Answer:
FIRST ONE "Deb sold vases for two years, neither sold nor bought the next year and then sold bases for two more years"
Step-by-step explanation:
Notice the number of bases in debs collection is DECREASING as the years passes for the first and third period. This is she is selling her vases but in the middle the number is the same (two point in the same horizontal line) this means she neither sold nor bought any vase in that period.
please help asap!!!!!!!
To remove the y-term in the given linear equation in two Variable multiply the equation by 4 then add these two equations.
What is linear equation in two Variable;
The equation for a linear equation in one variable is written as ax+b = 0, where a and b are two integers, and x is a variable. This equation has only one solution. For instance, the linear equation 2x+3=8 only has one variable. As a result, this equation has a single solution, x = 5/2. Yet, there are two solutions to a linear equation with two variables.
According to given question;
5X+8y=5 ……..eqn 1.
3x-2y=3 ………eqn 2.
Multiply by 4 in the eqn 2.
We get
12x-8y=12 ……..eqn 3 .
When we add eqn 1 and eqn 3 we get ;
17x =17
X =1
To Know more about linear equation in two Variable visit:
https://brainly.com/question/31143114
#SPJ1
After eliminating the y-term in the given equations i.e 5x+8y=5 and
3x-2y=3, The solution to the system of equations is x = 1, y = 0.
What is elimination method?The elimination method is the technique used to solve systems of linear equations. It involves adding or subtracting equations in a system to eliminate one variable and find the value of the other variable.
To eliminate the y-term in these equations, you can multiply the second equation by 4, which will give you:
12x - 8y = 12
Now, you can add this equation to the first equation:
5x + 12x + 0y = 5 + 12
Simplifying the left side gives you 17x, and simplifying the right side gives you 17. So, you have the equation:
17x = 17
Solving for x gives you x = 1.
Now that you have found the value of x, you can substitute it into one of the original equations to solve for y. Using the first equation, you get:
5(1) + 8y = 5
Simplifying this equation gives you:
8y = 0
Solving for y gives you y = 0.
To know more about linear equations visit:
https://brainly.com/question/13738061
#SPJ1
Find the probability of landing on yellow, the probability of the complement, and the sum of the event and the complement. Type your answers without any spaces.
The probability of landing on yellow is 0.2, probability of component is 0.8, and sum of event and complement is 1.
On assuming that the pie is evenly divided into 5 parts,
So, the probability of landing on yellow is = 1/5 = 0.2,
The complement of landing on yellow is the probability of not landing on yellow, which is the probability of landing on any of the other 4 parts of the pie.
So, the probability of the complement is = 4/5 = 0.8,
The sum of the event (landing on yellow) and the complement (not landing on yellow) is equal to the probability of the entire sample space, which is 1.
⇒ P(Yellow) + P(Not Yellow) = 1
⇒ 0.2 + 0.8 = 1
So, the sum of the event and the complement is 1 or 100%.
Learn more about Probability here
https://brainly.com/question/16551257
#SPJ4
The given question is incomplete, the complete question is
A circular pie is divided in 5 parts , Green , Yellow, Blue Black and Red.
Find the probability of landing on yellow, the probability of complement, and the sum of the event and the complement.
which of the following assumptions must be true in order for this to be the correct sampling distribution
Since means cannot be smaller than 0, the sampling distribution of the mean is always right skewed.
No matter the sample size, the form of the sampling distribution of means is always the same as the population distribution.
We require two assumptions in order to apply the sampling distribution model to sample proportions: The selected values must be independent of one another, according to the independence assumption. The Sample Size Assumption demands that the sample size, n, be sufficiently large.
While doing a t-test, it is typical to make the following assumptions: the measuring scale, random sampling, normality of the data distribution, sufficiency of the sample size, and equality of variance in standard deviation.
To know more about sampling distribution, click the below link
https://brainly.com/question/29375938
#SPJ4
the actual question is :
Which of the following is true about the sampling distribution of the mean?
a. It is an observed distribution of scores
b. It is a hypothetical distribution
c. It will tend to be normally distributed with a
standard deviation equal to the population
standard deviation
d. The mean will be estimated by the standard
error
e. Both (a) and (b)
The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?
The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.
Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.
The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.
Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.
The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:
6.8x + 4.2(35 - x) (35 - x)
When we simplify, we get:
6.8x + 147 - 4.2x
2.6x + 147
The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:
35(5.31) = 185.85
When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:
2.6x + 147 = 185.85
Subtractiοn οf 147 frοm bοth sides yields:
2.6x = 38.85
When we divide by 2.6, we get:
x ≈ 14.94
Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.
To know more pοunds visit:
https://brainly.com/question/29145297
#SPJ1
the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of
The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.
Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.
The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.
Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:
CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees
To know more about electron geometry:
https://brainly.com/question/7558603
#SPJ4
_____The given question is incomplete, the complete question is given below:
Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI
State whether the triangles could be proven congruent as SSS or SAS Theorem.
Using SSS theorem of congruency in triangles, we can prove that in all the cases, each triangle is congruent to the other.
What do you mean by congruent triangles?Whether two or more triangles are congruent depends on the size of the sides and angles. A triangle's size and shape are consequently determined by its three sides and three angles. If the pairings of the respective sides and accompanying angles are equal, two triangles are said to be congruent. Both of these are the exact same size and shape. Triangles may satisfy a number of distinct congruence requirements.
The SSS criterion is also known as the Side-Side-Side criterion. This standard states that two triangles are congruent if the sum of the three sides of each triangle is the same.
Here in the question,
It is given that the two sides of each triangle are equal to the corresponding sides of the other triangle.
Now as two sides of a triangle is equal to the two sides of another triangle, it is obvious that he third side will be equal to the corresponding sides of the other triangle.
Now as per the SSS criteria, as all the sides are equal to the corresponding sides of the other triangle, the triangle are congruent.
To know more about congruent triangles, visit:
https://brainly.com/question/29639035
#SPJ1
Below are the jersey numbers of 11 players randomly selected from a football team. Find the range, variance, and standard deviation for the given sample data. What do the results tell us?
92 19 41 24 75 53 70 3 67 64 9
Step-by-step explanation:
To find the range, we need to subtract the smallest value from the largest value in the dataset:
Range = Largest value - Smallest value
Range = 92 - 3
Range = 89
To find the variance and standard deviation, we need to calculate the mean first:
Mean = (Sum of all values) / (Number of values)
Mean = (92+19+41+24+75+53+70+3+67+64+9) / 11
Mean = 45.09 (rounded to two decimal places)
Next, we need to calculate the variance:
Variance = (Sum of squared differences from the mean) / (Number of values - 1)
Variance = [(92-45.09)^2 + (19-45.09)^2 + (41-45.09)^2 + (24-45.09)^2 + (75-45.09)^2 + (53-45.09)^2 + (70-45.09)^2 + (3-45.09)^2 + (67-45.09)^2 + (64-45.09)^2 + (9-45.09)^2] / (11-1)
Variance = 1071.45 (rounded to two decimal places)
Finally, we can calculate the standard deviation by taking the square root of the variance:
Standard deviation = Square root of variance
Standard deviation = Square root of 1071.45
Standard deviation = 32.74 (rounded to two decimal places)
The range tells us the difference between the highest and lowest values in the dataset, which in this case is 89. The variance and standard deviation tell us how spread out the data is from the mean. The higher the variance and standard deviation, the more spread out the data is. In this case, the variance and standard deviation are both relatively high, indicating that the data is fairly spread out.
Earnings per Share, Price-Earnings Ratio, Dividend Yield
The following information was taken from the financial statements of Zeil Inc. for December 31 of the current fiscal year:
Common stock, $25 par value (no change during the year) $3,500,000
Preferred $10 stock, $100 par (no change during the year) 2,000,000
The net income was $424,000 and the declared dividends on the common stock were $35,000 for the current year. The market price of the common stock is $11.20 per share.
For the common stock, determine (a) the earnings per share, (b) the price-earnings ratio, (c) the dividends per share, and (d) the dividend yield. If required, round your answers to two decimal places.
a. Earnings per Share $fill in the blank 1
b. Price-Earnings Ratio fill in the blank 2
c. Dividends per Share $fill in the blank 3
d. Dividend Yield fill in the blank 4
%
Therefore , the solution of the given problem of unitary method comes out to be common shares of Zeil Inc. is 2.23%.
An unitary method is what?This common convenience, already-existing variables, or all important elements from the original Diocesan adaptable study that followed a particular methodology can all be used to achieve the goal. Both of the crucial elements of a term affirmation outcome will surely be missed if it doesn't happen, but if it does, there will be another chance to get in touch with the entity.
Here,
Earnings per Share are calculated as (Net Income – Preferred Dividends) / the average number of outstanding Common Shares.
=> Market price per share / earnings per share is the Price-Earnings Ratio.
=> Dividends per Share are calculated as follows: Common Stock Dividends / Average Common Shares Outstanding
=> Dividend Yield is the product of dividends per share and the share price.
=> (Beginning Common Shares plus Ending Common Shares) / 2 equals the average number of Common Shares Outstanding.
=> Starting common shares equals ending common shares, which is
=> $3,500,000 / $25, or 140,000.
(a) The earnings per share are ($424,000 - $0) / 140,000, which equals $3.03.
The ordinary stock price of Zeil Inc.
(b) The price-earnings ratio for Zeil Inc.'s common shares is 11.20 divided by 3.03, or 3.69.
(c) Dividends per Share: $35,000./140,000. = $0.25
Therefore, $0.25 in dividends are paid per unit of Zeil Inc. common stock.
(d) Dividend Yield: $0.25 divided by $11.20 equals 0.0223, or 2.23%.
The common shares of Zeil Inc. is 2.23%.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
Participant A did 120 jumping jacks in 10 minutes. Participant B did 140 jumping jacks in 14 minutes. Which participant had the greater jumping jack rate?
Answer: Participant A
Step-by-step explanation:
if you divide 120 by 10 you would get 12 jumping jacks per minute and if you divide 140 by 14 you would get 10 jumping jacks per minute
A bag has 4 blue marbles, 3 green marbles, and 5 red
marbles. You select 2 marbles one at a time without
replacement.
Determine the probability the first marble is blue and
the second marble is green Round your answer to
the hundredths place.
The probability of selecting a blue marble on the first draw and a green marble on the second draw is 0.09.
What is probability?
Probability is a measure of the likelihood of an event occurring. It is a number between 0 and 1, where 0 means the event is impossible and 1 means the event is certain to happen.
There are 12 marbles in total in the bag, so the probability of selecting a blue marble on the first draw is 4/12.
After the first marble is drawn, there are 11 marbles left in the bag, so the probability of selecting a green marble on the second draw, given that the first marble was blue and has already been removed, is 3/11.
To determine the probability of both events occurring together, we multiply the probabilities. Therefore, the probability of selecting a blue marble on the first draw and a green marble on the second draw is:
(4/12) * (3/11) = 0.0909
Rounding to the hundredth place, the probability is approximately 0.09.
Therefore, the probability of selecting a blue marble on the first draw and a green marble on the second draw is 0.09.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
in a class if 108 students, 60 like football, 53 like Tennis and 10 like neither. calculate the number of students who like football but not tennis
Answer:
60 - 10 = 50
;
;
;
;
;
;
;
;
the function f is defined by f of x is equal to 3 divided by the square root of x minus 2 divided by x cubed for x > 0. g
The required value of the function (f + g)(x) for given f(x) and g(x) as ( 3 / √x ) - ( 2 / x³ ) and √(5x - 7) is equals to ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7).
Function f(x) is equals to,
( 3 / √x ) - ( 2 / x³ ) for all x > 0
Function g(x) is equals to,
g(x) = √(5x - 7)
To get the value of (f + g)(x),
Substitute the value of f(x) and g(x) and add the functions f(x) and g(x) together,
Sum of f(x) and g(x) is equals to,
(f + g)(x)
= f(x) + g(x)
= ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7)
Therefore, value of the function (f + g)(x) is equals to ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7).
Learn more about function here
brainly.com/question/12827129
#SPJ4
The above question is incomplete, the complete question is:
The function f is defined by f of x is equal to 3 divided by the square root of x minus 2 divided by x cubed for x > 0, g as a function of x is equal to the square root of quantity 5 x minus 7 Find (f + g)(x).
Assuming that the equation defines a differential function of x, find Dxy by implicit differentiation. 4)2xy-y2 = 1 5) xy + x + y = x2y2
For the equations 2xy - y^2 = 1 and xy + x + y = x^2y^2 using implicit differentiation the value Dxy is given by Dxy = (1 - 2xy + 3y^2)/(x - y)^3 and Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3 respectively.
Equation 2xy - y^2 = 1,
Differentiate both sides of the equation with respect to x,
Treating y as function of x and then differentiate again with respect to x.
Using implicit differentiation,
First, differentiate both sides with respect to x,
2y + 2xy' - 2yy' = 0
Next, solve for y',
⇒2xy' - 2yy' = -2y
⇒y' (2x - 2y) = -2y
⇒y' = -y/(x - y)
Now, differentiate again with respect to x,
y''(x - y) - y'(2x - 2y) = y/(x - y)^2
Substitute the expression we obtained for y' in terms of y and x,
y''(x - y) - (-y/(x - y))(2x - 2y) = y/(x - y)^2
Simplify and solve for y'',
y''(x - y) + (2xy - 3y^2)/(x - y)^2 = 1/(x - y)^2
The expression for Dxy is,
Dxy = (1 - 2xy + 3y^2)/(x - y)^3
For the equation xy + x + y = x^2y^2,
Differentiate both sides of the equation with respect to x,
Using implicit differentiation,
First, differentiate both sides with respect to x,
⇒y + xy' + 1 + y' = 2xyy'
Solve for y',
⇒xy' - 2xyy' + y' = -y - 1
⇒y' (x - 2xy + 1) = -y - 1
⇒y' = -(y + 1)/(x - 2xy + 1)
Now, differentiate again with respect to x,
y''(x - 2xy + 1) - y'(2y - 2x y' + 1) = (y + 1)/(x - 2xy + 1)^2
Substitute the expression we obtained for y' in terms of y and x,
y''(x - 2xy + 1) - (-y - 1)/(x - 2xy + 1)^2 (2y - 2x y' + 1) = (y + 1)/(x - 2xy + 1)^2
Simplify and solve for y''
y''(x - 2xy + 1) - (2y^2 - 2xy - 2y)/(x - 2xy + 1)^2 = (y + 1)/(x - 2xy + 1)^2
The expression for Dxy is,
Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3
Therefore , the value of Dxy using implicit differentiation for two different functions is equal to
Dxy = (1 - 2xy + 3y^2)/(x - y)^3 and Dxy = (2y^2 - 2xy - 3y - 1)/(x - 2xy + 1)^3
Learn more about implicit differentiation here
brainly.com/question/20709669
#SPJ4
Given the equation x² + 4x + y²-2y = 20: (HINT: Type in the equation is the desmos calculator and get the answers from the graph.)
What is the radius of the circle?
What is the center of the circle?
Answer:
The radius of the circle is 3.
The center of the circle is (-2, 1).
Step-by-step explanation:
Rewrite the equation in standard form:
We need to rewrite the given equation in standard form (x - h)² + (y - k)² = r², where (h, k) is the center of the circle and r is the radius. To do this, we complete the square for both the x and y terms.
x² + 4x + y²-2y = 20
(x² + 4x + 4) + (y² - 2y + 1) = 20 + 4 + 1
(x + 2)² + (y - 1)² = 25
Identify the center and radius:
Now that we have the equation in standard form, we can identify the center and radius of the circle.
The center is the point (-2, 1), which we can read directly from the equation.
The radius is the square root of the number on the right side of the equation, which is 5. Therefore, the radius is sqrt(5) or approximately 2.236.
Alternatively, we can also use the Desmos graphing calculator to plot the equation and visually determine the center and radius. When we plot the equation, we see that it forms a circle with center (-2, 1) and radius 3.
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -0.08°C and 1.68°C.
The probability of obtaining a reading between -0.08°C and 1.68°C is approximately 0.4854 or 48.54%.
What are the four types of probability?Probability is the branch of mathematics concerned with the occurrence of a random event, and there are four types of probability: classical, empirical, subjective, and axiomatic.
The readings at freezing on a set of thermometers are normally distributed, with a mean () of 0°C and a standard deviation () of 1.00°C. We want to know how likely it is that we will get a reading between -0.08°C and 1.68°C.
To solve this problem, we must use the z-score formula to standardise the values:
z = (x - μ) / σ
where x is the value for which we want to calculate the probability, is the mean, and is the standard deviation.
The lower bound is -0.08°C:
z1 = (-0.08 - 0) / 1.00 = -0.08
1.68°C is the upper bound:
z2 = (1.68 - 0) / 1.00 = 1.68
We can now use a standard normal distribution table or calculator to calculate the probabilities for each z-score.
The probability of obtaining a z-score of -0.08 or less is 0.4681, and the probability of obtaining a z-score of 1.68 or less is 0.9535, according to the table. We subtract the probability associated with the lower bound from the probability associated with the upper bound to find the probability of obtaining a reading between -0.08°C and 1.68°C:
P(-0.08°C x 1.68°C) = P(z1 z z2) = P(z 1.68) minus P(z -0.08) = 0.9535 - 0.4681 = 0.4854
As a result, the chance of getting a reading between -0.08°C and 1.68°C is approximately 0.4854 or 48.54%.
To know more about probability visit:
https://brainly.com/question/30719832
#SPJ1
Jason invested $5,500 in an account paying an interest rate of 1 7/8 % compounded quarterly. Kayden invested $5,500 in an account paying an interest rate of 1 3/8 % compounded annually. After 8 years, how much more money would Jason have in his account than Kayden, to the nearest dollar?
Using compounding we know that the additional amount Jason has more than Kayden is $249.48.
What is compounding?Calculating interest on the principal borrowed as well as any prior interest.
In order to compute compound interest, multiply the principle of the original loan by the annual interest rate multiplied by the number of compound periods minus one.
So, the amount of Jason after 8 years:
Amount: $5500
Interest: 1.875%
Compounded: Quarterly
Using a compounding calculator:
Amount after 8 years: $6,387.85
The amount of Kayden:
Amount: $5500
Interest: 1.375%
Compounded: Quarterly
Using a compounding calculator:
Amount after 8 years: $6,138.37
The additional amount Jason got: 6,387.85 - 6,138.37 = $249.48
Therefore, using compounding we know that the additional amount Jason has more than Kayden is $249.48.
Know more about compounding here:
https://brainly.com/question/28020457
#SPJ1
Answer:253
Step-by-step explanation:
the expression the quantity cosecant squared of theta minus 1 end quantity over cotangent of theta simplifies to which of the following?
Students were asked to simplify the expression using trigonometric identities:
A. student A is correct; student B was confused by the division
B. 3: cos²(θ)/(sin(θ)csc(θ)); 4: cos²(θ)
Trigonometric Identities are equality statements that hold true for all values of the variables in the equation and that use trigonometry functions.
There are several distinctive trigonometric identities that relate a triangle's side length and angle. Only the right-angle triangle is consistent with the trigonometric identities.
The six trigonometric ratios serve as the foundation for all trigonometric identities. Sine, cosine, tangent, cosecant, secant, and cotangent are some of their names.
Each student correctly made use of the trigonometric identities
cosec(θ) = 1/sin(θ)
1 -sin²(θ) = cos²(θ)
A.
Student A's work is correct.
Student B apparently got confused by the two denominators in Step 2, and incorrectly replaced them with their quotient instead of their product.
The transition from Step 2 can look like:
[tex]\frac{(\frac{1-sin^2\theta}{sin\theta} )}{cosec\theta} =\frac{1-sin^2\theta}{sin\theta} .\frac{1}{cosec\theta} =\frac{cos^2\theta}{(sin\theta)(cosec\theta)}[/tex]
Learn more about Simplify expressions:
https://brainly.com/question/29163610
#SPJ4
Complete question:
Students were asked to simplify the expression the quantity cosecant theta minus sine theta end quantity over cosecant period Two students' work is given. (In image below)
Part A: Which student simplified the expression incorrectly? Explain the errors that were made or the formulas that were misused. (5 points)
Part B: Complete the student's solution correctly, beginning with the location of the error. (5 points)
A bicycle wheel is 63m in diameter. how many metres does the bicycle travel for 100 revolutions of the wheel. (pie=²²/⁷
Answer:
19782m
Step-by-step explanation:
1 revolution = circumference
circumference = π * diameter
π = 3.1416
Then
circumference = 3.1416 * 63
= 197.92m
1 revolution = 197.82m
100 revolutions = 100*197.82m
= 19782m
Answer:
19.8 km
Step-by-step explanation:
To find:-
The distance travelled in 100 revolutions .Answer:-
We are here given that,
diameter = 63mWe can first find the circumference of the wheel using the formula,
[tex]:\implies \sf C = 2\pi r \\[/tex]
Here radius will be 63/2 as radius is half of diameter. So on substituting the respective values, we have;
[tex]:\implies \sf C = 2\times \dfrac{22}{7}\times \dfrac{63}{2} \ m \\[/tex]
[tex]:\implies \sf C = 198\ m \\[/tex]
Now in one revolution , the cycle will cover a distance of 198m . So in 100 revolutions it will cover,
[tex]:\implies \sf Distance= 198(100)m\\[/tex]
[tex]:\implies \sf Distance = 19800 m \\[/tex]
[tex]:\implies \sf Distance = 19.8 \ km\\[/tex]
Hence the bicycle would cover 19.8 km in 100 revolutions.
! 100 POINTS !
What is this question asking? What does it mean by floor plan? A step-by-step explanation would be very much appreciated.
Brainliest, ratings and thanks are promised if a helpful answer is received.
Step-by-step explanation:
So first of all u have to convert the metres into centimetres. After the conversation draw the map of both in centimetres and your map is done. The question is answered
Answer:
Determine the dimensions of the room: Measure the length and width of the room you want to draw a floor plan for using a tape measure. Record these measurements in meters.
Choose a scale: Since you want to use a scale of 1cm to 0.5m, you need to convert your measurements from meters to centimeters. For example, if your room measures 6 meters by 4 meters, you need to multiply each measurement by 100 to get 600cm by 400cm. Then, divide each measurement by 2 to get your scale measurement. In this case, your floor plan will be 300cm by 200cm.
Draw a rough sketch: Using a pencil and graph paper, draw a rough sketch of the room's shape based on the dimensions you have recorded.
Add doors and windows: Using the same scale, add doors and windows to your floor plan. Doors are typically represented by a straight line with an arc on top, while windows are represented by a straight line with a horizontal line through the middle.
Add fixtures and appliances: Add any fixtures and appliances that are permanent to the room, such as sinks, cabinets, and appliances. You can use symbols to represent these items, such as a rectangle for a refrigerator or a triangle for a sink.
Label everything: Finally, label everything on your floor plan using a legible font. This includes the dimensions of the room, the location of doors and windows, and the names of fixtures and appliances.
Step-by-step explanation:
Use the slope and y-intercept to identify the equation of this line.
The equation of the line is y = -2x. The correct option is the last option y = -2x
Writing the equation of the line in the given graphFrom the question, we are to write the equation of the line in the given graph using the slope and y-intercept from the graph
First, we will determine the slope of the graph
The slope of the graph calculated from the formula
Slope = Change in y / Change in x
Slope = (y₂ - y₁) / (x₂ - x₁)
Picking the points (-1, 2) and (0, 0)
Slope = (0 - 2) / (0 - (-1))
Slope = -2/(0 + 1)
Slope = -2/1
Thus,
Slope = -2
From the graph, the y-intercept of the graph is 0
Then,
From the slope-intercept form of the equation of a line,
y = mx + c
Where m is the slope
and c is the y-intercepts
The equation of the line is
y = -2x + 0
y = -2x
Hence, the equation is y = -2x
Learn more on Writing the equation of a line here: https://brainly.com/question/25722412
#SPJ1
What is the measure of angle ABC?
Raul's favorite gummy bear colors are yellow and red. He bought a package of gummy bears that only had his favorite colors. When he counted the gummy bears, he had 20 red and 23 yellow. What is the ratio of red gummy bears to yellow gummy bears?
Question 2 options:
23/20
23/43
20/23
20/43
The ratio between the number of red gummy bears to the number of yellow gummy bears is of:
20/23.
How to obtain the ratio?The ratio between the number of red gummy bears and the number of yellow gummy bears is obtained applying the proportions in the context of the problem.
To obtain the ratio between two amounts A and B, you need to divide the first amount by the second amount. The result of this division will give you the ratio of the two amounts.
The amounts for this problem are given as follows:
Amount A: 20 red gummy bears.Amount B: 23 yellow gummy bears.Hence the ratio between these two amounts is given as follows:
20/23.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
tapas and paella that originated in what country
NEED HELP ASAP 10 PONTS!!! please help me find the area and the perimeter!!!! i beg you at this point.
Answer: Area = 113.14 ft sq. Perimeter =
Step-by-step explanation:
break down the figure and solve area and perimeter for each
triangle = A = 1/2bh
A = 1/2 (8) (6)
A = 24 ft sq.
square = A = LW
A = (8) (8)
A = 64 ft sq
semi circle = A = 1/2 TT r^2
A = 1/2 (3.14) (4)^2
A = 1/2 (3.14) (16)
A = approximately 25.14 ft sq
rounded to hundredths
total AREA = 24 + 64 + 25.14 = 113.14
now we can find perimeter by breaking down the figures again
triangle
we know one leg is 6 ft and the other is 8 ft
we need to find the hypoteneuse using Pythagorean theorem.
a^2 + b^2 = c^2
6^2 = 8^2 = c^2
36 + 64 = c^2
100 = c^2
√100 = √c^2
10 ft = c
square
given two sides are 8ft and 8ft
semi circle - P is the same as circumference
P = ( 1/2 ) 2 π r
P = (1/2) (2) (3.14) (4)
P = 12.56
total PERIMETER = 12.56 + 8 + 8 + 6 + 10 = 44.56 ft
i attached a print screen showing my breakdowns
We have a circular plate of radius a
. The temperature distribution, u(rho,ϕ)
, has boundary conditions u(a,ϕ)=T1
when 0<ϕ<π
and T2
when π<ϕ<2π
. The steady state temperature distribution satisfies the Laplace equation.
I have used separation of variables to reduce the equation to two ODE's which I solved to find the general solution to be u(rho,ϕ)=∑Cλexp(λϕ)ϕλ
The question then asks us to find the Fourier series for u(a,ϕ)
. I did this by finding the series for the two boundary conditions which resulted in: u(a,ϕ)=(T1−T2)2+∑((−1m)−1)(T2−T1)sin(mϕ)πm
(Noted that I am not 100% sure this is correct)
The final part of the question, and the source of my problem, asks us to find an expression for u(rho,ϕ)
as an infinite series using the previous answer. I do not understand how to form a general solution using this - I cannot see how the Fourier series is of any relevance to a general solution as it doesnt appear to help us find Cλ
or λ
itself. Any help would be much appreciated!
the Fourier series solution is not directly used to find the general solution but is used as a part of it, along with the radial solution. The Fourier series solution helps in finding the solution to the given boundary value problem, which, when combined with the radial solution, gives the complete solution to the Laplace equation.
The Fourier series approach that you have used helps in finding the solution to the boundary value problem, i.e., finding u(a,ϕ) for the given boundary conditions. However, to find a general solution to the Laplace equation, we need to use the superposition principle, which states that the sum of any two solutions to the Laplace equation is also a solution.
Therefore, we can use the previously obtained Fourier series solution for u(a,ϕ) as a building block to construct the general solution. We know that the Laplace equation has radial symmetry, which means that the temperature distribution is only a function of radius (rho) and not of angle (ϕ). Hence, we can write the general solution as:
u(rho,ϕ) = f(rho) + u(a,ϕ)
where f(rho) is the radial component of the solution and u(a,ϕ) is the previously obtained Fourier series solution.
To find f(rho), we need to solve the radial ODE using the boundary conditions at rho=0 and rho=a. Once we have obtained f(rho), we can add it to u(a,ϕ) to get the general solution.
Therefore, the Fourier series solution is not directly used to find the general solution but is used as a part of it, along with the radial solution. The Fourier series solution helps in finding the solution to the given boundary value problem, which, when combined with the radial solution, gives the complete solution to the Laplace equation.
To know more about Fourier series solution click here:
brainly.com/question/29672996
#SPJ4
After y - 4x = 12 is put in slope-intercept form, what is the slope?
-4
-1/4
-3
4
6TH GRADE MATH, WRITE THE EQUATION FOR THIS GRAPH IN THE FORM OF Y=MX+B, TYSM
Answer:
m = 0
Step-by-step explanation:
Slope = rise/run or (y2 - y1) / (x2 - x1)
Pick 2 points (0,2) (1,2)
We see the y stay the same and the x increase by 1, so the slope is
m = 0/1 = 0
So, the slope is 0
Explain the Pythagorean identity in terms of the unit circle.
The three Pythagorean trigonometric identities, which I’m sure one can find in any Algebra-Trigonometry textbook, are as follows:
sin² θ + cos² θ = 1
tan² θ + 1 = sec² θ
1 + cot² θ = csc² θ
where angle θ is any angle in standard position in the xy-plane.
Consistent with the definition of an identity, the above identities are true for all values of the variable, in this case angle θ, for which the functions involved are defined.
The Pythagorean Identities are so named because they are ultimately derived from a utilization of the Pythagorean Theorem, i.e., c² = a² + b², where c is the length of the hypotenuse of a right triangle and a and b are the lengths of the other two sides.
This derivation can be easily seen when considering the special case of the unit circle (r = 1). For any angle θ in standard position in the xy-plane and whose terminal side intersects the unit circle at the point (x, y), that is a distance r = 1 from the origin, we can construct a right triangle with hypotenuse c = r, with height a = y and with base b = x so that:
c² = a² + b² becomes:
r² = y² + x² = 1²
y² + x² = 1
We also know from our study of the unit circle that x = r(cos θ) = (1)(cos θ) = cos θ and y = r(sin θ) = (1)(sin θ) = sin θ; therefore, substituting, we get:
(sin θ)² + (cos θ)² = 1
1.) sin² θ + cos² θ = 1 which is the first Pythagorean Identity.
Now, if we divide through equation 1.) by cos² θ, we get the second Pythagorean Identity as follows:
(sin² θ + cos² θ)/cos² θ = 1/cos² θ
(sin² θ/cos² θ) + (cos² θ/cos² θ) = 1/cos² θ
(sin θ/cos θ)² + 1 = (1/cos θ)²
(tan θ)² + 1 = (sec θ)²
2.) tan² θ + 1 = sec² θ
Now, if we divide through equation 1.) by sin² θ, we get the third Pythagorean Identity as follows:
(sin² θ + cos² θ)/sin² θ = 1/sin² θ
(sin² θ/sin² θ) + (cos² θ/sin² θ) = 1/sin² θ
1 + (cos θ/sin θ)² = (1/sin θ)²
1 + (cot θ)² = (csc θ)²
3.) 1 + cot² θ = csc² θ
3x + y = 6
Y + 2 = x
Answer: x = 2, y = 0
Step-by-step explanation:
Assuming you need help solving for x or y, and the capital Y is y, we have the system of equations:
3x + y = 6
y + 2 = x
Substituting x for y + 2 gives us
3(y + 2) + y = 6
3y + 6 + y = 6
4y = 0
y = 0
Plugging y = 0 in for the second equation gives us
x = 0 + 2, or x = 2
can someone help?
solve for x, using the secant lines
10cm, 7cm, 7cm. round to the nearest tenth
x = 4.9
Solution:
We can use the intersecting chords formula:
[tex]\text{(segment piece) x (segment piece) = (segment piece) x (segment piece)}[/tex][tex]7\times7 = 10x[/tex]
[tex]49 = 10x[/tex]
Divide each side by 10[tex]49\div10=10x\div10[/tex]
[tex]4.9 = x[/tex]
Therefore, x = 4.9.