PLEASE HELP ! (2/5) -50 POINTS -

PLEASE HELP ! (2/5) -50 POINTS -

Answers

Answer 1

Answer:

symmetric

Step-by-step explanation:

it kind of evenly falls to the left and right from the highest value in the middle

skewed would be different and would look like a straight line not a quadratic equation

Answer 2
C) symmetric distribution because the mean, median, mode happen at about the same point

Related Questions

In a random sample of 205 people, 149 said that they watched educational television. Find the 95% confidence interval of the true proportion of people who watched educational television. Round intermediate answers to at least five decimal places.

Answers

Answer: Given a sample of 200, we are 90% confident that the true proportion of people who watched educational TV is between 72.1% and 81.9%.

Step-by-step explanation:

[tex]\frac{154}{200} =0.77[/tex]

[tex]1-0.77=0.23[/tex]

[tex]\sqrt{\frac{(0.77)(0.23)}{200} }[/tex]=0.049

0.77±0.049< 0.819, 0.721

A highway department executive claims that the number of fatal accidents which occur in her state does not vary from month to month. The results of a study of 140 fatal accidents were recorded. Is there enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month? Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fatal Accidents 8 15 9 8 13 6 17 15 10 9 18 12

Answers

Answer:

There is enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month, as the Variance is 14 and the Standard Deviation = 4 approximately.

There is a high degree of variability in the mean of the population as explained by the Variance and the Standard Deviation.

Step-by-step explanation:

Month       No. of              Mean       Squared

           Fatal Accidents  Deviation   Difference

Jan          8                       -4                  16

Feb        15                        3                   9

Mar         9                       -3                   9

Apr         8                       -4                  16

May       13                        1                    1

Jun         6                      -6                 36

Jul         17                       5                 25

Aug       15                       3                   9

Sep       10                      -2                   4

Oct        9                       -3                   9

Nov    18                          6                 36

Dec    12                          0                   0

Total 140                                         170

Mean = 140/12 = 12    Mean of squared deviation (Variance) = 170/12 = 14.16667

Standard deviation = square root of variance = 3.76386 = 4

The fatal accidents' Variance is a measure of how spread out the fatal accident data set is. It is calculated as the average squared deviation of the number of each month's accident from the mean of the fatal accident data set.  It also shows how variable the data varies from the mean of approximately 12.

The fatal accidents' Standard Deviation is the square root of the variance, and a useful measure of variability when the distribution is normal or approximately normal.

A blue die and a red die are thrown. B is the event that the blue comes up with a 6. E is the event that both dice come up even. Write the sizes of the sets |E ∩ B| and |B|a. |E ∩ B| = ___b. |B| = ____

Answers

Answer:

Size of |E n B| = 2

Size of |B| = 1

Step-by-step explanation:

I'll assume both die are 6 sides

Given

Blue die and Red Die

Required

Sizes of sets

- [tex]|E\ n\ B|[/tex]

- [tex]|B|[/tex]

The question stated the following;

B = Event that blue die comes up with 6

E = Event that both dice come even

So first; we'll list out the sample space of both events

[tex]B = \{6\}[/tex]

[tex]E = \{2,4,6\}[/tex]

Calculating the size of |E n B|

[tex]|E n B| = \{2,4,6\}\ n\ \{6\}[/tex]

[tex]|E n B| = \{2,4,6\}[/tex]

The size = 3 because it contains 3 possible outcomes

Calculating the size of |B|

[tex]B = \{6\}[/tex]

The size = 1 because it contains 1 possible outcome

PLEASE HELP!! (1/5) -50 POINTS-

Answers

Answer:

[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]

Step-by-step explanation:

We are given the following matrix equation, from which we have to isolate X and simplify this value.

[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]

To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.

[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)

[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,

[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)

[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]

Our solution is hence option c

Help me please thank you

Answers

Answer:

x = 7

Step-by-step explanation:

The angles are alternate interior angles, so for the lines to be parallel, the angle measures must be equal.

7x - 7 = 4x + 14

3x = 21

x = 7

Let E and F be two events of an experiment with sample space S. Suppose P(E) = 0.6, P(F) = 0.3, and P(E ∩ F) = 0.1. Compute the values below.

(a) P(E ∪ F) =



(b) P(Ec) =



(c) P(Fc ) =



(d) P(Ec ∩ F) =

Answers

Answer:

(a) P(E∪F)= 0.8

(b) P(Ec)= 0.4

(c) P(Fc)= 0.7

(d) P(Ec∩F)= 0.8

Step-by-step explanation:

(a) It is called a union of two events A and B, and A ∪ B (read as "A union B") is designated to the event formed by all the elements of A and all of B. The event A∪B occurs when they do A or B or both.

If the events are not mutually exclusive, the union of A and B is the sum of the probabilities of the events together, from which the probability of the intersection of the events will be subtracted:

P(A∪B) = P(A) + P(B) - P(A∩B)

In this case:

P(E∪F)= P(E) + P(F) - P(E∩F)

Being P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.1

P(E∪F)= 0.6 + 0.3 - 0.1

P(E∪F)= 0.8

(b)  The complement of an event A is defined as the set that contains all the elements of the sample space that do not belong to A.  The Complementary Rule establishes that the sum of the probabilities of an event and its complement must be equal to 1. So, if P (A) is the probability that an event A occurs, then the probability that A does NOT occur is  P (Ac) = 1- P (A)

In this case: P(Ec)= 1 - P(E)

Then: P(Ec)= 1 - 0.6

P(Ec)= 0.4

(c) In this case: P(Fc)= 1 - P(F)

Then: P(Fc)= 1 - 0.3

P(Fc)= 0.7

(d)  The intersection of two events A and B, designated as A ∩ B (read as "A intersection B") is the event formed by the elements that belong simultaneously to A and B. The event A ∩ B occurs when A and B do at once.

As mentioned, the complementary rule states that the sum of the probabilities of an event and its complement must equal 1. Then:

P(Ec intersection F) + P(E intersection F) = P(F)

P(Ec intersection F) + 0.1 = 0.3

P(Ec intersection F)= 0.2

Being:

P(Ec∪F)= P(Ec) + P(F) - P(Ec∩F)

you get:

P(Ec∩F)= P(Ec) + P(F) - P(Ec∪F)

So:

P(Ec∩F)= 0.4 + 0.3 - 0.2

P(Ec∩F)= 0.8

#1: Simplify the expression below. Type your answer as an integer.
7 + 1 - 18 : 6

Answers

Answer:

5

Step-by-step explanation:

Steps of calculation:

7 + 1 - 18 : 6 = 7 + 1 - 3 = 8 - 3 =5

Answer is 5

Which choice shows the product of 22 and 49 ?

Answers

Answer:

1078

Step-by-step explanation:

The product of 22 and 49 is 1078.

Answer:

1078 is the product

Step-by-step explanation:

How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants

Answers

Answer:

There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.

Step-by-step explanation:

Given:

There are 5 types of croissants:

plain croissants

cherry croissants

chocolate croissants

almond croissant

apple croissants

broccoli croissants

To find:

to choose 22 croissants with:

at least one plain croissant

at least two cherry croissants

at least three chocolate croissants

at least one almond croissant

at least two apple croissants

no more than three broccoli croissants

Solution:

First we select

At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants

So

1 + 2 + 3 + 1 + 2  = 9

Total croissants = 22  

So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.

n = 5

r = 13

C(n + r - 1, r)

= C(5 + 13 - 1, 13)

= C(17,13)

[tex]=\frac{17! }{13!(17-13)!}[/tex]

= 355687428096000 / 6227020800 ( 24 )

= 355687428096000 / 149448499200

= 2380

C(17,13) = 2380

C(n + r - 1, r)

= C(5 + 12 - 1, 12)

= C(16,12)

[tex]=\frac{16! }{12!(16-12)!}[/tex]

= 20922789888000 / 479001600 ( 24 )

= 20922789888000  / 11496038400

= 1820

C(16,12) = 1820

C(n + r - 1, r)

= C(5 + 11 - 1, 11)

= C(15,11)

[tex]=\frac{15! }{11!(15-11)!}[/tex]

= 1307674368000 / 39916800 (24)

= 1307674368000 / 958003200

= 1307674368000 / 958003200

= 1365

C(15,11) = 1365

C(n + r - 1, r)

= C(5 + 10 - 1, 10)

= C(14,10)

[tex]=\frac{14! }{10!(14-10)!}[/tex]

= 87178291200 / 3628800 ( 24 )

= 87178291200 / 87091200

= 1001

C(14,10) = 1001

Adding them:

2380 + 1820 + 1365 + 1001 = 6566 ways

In the morning, Sophie goes to the church then goes to the school. In the afternoon she goes to school to home. The map shows the distance between school and home as 5 cm. If every 4 cm on the scale drawing equals 8 kilometers, how far apart are the school and home?

Answers

Answer:

10 km

Step-by-step explanation:

Distance = 5 cm

4 cm = 8 km

In km, how far apart is school and home?

Cross Multiply

[tex]\frac{4cm}{8km}[/tex] · [tex]\frac{5cm}{1}[/tex]

Cancel centimeters

[tex]\frac{40(km)(cm)}{4cm}[/tex]

Divide

= [tex]\frac{40km}{4}[/tex]

= 10 km

g The intersection of events A and B is the event that occurs when: a. either A or B occurs but not both b. neither A nor B occur c. both A and B occur d. All of these choices are true. a. b. c. d.

Answers

Answer:

c. both A and B

Step-by-step explanation:

Given that there are two events A and B.

To find:

Intersection of the two sets represents which of the following events:

a. either A or B occurs but not both

b. neither A nor B occur

c. both A and B occur

d. All of these choices are true. a. b. c. d

Solution:

First of all, let us learn about the concept of intersection.

Intersection of two events means the common part in the two events.

Explanation using set theory:

Let set P contains the outcomes of roll of a dice.

P = {1, 2, 3, 4, 5, 6}

And set Q contains the set of even numbers less than 10.

Q = {2, 4, 6, 8}

Common elements are {2, 4, 6}

So, intersection of P and Q:

[tex]P \cap Q[/tex] = {2, 4, 6}

Explanation using Venn diagram:

Please refer to the image attached in the answer area.

The shaded region is the intersection of the two sets P and Q.

When we apply the above concept in events, we can clearly say from the above explanation that the intersection of two events A and B is the event that occurs when both A and B occur.

So, correct answer is:

c. both A and B

Answer:

C.

Step-by-step explanation:

can anyone show me this in verbal form?

Answers

Answer:

2 * (x + 2) = 50

Step-by-step explanation:

Let's call the unknown number x. "A number and 2" means that we need to add the numbers, therefore it would be x + 2. "Twice" means 2 times a quantity so "twice a number and 2" would be 2 * (x + 2). "Is" denotes that we need to use the "=" sign and because 50 comes after "is", we know that 50 goes on the right side of the "=" so the final answer is 2 * (x + 2) = 50.

The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x.

Answers

Answer:

3x+2+x-3+2x+1+2(2x+5)=360

10x+10=360

x=35

sorry to keep asking questions

Answers

Answer:

y = [tex]\sqrt[3]{x-5}[/tex]

Step-by-step explanation:

To find the inverse of any function you basically switch x and y.

function = y = x^3 + 5

Now we switch x and y

x = y^3 +5

Solve for y,

x - 5 = y^3

switch sides,

y^3 = x-5

y = [tex]\sqrt[3]{x-5}[/tex]

Answer:

[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]

Step-by-step explanation:

The function is given,

[tex]f(x)=x^3 +5[/tex]

The inverse of a function reverses the original function.

Replace f(x) with y.

[tex]y=x^3 +5[/tex]

Switch variables.

[tex]x=y^3 +5[/tex]

Solve for y to find the inverse.

Subtract 5 from both sides.

[tex]x-5=y^3[/tex]

Take the cube root of both sides.

[tex]\sqrt[3]{x-5} =y[/tex]

From a group of 11 people, 4 are randomly selected. What is the probability the 4 oldest people in the group were selected

Answers

The probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.

Given that:

Find how many ways the 4 oldest people can be selected from the group.

Since the 4 oldest people are already determined, there is only 1 way to select them.

n = 11 (total number of people in the group) and k = 4 (number of people to be selected).

To calculate the probability, to determine the total number of ways to select 4 people from the group of 11. This can be found using the combination formula:

Number of ways to choose k items from n items :

C(n,k) = n! / (k!(n-k)!)

Calculate the total number of ways to select 4 people from the group:

Plugging n and k value from given data:

C(11,4 )= 11! / (4!(11-4)!)

On simplifications gives:

C(11, 4) = 330.

Calculate the probability:

Probability = Number of ways 4 oldest people selected / Total number of ways to select 4 people

Plugging the given data:

Probability = 1 / 330

Probability ≈ 0.00303 or 0.303%.

Therefore, the  probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.

Learn more about probabilities here:

https://brainly.com/question/23846068

#SPJ4

The weight of an object on moon is 1/6 of its weight on Earth. If an object weighs 1535 kg on Earth. How much would it weigh on the moon?

Answers

Answer:

255.8

Step-by-step explanation:

first

1/6*1535

=255.8

Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t)

Answers

Answer:

Solution : Option D

Step-by-step explanation:

The first thing we want to do here is isolate the cos(t) and sin(t) for both the equations --- ( 1 )

x = - 3cos(t) ⇒ x / - 3 = cos(t)

y = 4sin(t) ⇒ y / 4 = sin(t)

Let's square both equations now. Remember that cos²t + sin²t = 1. Therefore, we can now add both equations after squaring them --- ( 2 )

( x / - 3 )² = cos²(t)

+ ( y / 4 )² = sin²(t)

_____________

x² / 9 + y² / 16 = 1

Remember that addition indicates that the conic will be an ellipse. Therefore your solution is option d.

The area of a rectangular garden if 6045 ft2. If the length of the garden is 93 feet, what is its width?

Answers

Answer:

65 ft

Step-by-step explanation:

The area of a rectangle is

A = lw

6045 = 93*w

Divide each side by 93

6045/93 = 93w/93

65 =w

Answer:

[tex]\huge \boxed{\mathrm{65 \ feet}}[/tex]

Step-by-step explanation:

The area of a rectangle formula is given as,

[tex]\mathrm{area = length \times width}[/tex]

The area and length are given.

[tex]6045=93 \times w[/tex]

Solve for w.

Divide both sides by 93.

[tex]65=w[/tex]

The width of the rectangular garden is 65 feet.

Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

Answers

Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

Step-by-step explanation:

According to the combinations: Number of ways to choose r things out of n things = C(n,r)

Given word: "georgianna"

It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.

If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.

Number of ways = C(10,2)

Similarly,

1 space for 'e' → C(8,1)

1 space for 'o' → C(7,1)

1 space for 'r' → C(6,1)

1 space for 'i' → C(5,1)

1 space for 'a' → C(4,2)

1 space for 'n' → C(2,2)

Required number of different sequences  = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).

Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)

Suppose that $2000 is invested at a rate of 2.6% , compounded semiannually. Assuming that no withdrawals are made, find the total amount after 10 years.

Answers

Answer:

$2,589.52

Step-by-step explanation:

[tex] A = P(1 + \dfrac{r}{n})^{nt} [/tex]

We start with the compound interest formula above, where

A = future value

P = principal amount invested

r = annual rate of interest written as a decimal

n = number of times interest is compound per year

t = number of years

For this problem, we have

P = 2000

r = 0.026

n = 2

t = 10,

and we find A.

[tex] A = $2000(1 + \dfrac{0.026}{2})^{2 \times 10} [/tex]

[tex] A = $2589.52 [/tex]

Compound interest formula:

Total = principal x ( 1 + interest rate/compound) ^ (compounds x years)

Total = 2000 x 1+ 0.026/2^20

Total = $2,589.52

-8 + (-15)
Evaluate this expression ​

Answers

Answer:

-23

Step-by-step explanation:

-8+(-15) means that you are subtracting 15 from -8. So you end up with -8-15=-23.

Multiple Choice The opposite of –4 is A. 4. B. –4. C. –(–(–4)). D. –|4|.

Answers

Answer:

a. 4

Step-by-step explanation:

-1(-4) = 4

Answer:

A 4

Step-by-step explanation:

opposite of –4 = 4

Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)

Answers

Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:

[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]

[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]

For angle θ:

If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];

Calculating:

a) (4,2,-4)

[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6

[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]

[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]

For θ, choose 1st option:

[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]

[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]

b) (0,8,15)

[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17

[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]

[tex]\theta = tan^{-1}\frac{y}{x}[/tex]

The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]

c) (√2,1,1)

[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2

[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]

[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]

[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]

d) (−2√3,−2,3)

[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5

[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]

Since x < 0, use 2nd option:

[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]

[tex]\theta = \pi + \frac{\pi}{6}[/tex]

[tex]\theta = \frac{7\pi}{6}[/tex]

Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:

[tex]r=\sqrt{x^{2}+y^{2}}[/tex]

Angle θ is the same as spherical coordinate;

z = z

Calculating:

a) (4,2,-4)

[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]

[tex]\theta = tan^{-1}\frac{1}{2}[/tex]

z = -4

b) (0, 8, 15)

[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8

[tex]\theta = \frac{\pi}{2}[/tex]

z = 15

c) (√2,1,1)

[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]

[tex]\theta = \frac{\pi}{3}[/tex]

z = 1

d) (−2√3,−2,3)

[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4

[tex]\theta = \frac{7\pi}{6}[/tex]

z = 3

Use A = -h(a + b) to find the area A of a
2
be trapezium when a = 15, b = 9 and h = 7

Answers

Step-by-step explanation:

Putting values

A = - 7(15 + 9)

A = - 7(24)

A = - 168

HELP ASAP PLS :Find all the missing elements:

Answers

Answer:

a ≈ 1.59

b ≈ 6.69

Step-by-step explanation:

Law of Sines: [tex]\frac{a}{sinA} =\frac{b}{sinB} =\frac{c}{sinC}[/tex]

Step 1: Find c using Law of Sines

[tex]\frac{6}{sin58} =\frac{c}{sin13}[/tex]

[tex]c = sin13(\frac{6}{sin58})[/tex]

c = 1.59154

Step 2: Find a using Law of Sines

[tex]\frac{6}{sin58} =\frac{a}{sin109}[/tex]

[tex]a = sin109(\frac{6}{sin58} )[/tex]

a = 6.68961

Identifying the Property of Equality

Quick

Check

Identify the correct property of equality to solve each equation.

3+x= 27

X/6 = 5

Answers

Answer:

a) Compatibility of Equality with Addition, b) Compatibility of Equality with Multiplication

Step-by-step explanation:

a) This expression can be solved by using the Compatibility of Equality with Addition, that is:

1) [tex]3+x = 27[/tex] Given

2) [tex]x+3 = 27[/tex] Commutative property

3) [tex](x + 3)+(-3) = 27 +(-3)[/tex] Compatibility of Equality with Addition

4) [tex]x + [3+(-3)] = 27+(-3)[/tex] Associative property

5) [tex]x + 0 = 27-3[/tex] Existence of Additive Inverse/Definition of subtraction

6) [tex]x=24[/tex] Modulative property/Subtraction/Result.

b) This expression can be solved by using the Compatibility of Equality with Multiplication, that is:

1) [tex]\frac{x}{6} = 5[/tex] Given

2) [tex](6)^{-1}\cdot x = 5[/tex] Definition of division

3) [tex]6\cdot [(6)^{-1}\cdot x] = 5 \cdot 6[/tex] Compatibility of Equality with Multiplication

4) [tex][6\cdot (6)^{-1}]\cdot x = 30[/tex] Associative property

5) [tex]1\cdot x = 30[/tex] Existence of multiplicative inverse

6) [tex]x = 30[/tex] Modulative property/Result

Answer:

3 + x = 27

✔ subtraction property of equality with 3

x over 6  = 5

✔ multiplication property of equality with 6


An apartment building is infested with 6.2 X 10 ratsOn average, each of these rats
produces 5.5 X 10' offspring each year. Assuming no rats leave or die, how many additional
rats will live in this building one year from now? Write your answer in standard form.

Answers

Answer: 3.41x10^3

Step-by-step explanation:

At the beginning of the year, we have:

R = 6.2x10 rats.

And we know that, in one year, each rat produces:

O = 5.5x10 offsprins.

Then each one of the 6.2x10 initial rats will produce 5.5x10 offsprings in one year, then after one year we have a total of:

(6.2x10)*(5.5x10) = (6.2*5.5)x(10*10) = 34.1x10^2

and we can write:

34.1 = 3.41x10

then: 34.1x10^2 = 3.41x10^3

So after one year, the average number of rats is:  3.41x10^3

There are 30 colored marbles inside a bag. Six marbles are yellow, 9 are red, 7 are white, and 8 are blue. One is drawn at random. Which color is most likely to be chosen? A. white B. red C. blue D. yellow Include ALL work please!

Answers

Answer:

red

Step-by-step explanation:

Since the bag contains more red marbles than any other color, you are most likely to pick a red marble

I need help on this question :(​

Answers

Answer: 40 degree

Explanation:

FT bisect angle EFD dividing it into 2 equal angles (EFT and DFT)

And EFD = 80

We get :
EFT = 80/2
EFT = 40

And EFT + DFT = EFD = 80 degree

Therefore EFT = 40 degrees

Find the value of the expression: −mb −m^2 for m=3.48 and b=96.52

Answers

Answer:

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.

Step-by-step explanation:

Let be [tex]f(m, b) = m\cdot b - m^{2}[/tex], if [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex], the value of the expression:

[tex]f(3.48,96.52) = (3.48)\cdot (96.52)-3.48^{2}[/tex]

[tex]f(3.48,96.52) = 323.779[/tex]

The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.

Other Questions
20 points and brainiest, what are the pros and cons as photographs as primary sources Consider the following functions. f={(1,1),(1,2),(5,1),(5,3)} and g={(0,2),(3,4),(1,2)} Step 1 of 4: Find (f+g)(1). Aaron wants to mulch his garden. His garden is x^2+18x+81 ft^2 One bag of mulch covers x^2-81 ft^2 . Divide the expressions and simplify to find how many bags of mulch Aaron needs to mulch his garden. PLEASE HELP FOR REAL In exercises 22 24 , describe how the change affects the surface area of the right prism or right cylinder . are the network administrator for your company. You are installing a new printer in the network. When you check the print server properties, it displays the following error: Server properties cannot be viewed. The print spooler service is not running. What should you do to resolve the issue using the least administrative effort What creation would you make if you had access to any of the chemical elements? can someone answer this for me please. The specifications for the diameter of a molded part are 10 mm 0.5 mm. The actual average and standard deviation from 250 parts sampled is 10.1 mm and 0.1 mm, respectively. The process can be characterized as: Find the length of UXA. 6.03B. 76.11C. 7.96D. 76.53 Liam tried to define a translation. - Point A maps to point A' - Every point P maps to point P' such that PP' is parallel to AA' and points in the same direction as AA' Which counterexample shows that Liam's definition does not fully define a translation? hello :) why is the first one wrong? Based on the dot plots shown in the images, which of the following is a true statement? A. Set B has the greater mode. B. Set A has more items than set B. C. Set A is more symmetric than set B. D. Set B has the greater range. A potato chip company makes potato chips in two flavors, Regular and Salt & Vinegar. Riley is a production manager for the company who is trying to ensure that each bag contains about the same number of chips, regardless of flavor. He collects two random samples of 10 bags of chips of each flavor and counts the number of chips in each bag. Assume that the population variances of the number of chips per bag for both flavors are equal and that the number of chips per bag for both flavors are normally distributed. Let the Regular chips be the first sample, and let the Salt & Vinegar chips be the second sample. Riley conducts a two-mean hypothesis test at the 0.05 level of significance, to test if there is evidence that both flavors have the same number of chips in each bag. (a) H0:1=2; Ha:12, which is a two-tailed test. (b) t1.44 , p-value is approximately 0.167 (c) Which of the following are appropriate conclusions for this hypothesis test?A. There is insufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.B. There is sufficient evidence at the 0.05 level of significance to conclude that Regular and Salt & Vinegar chips have different amounts of chips per bag.C. Reject H0.D. Fail to reject H0. Let f(x) = 4x - 5 and g(x) = 3x + 7. Find f(x) + g(x) and state its domain. Give me five different examples :persuading someone to do something (07.06A) Which scenario best matches the linear relationship expressed in the equation y = 13.50x + 300? Bobby has $300 in the yearbook fund and spends $13.50 on each yearbook. Bobby has $13.50 in the yearbook fund and spends $300 on each yearbook. Bobby has $300 in the yearbook fund and earns $13.50 for each yearbook sold. Bobby has $13.50 in the yearbook fund and earns $300 for each yearbook sold. These girts stasts jogging from the same point aroundacircular track and they complete one round in 24Seconds 36 seconds and 48 seconds respectively,After.how much time will they meet atone point? Suppose that 80% of all registered California voters favor banning the release of information from exit polls in presidential elections until after the polls in California close. A random sample of 25 registered California voters is selected.Required:a. Calculate the mean and standard deviation of the number of voters who favor the ban.b. What is the probability that exactly 20 voters favor the ban? The sum of three consecutive multiples of 7 is 777 find these multiples Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Use digits to write the value of the 6 in this number.672,180 The graph of g(x) = x 8 is a transformation of the graph of f(x) = x. Which ofthe following describes the transformation?(A) translation 8 units down(B) translation 8 units up(C) translation 8 units right(D) translation 8 units left