Hello my dear friend of USA !!!
DB/AD = BE/EC
=> 6/4 = x+1/x
=> 6x = 4x + 4
=> 2x = 4
=> x = 2
So x = 2
I am from INDIA.
Lots of love ❤️!!!
Have a great day ahead!
Answer:
x = 2
Step-by-step explanation:
[tex]\frac{6}{4} = \frac{x+1}{x}[/tex]
6x = 4x + 4
2x = 4
x = 2
Angles A and B are complementary. If sin A = 4x + 10 and cos B = 2x + 16, what is the value of x? (
Answer:
x is 10.66
Step-by-step explanation:
What are complementary angles?
They are angles that up to 90
So we have Sin A and Cos B
4x + 10+ 2x + 16= 90
collect like terms
6x+ 26= 90
6x= 90-26
6x= 64
x= 64/6
x= 10.66
Hence the value of x is 10.66
Answer:
not 10.66
Step-by-step explanation:
Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question.
A number line going from negative 9 to positive 1.
–3
0
2
Answer:
-5 it is
Step-by-step explanation:
Given n(A) = 1300, n(A U B) = 2290, and n(A n B) = 360, find n(B).
Answer:
n(B) = 1350
Step-by-step explanation:
Using Venn sets, we have that:
[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]
Three values are given in the exercise.
The other is n(B), which we have to find. So
[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)[/tex]
[tex]2290 = 1300 + n(B) - 360[/tex]
[tex]940 + n(B) = 2290[/tex]
[tex]n(B) = 2290 - 940 = 1350[/tex]
So
n(B) = 1350
Ed decided to build a storage box. At first, he was planning to build a cubical box with edges of length n
inches. To increase the amount of storage, he decided to make the box 1 inch taller and 2 inches longer,
while keeping its depth at n inches. The volume of the box Ed built has a volume how many cubic inches
greater than the box he originally planned to build?
O 3n2 + 2n
312 + 3n+3
O 6n2 + 3n
O 6n2 + 3n+3
Given:
Edge of a cubic box = n inches.
He decided to make the box 1 inch taller and 2 inches longer, while keeping its depth at n inches.
To find:
How many cubic inches greater than the box he originally planned to build?
Solution:
Edge of a cubic box is n inches, so the volume of the original cube is:
[tex]V_1=(edge)^3[/tex]
[tex]V_1=n^3[/tex]
According to the given information,
New width of the box = n+1
New length of the box = n+2
New height of the box = n
So, the volume of the new box is:
[tex]V_2=Length\times width\times h[/tex]
[tex]V_2=(n+2)(n+1)n[/tex]
[tex]V_2=(n^2+2n+n+2)n[/tex]
[tex]V_2=(n^2+3n+2)n[/tex]
[tex]V_2=n^3+3n^2+2n[/tex]
Now, the difference between new volume and original volume is:
[tex]V_2-V_1=n^3+3n^2+2n-n^3[/tex]
[tex]V_2-V_1=3n^2+2n[/tex]
So, the volume of new box is 3n^2+2n cubic inches more than the original box.
Therefore, the correct option is A.
What sum is represented by the following number line?
Answer:
[tex]2\frac{3}{4} +(-4\frac{1}{4} )=-1\frac{2}{4}[/tex]
Step-by-step explanation:
That's the only equation that makes sense to the number line
In a particular year, the mean score on the ACT test was 22.5 and the standard deviation was 5.3. The mean score on the SAT mathematics test was 526 and the standard deviation was 101. The distributions of both scores were approximately bell-shaped. Round the answers to at least two decimal places.
Question is incomplete ; The questions solved were picked from similar questions but different parameters. However, the solution pattern are exactly the same.
Answer:
- 0.0943
- 0.386
30.185
Step-by-step explanation:
Given :
ACT:
Mean score, m = 22.5
Standard deviation, σ = 5.3
SAT :
Mean score, m = 526
Standard deviation, σ = 101
1.)
Zscore for ACT score of 22:
Since the distribution is normal ; we use the relation ;
Zscore = (score - mean) / standard deviation
Score = 22
Zscore = (22 - 22.5) / 5.3 = - 0.0943
B.)
Zscore for SAT of 487
Zscore = (score - mean) / standard deviation
Score = 487
Zscore = (487 - 526) / 101 = - 0.386
C.)
ACT score, for ACT Zscore of 1.45
Zscore = (score - mean) / standard deviation
ZScore = 1.45
1.45 = (score - 22.5) / 5.3
1.45 * 5.3 = (score - 22.5)
7.685 = score - 22.5
Score = 7.685 + 22.5
Score = 30.185
Read the following scenario, and then answer the question.
Juan assumes that the temperature of the hot tea cooling on his desk can be modeled with an exponential function like this one: T(t)=179(0.92)t. He bases his assumption on the following: The tea cools about 8% every minute. The tea's current temperature is around 179 degrees Fahrenheit.
Which explanation correctly addresses Juan's assumption?
He is incorrect. The tea will cool linearly since it cools at the same number of degrees every minute.
He is correct. The tea will cool exponentially since it cools at a percentage rate every minute.
He is incorrect. The tea will cool along the curve of a parabola since it cools at an increasing percentage rate every minute.
9514 1404 393
Answer:
(b) He is correct. The tea will cool exponentially since it cools at a percentage rate every minute.
Step-by-step explanation:
Newton's Law of Cooling says the change in temperature is proportional to the temperature. This relation gives rise to an exponential function describing the temperature.
In this description, the temperature referred to is the difference between the temperature of the object and the temperature of the environment to/from which heat is being transferred.
Juan is only partially correct. The function is exponential, but the temperature that should be used in his equation is not the temperature of the tea, but the temperature difference between the tea and his desk.
__
The curve is not linear and not parabolic, excluding the other answer choices.
3x7 I need help with this i do not know the answer pls help.
Answer:
21
Step-by-step explanation:
7+7+7=21
Step by step please help answer.
The diameter of a circular reservoir is 840 feet. To walk around the reservoir, you would walk approximately how far? (Use tt = 22/7.)
(1) 267 ft
(2) 2,640 ft
(3) 2,800 ft
(4) 18,480 ft
(5) Not enough information is given.
Answer:
(2) 2,640 ft
Step-by-step explanation:
I'm going to assume that in this question, you are walking 1 full circle around the reservoir. That would mean you need to calculate the circumference of the circular reservoir.
The circumference formula is:
C = ⫪d
C stands for Circumference
d stands for diameter
I will use 22/7 instead of pi, so the formula looks more like this:
C = (22/7)(d)
The diameter is 840 feet, so we will substitute the variable d with 840:
C = (22/7)(840)
You can plug this part into the calculator, but by hand, it'll look something like this:
(22/7)*840 = (22*840)/7
18,480/7 = 2.640
Hope it helps (●'◡'●)
A student has test scores of 75 and 82respectively. What is the student’s average score for a third test
Answer:
78.5 (I think 90% sure)
Step-by-step explanation:
sum of both scores
75+82 = 157
average for a third test
157÷2=78.5
Which statements below represent the situation? Select three options.
Answer:
where is the statement
Step-by-step explanation:
its incomplete po
A case of 6 cost 7.5 what it the price per item
The sum of two numbers is 85. If four times the smaller number is subtracted from the larger number, the result is 5. Find the two numbers.
The larger number is
The smaller number is
Answer:
the larger number is 69
the smaller number is 16
Step-by-step explanation:
x is the smaller number
y is the larger number
x + y = 85
y - 4x = 5
y = 5 + 4x
x + 5 + 4x = 85
5x = 80
x = 16
y = 69
09:30 am - 4:30 pm minus 30 minutes?
How many hours is that ?
0.9.30 am to 4.30 p.m. is 7 hours.
If we minus 30 minutes from it then it is 6 hours 30 minutes.
Solve the equation x^2+6x+1=0
Hello!
x² + 6x + 1 = 0 <=>
<=> x = -6±√6²-4×1×1/2×1 <=>
<=> x = -6±√36-4/2 <=>
<=> x = -6±√32/2 <=>
<=> x = -6±2²√2/2 <=>
<=> x = -6±4√2/2 <=>
<=> x = -6+4√2/2 <=>
and
<=> x = -6-4√2/2 <=>
<=> x = -3+2√2 <=>
and
<=> x = -3-2√2 <=>
x1 = -3-2√2 and x2 = -3+2√2
Good luck! :)
I am having trouble with this problem. If anyone could help that would be great.
Let M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x^2+y^2=16, 0≤z≤1, and a hemispherical cap defined by x^2+y^2+(z−1)^2=16, z≥1. For the vector field F=(zx+z^2y+4y, z^3yx+3x, z^4x^2), compute ∬M(∇×F)⋅dS in any way you like.
Answer:
Ok... I hope this is correct
Step-by-step explanation:
Let M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x^(2)+y^(2)=16
Center: ( 0 , 0 )
Vertices: ( 4 , 0 ) , ( − 4 , 0 )
Foci: ( 4 √ 2 , 0 ) , ( − 4 √ 2 , 0 )
Eccentricity: √ 2
Focal Parameter: 2 √ 2
Asymptotes: y = x , y = − x
Then 0≤z≤1, and a hemispherical cap defined by x^2+y^2+(z−1)^2=16, z≥1.
Simplified
0 ≤ z ≤ 1 , x ^2 + y ^2 + z ^2 − 2 ^z + 1 = 16 , z ≥ 1
For the vector field F=(zx+z^2y+4y, z^3yx+3x, z^4x^2), compute ∬M(∇×F)⋅dS in any way you like.
Vector:
csc ( x ) , x = π
cot ( 3 x ) , x = 2 π 3
cos ( x 2 ) , x = 2 π
Since
( z x + z ^2 y + 4 y , z ^3 y x + 3 x , z ^4 x ^2 ) is constant with respect to F , the derivative of ( z x + z ^2 y + 4 y , z ^3 y x + 3 x , z ^4 x 2 ) with respect to F is 0 .
જ્યારે જહાંગીરની ઉંમર 18 વર્ષ થશે ત્યારે અકબરની ઉંમર 50 વર્ષ થર્શ.
જ્યારે અકબરની ઉંમર જહાંગીરની ઉંમર કરતા 5 ઘણી હશે ત્યારે
અકબરની ઉમર કેટલી હશે?
A) 36
B) 40
C) 44
D) 48
Answer:
C: 44
Step-by-step explanation:
1. S = 10 mm
V= S×S×S
=___×___×___
=____ mm3
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]V=1000\text{mm}^3[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
I am assuming by the infomation given that the figure is a cube.
⸻⸻⸻⸻
[tex]\boxed{\text{Finding the volume of the cube...}}\\\\S = 10mm; V= s^3\\--------------\\\rightarrow V = 10^3\\\\\rightarrow V = 10 * 10 * 10\\\\\rightarrow \boxed{V=1000\text{mm}^3}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
In a survey, 24 people were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of $42 and standard deviation of $2. Construct a confidence interval at a 98% confidence level.
Answer:
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 24 - 1 = 23
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 23 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 2.5
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.5\frac{2}{\sqrt{24}} = 1.02[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 42 - 1.02 = $40.98.
The upper end of the interval is the sample mean added to M. So it is 42 + 1.02 = $43.02.
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
im stuck on this question!!!!
Answer:
reflected across the y axis: (5,2)
reflected across the x axis: (-2,5)
Answer:
Answer: (5,2) when reflected off the y-axis. (-5,-2) when reflected off the x-axis
Please help I’m really stuck this is my last attempt
What is the mode for the set of data?
Ages
Stem Leaves
5 0, 4, 6
6 0, 2, 3, 4, 8, 8, 9
7 0, 2, 3, 4, 4, 4, 8, 9
8 4, 5, 6, 8
5|0 = 50 years old
33
68
4
74
Answer:
I THINK IT IS 74 NOT 4
I HOPE THIS HELPS!!!!!
Which terms in the following expression are like terms?
x3 + 5x - 3x + 3y + 4 - 1
3x and 3y
x 3, 3x, and 3y
5x and 3x, and 4 and 1
x 3 and 3x, and 4 and 1
9514 1404 393
Answer:
(c) 5x and 3x, and 4 and 1
Step-by-step explanation:
Like terms have the same variable(s) to the same power(s).
The terms of this expression are ...
x^3: variable x, power 35x: variable x, power 1-3x: variable x, power 13y: variable y, power 14: no variable-1: no variableThe like terms are {5x, -3x}, which have the x-variable to the first power, and {4, -1}, which have no variable.
Find the slope of the line graphed below.
Answer:
Step-by-step explanation:
two points are (-5,-2) and (-1,3)
slope=(3-(-2))/(-1-(-5))=(3+2)/(-1+5)=5/4
if my child had 115 of 149 questions right what percentage is the grade
Answer:
77.18%
Step-by-step explanation:
115:149*100 =
(115*100):149 =
11500:149 = 77.18
What does y equal in the solution of the system of equations below? 5y-3x-4z=22 2z-2x=-6 2z+3x=-6
9514 1404 393
Answer:
y = 2
Step-by-step explanation:
Subtracting the second equation from the third gives ...
(2z +3x) -(2z -2x) = (-6) -(-6)
5x = 0
x = 0
Using this in the third equation, we have ...
2z +0 = -6
z = -3
And substituting these values into the first equation, we have ...
5y -3(0) -4(-3) = 22
5y = 10 . . . . . subtract 12
y = 2
__
The solution to the system is (x, y, z) = (0, 2, -3).
1000^1000
i would like to simplify it into 10^x, how?
Answer:
10^3000
Step-by-step explanation:
1000¹⁰⁰⁰
= (10³)¹⁰⁰⁰
= 10^(3×1000)
= 10³⁰⁰⁰ or 10^3000
Answered by GAUTHMATH
Write the rule that describes the first transformation?
RED —> BLUE
Looking at Point A to A', the rectangle moves 5 places to the left which is the x value + 5 and it shifts 1 place down which would be the y value - 1
This gets written as:
(x+5, y-1)
6. What are the coordinates of W? (0,t) W 0 (,0) Rhombus (0, -1) o (-r, o) (0,r). (t,0)
Answer:
B. (-r, 0)
Step-by-step explanation:
W is on the x axis, so the y coordinate is 0.
It is also r away from the origin, so the x coordinate is -r
Hope this helps!
HELPP
-1-3(5m+8) ≥-85
i need help :D
Answer:
- 1 - 3(5m + 8) ≥ -85
-1 - 15m - 24 ≥ -85
-15m ≥ -85 + 1 + 24
-15m ≥ 25 - 85
-15m ≥ -60
(-1)(-15)m ≤ -60(-1)
15m ≤ 60
m ≤ 4
A teacher has a 2-gallon (52 cup) container of juice. She gives each student z cup of juice. Which equation represents the amount of juice that remains, y, after x students are served?
Answer:
[tex]y = 32 - \frac{1}{2}x[/tex]
Step-by-step explanation:
Given
[tex]Cups = 32[/tex] ---- not 52
[tex]Students = x[/tex]
[tex]Remainder = y[/tex]
[tex]Each = \frac{1}{2}[/tex] --- not z
Required
The equation for y
The remainder y is calculated as:
[tex]y = Cups - Students * Each\\[/tex]
[tex]y = 32 - \frac{1}{2}x[/tex]