of the rope (in kg/m)
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m
A cement block accidentally falls from rest from the ledge of a 53.4-m-high building. When the block is 19.4 m above the ground, a man, 2.00 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way
Answer:
The time required by the man to get out of the way is 0.6 s.
Explanation:
height of building, H = 53.4 m
height of block, h = 19.4 m
height of man, h' = 2 m
Let the velocity of the block at 19.4 m is v.
use third equation of motion
[tex]v^2 = u^2 + 2 gh\\\\v^2 = 0 + 2 \times 9.8 \times (53.4 - 19.4)\\\\v = 25.8 m/s[/tex]
Now let the time is t.
Use second equation of motion
[tex]h = u t + 0.5 gt^2\\\\19.4 - 2 = 25.8 t + 4.9 t^2\\\\4.9 t^2 + 25.8 t - 17.4= 0 \\\\t = \frac{-25.8\pm\sqrt{665.64 + 341.04}}{9.8}\\\\t = \frac{-25.8\pm31.7}{9.8}\\\\t = 0.6 s, - 5.9 s[/tex]
Time cannot be negative so time t = 0.6 s.
Equilibrium of forces
Answer:
If the size and direction of the forces acting on an object are exactly balanced, then there is no net force acting on the object and the object is said to be in equilibrium. Because the net force is equal to zero, the forces in Example 1 are acting in equilibrium.
Equilibrium of forces means that the net force is 0. It can either be when there is no force acting on the object or when the force acting on the object are balanced.
Please help I need this done
When two bodies at different temperatures are placed in thermal contact with each other, heat flows from the body at higher temperature to the body at lower temperature until them both acquire the same temperature. Assuming that there is no loss of heat to the surroundings, the heatSingle choice.
(1 Point)
(a) gained by the hotter body will be equal to the heat lost by the colder body
(b) the heat gained by the hotter body will be less than the heat lost by the colder body
(c) the heat gained by the hotter body will be greater than the heat lost by the colder body
(d) the heat lost by the hotter body will be equal to the heat gained by the colder body.
Answer:
Part d is correct.
Are you aware of human rights violation happening in the community and explain
Answer:
Individuals who commit serious violations of international human rights or humanitarian law, including crimes against humanity and war crimes, may be prosecuted by their own country or by other countries exercising what is known as “universal jurisdiction.”