Please help I need this done

Please Help I Need This Done

Answers

Answer 1
The 3rd option if not sorry I think that is the answer

Related Questions

A helicopter is ascending vertically witha speed of 5.40 m/s. At a height of 105 m above the earth a package is dropped from the helicopter. How much time does is take for the package to reach the ground

Answers

Answer: 5.21 s

Explanation:

Given

Helicopter ascends vertically with [tex]u=5.4\ m/s[/tex]

Height of helicopter [tex]h=105\ m[/tex]

When the package leaves the helicopter, it will have the same vertical velocity

Using equation of motion

[tex]\Rightarrow h=ut+\dfrac{1}{2}at^2\\\\\Rightarrow 105=-5.4t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-5.4t-105=0\\\\\Rightarrow t=\dfrac{5.4\pm \sqrt{5.4^2+4\times 4.9\times 105}}{2\times 4.9}\\\\\Rightarrow t=\dfrac{5.4\pm 45.68}{9.8}\\\\\Rightarrow t=5.21\ s\quad \text{Neglect negative value}[/tex]

So, package will take 5.21 s to reach the ground

Which one will it be

Answers

Answer: D

The force decreases inversely proportional to 1/r(squared)

Explanation:

I looked it up im sure this is correct

Answer:

option d

Explanation:

Two objects are attracted to each other by a gravitational force F. ... As the distance r from the center of the planet increases, what happens to the force of gravity on the rocket? The force decreases inversely proportional to 1/r(squared) A spacecraft is orbiting Earth with an orbital radius r.

the force of gravity is represented as

F = GM1M2/r²

now the mass of warth and rocket is considered to be constant and G is a universal constant so it can be said

F is inverse to r²

therefore as the value of r increases that is distance between earth and rocket increases the force decreases

(Follows inverse square law)

why are you teachers regarded as professionals​

Answers

Answer:

coz teaching is their profession.

An object with mass m = 0.56 kg is attached to a string of length r = 0.72 m and is rotating with an angular velocity ω = 1.155 rad/s. What is the centripetal force acting in the object?

Answers

Answer:

The centripetal force is 0.54 N.

Explanation:

mass, m = 0.56 kg

radius, r = 0.72 m

angular speed, w = 1.155 rad/s

The centripetal force is given by

[tex]F = m r w^2\\\\F =0.56\times 0.72\times 1.155\times 1.155\\\\F = 0.54 N[/tex]

Determine the tension in the string that connects M2 and M3.

Answers

therefore mass m1=4.8 kg and the tension in the horizontal spring T2=10N.

HOPE IT HELPS YOU

PLEASE Mark me as brainliest.

☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️

13. What type of lens bends light outwards and away from a point?
concave

Answers

Answer:

No,it isn't concave. The correct answer is convex lens.

Explanation:

A lens is a piece of transparent material bound by two surfaces of which at least one is curved. A lens bound by two spherical surfaces bulging outwards is called a bi-convex lens or simply a convex lens. A single piece of glass that curves outward and converges the light incident on it is also called a convex lens.

Convex lens is the answer.

See the attached diagram.

Page
E QON
1 What is force ? Write its unit and mention
any
three effects of the force.​

Answers

Force is a push or a pull that changes or trends to change the state of rest or uniform motion of an object or changes the direction or shape of an object. It causes objects to accelerate. SI unit is Newton.

1) Can change the state of an object : For example, pushing a heavy stone in order to move it.

2) May change the speed of an object if it is already moving. For example, catching a ball hit by a batsman.

3) May change the direction of motion of an object.

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30.08 as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp.

Answers

Answer:

2.55 m/s

Explanation:

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30° as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp. Use energy methods to determine the speed of the crate at the bottom of the ramp.

Solution:

The work done by friction is given as:

[tex]W_f=F_f\Delta S\\\\Where\ F_f\ is\ the \ frictional\ force=-5N(the\ negative \ sign\ because\ it\\acts\ opposite\ to \ direction\ of\ motion),\Delta S=slope\ length=1\ m\\\\W_f=F_f\Delta S=-5\ N*1\ m=-5J[/tex]

The work done by gravity is:

[tex]W_g=F_g*s*cos(\theta)\\\\F_g=force\ due\ to\ gravity=mass*acceleration\ due\ to\ gravity=3\ kg*9.81\\m/s^2, s=1\ m, \theta=angle\ between\ force\ and\ displacement=90-30=60^o\\\\W_g=3\ kg*9.81\ m/s^2*1\ m*cos(60)=14.72\ J\\\\The\ Kinetic\ energy(KE)=W_f+W_g=14.72\ J-5\ J=9.72\ J\\\\Also, KE=\frac{1}{2} mv^2\\\\9.72=\frac{1}{2} (3)v^2\\\\v=\sqrt{\frac{2*9.72}{3} } =2.55\ m/s[/tex]

Increasing the surfactant concentration above the critical micellar concentration
will result in: Select one:
1.An increase in surface tension
2. A decrease in surface tension
3. No change in surface tension
4.None of the above​

Answers

Answer:

Explanation:no change in surface tension

An increase in the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

In water-gas interface, surfactant reduces the surface tension of water by adsorbing at the liquid–gas interface.

Also, in oil-water interface, surfactant reduces the interfacial tension between oil and water by adsorbing at the oil-water interface.

The concentration of the surfactant can increase to a level called critical micellar concentration, which is an important characteristic of a surfactant.

As the concentration of the surfactant increases before critical micellar concentration, the surface tension changes strongly with an increase in the concentration of the surfactant. After reaching the critical micellar concentration, any further increase in the concentration will result in no change of the surface tension, that is the surface tension will be constant.

Thus, increasing the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

Learn more here: https://brainly.com/question/15785205

A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12.0 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping

Answers

Explanation:

The centripetal force [tex]F_c[/tex] on the car must equal the frictional force f in order to avoid slipping off the road. Let's apply Newton's 2nd law to the y- and x-axes.

[tex]y:\:\:\:\:N - mg = 0[/tex]

[tex]x:\:\:F_c = f \Rightarrow \:\:\:m \dfrac{v^2}{r} = \mu N[/tex]

or

[tex]m \dfrac{v^2}{r} = \mu mg[/tex]

Solving for [tex]\mu[/tex],

[tex]\mu = \dfrac{v^2}{gr} = \dfrac{(12.0\:\frac{m}{s})^2}{(9.8\:\frac{m}{s^2})(52\:m)} = 0.28[/tex]

An 8.50 kg point mass and a 14.5 kg point mass are held in place 50.0 cm apart. A particle of mass (m) is released from a point between the two masses 12.0 cm from the 8.50 kg mass along the line connecting the two fixed masses.Find the magnitude of the acceleration of the particle.

Answers

Answer:

[tex]a=2.8*10^{-9}m/s[/tex]

Explanation:

From the question we are told that:

First Mass [tex]m=8.50kg[/tex]

2nd Mass [tex]m=14.5kg[/tex]

Distance

[tex]d_1=50=>0.50m\\\\d_2=>12cm=>0.12m[/tex]

Generally the Newtons equation for Gravitational force is mathematically given by

[tex]F_n=\frac{Gm_nm}{(r_n)^2}[/tex]

Therefore

Initial force on m

[tex]F_1=\frac{Gm_1m}{(r_1)^2}[/tex]

Final force on m

[tex]F_2=\frac{Gm_2m}{(r_2)^2}\\\\F=\frac{Gm_1m}{(r_1)^2}-\frac{Gm_2m}{(r_2)^2}[/tex]

Acceleration of m

[tex]a=\frac{F}{m}\\\\a=\frac{Gm_1}{r_1^2}-\frac{Gm_2}{r_2^2}[/tex]

[tex]a=6,67*10^{-11}{\frac{8.5}{0.12}}-\frac{14.5}{0.50}[/tex]

[tex]a=2.8*10^{-9}m/s[/tex]

LC-circuit of the radio receiver consists of variable capacitor (Cmin= 1 pF, Cmax=10 pF) and inductor
with inductance 1 µH. Determine the wavelength range of this radio receiver.

Answers

Answer:

the radio can tune wavelengths between 1.88 and 5.97 m

Explanation:

The signal that can be received is the one that is in resonance as the impedance of the LC circuit.

         X = X_c - X_L

         X = 1 / wC - w L

at the point of resonance the two impedance are equal so their sum is zero

         X_c = X_L

         1 / wC = w L

         w² = 1 / CL

         w = [tex]\sqrt{\frac{1}{CL} }[/tex]

let's look for the extreme values

C = 1  10⁻¹² F

         w = [tex]\sqrt{\frac{1}{ 1 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]

         w = [tex]\sqrt{1 \ 10^{18}}[/tex]

         w = 10⁹ rad / s

C = 10 10⁻¹² F

         w = [tex]\sqrt{\frac{1}{10 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]Ra 1/10 10-12 1 10-6

         w = [tex]\sqrt{0.1 \ 10^{18}}[/tex]Ra 0.1 1018

         w = 0.316 10⁹ rad / s

Now the angular velocity and the frequency are related

           w = 2π f

           f = w / 2π

the light velocity  is

           c = λ f

           λ = c / f

we substitute

          λ = c 2π/w

               

we calculate the two values

 C = 1 pF

          λ₁ = 3 10⁸ 2π / 10⁹

          λ₁= 18.849 10⁻¹ m

          λ₁ = 1.88 m

C = 10 pF

           λ₂ = 3 10⁸ 2π / 0.316 10⁹

           λ₂ = 59.65 10⁻¹ m

           λ₂ = 5.97 m

so the radio can tune wavelengths between 1.88 and 5.97 m

Who stated that man is an animal

Answers

aristotle is the answer to this question

Your car breaks down in the middle of nowhere. A tow truck weighing 4000 lbs. comes along and agrees to tow your car, which weighs 2000 lbs., to the nearest town. The driver of the truck attaches his cable to your car at an angle of 20 degrees to horizontal. He tells you that his cable has a strength of 500 lbs. He plans to take 10 secs to tow your car at a constant acceleration from rest in a straight line along a flat road until he reaches the maximum speed of 45 m.p.h. Can the driver carry out the plan

Answers

Answer:

F = 1010 Lb

the tension on the cable is greater than its resistance, which is why the plan is not viable

Explanation:

For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.

          v = v₀ + a t

how the car comes out of rest v₀ = 0

          a = v / t

let's reduce to the english system

          v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s

let's calculate

          a = 66/10

          a = 6.6 ft / s²

now let's write Newton's second law

X axis

         Fₓ = ma

with trigonometry

         cos 20 = Fₓ / F

         Fₓ = F cos 20

we substitute

          F cos 20 = m a

          F = m a / cos20

          W = mg

          F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]

let's calculate

          F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20

          F = 1010 Lb

Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.

Wind is caused by ___. the earth's tilt the Coriolis effect temperature differences humidity

Answers

I am guessing wind is caused by climate change in the atmosphere

Explanation:

wind is cause by climate change in the atmosphere that depends weather is is breezy really cold or rain and cold

Answer:

caused by the uneven heating of the Earth by the sun and the  own rotation.

A child throws a ball vertically upward to a friend on a balcony 28 m above him. The friend misses the ball on its upward flight but catches it as it is falling back to earth. If the friend catches the ball 3.0 s after it is thrown, at what time did it pass him on its upward flight

Answers

Answer:

[tex]t=1.9 sec[/tex]

Explanation:

From the question we are told that:

Height [tex]h=28m[/tex]

Time [tex]t=3s[/tex]

Generally the Newton's equation for Initial velocity upward is mathematically given by

 [tex]s=ut+\frtac{1}{2}at^2[/tex]

 [tex]28=3u-\frac{1}{2}*9.8*3^2[/tex]

 [tex]u=24.03m/s[/tex]

Generally the velocity at  elevation and depression occurs  as ball arrives and passes through S=28

 [tex]v=\sqrt{24.03-2*9.8*28}[/tex]

 [tex]v=5.35m/s and -5.35m/s[/tex]

Generally the Newton's equation for time to reach initial velocity  is mathematically given by

 [tex]v=u+at[/tex]

 [tex]5.35=24.03-9.8t[/tex]

 [tex]t=\frac{28.03-5.35}{9.8}[/tex]

 [tex]t=1.9 sec[/tex]

A 0.0780 kg lemming runs off a
5.36 m high cliff at 4.84 m/s. What
is its kinetic energy (KE) when it
is 2.00 m above the ground?

Answers

Answer:

0.913

Explanation:

k.e=1/2mv square

k.e=1/2×0.078g×23.4256m/s square

k.e=0.913J

The kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).

To calculate the kinetic energy (KE) of the lemming when it is 2.00 m above the ground, we need to consider the change in its potential energy (PE) as it falls.

The potential energy at a height h is given by:

PE = m g h

Where:

m is the mass of the lemming (0.0780 kg)

g is the acceleration due to gravity (9.8 m/s²)

h is the height above the ground

Given:

Height of the cliff (h) = 5.36 m

Velocity of the lemming (v) = 4.84 m/s

Height above the ground (h') = 2.00 m

The lemming will lose potential energy as it falls from the cliff, which is converted into kinetic energy. Therefore, the kinetic energy when it is 2.00 m above the ground is equal to the difference between its total initial kinetic energy and the potential energy at that height.

Initial potential energy at the top of the cliff:

PE_initial = m g h

Potential energy when it is 2.00 m above the ground:

PE_final = m * g * h'

The change in potential energy is given by:

ΔPE = PE_final - PE_initial

The kinetic energy (KE) when it is 2.00 m above the ground:

KE = ΔPE = -ΔPE (due to energy conservation)

Let's calculate the potential energy at the top of the cliff and when it is 2.00 m above the ground:

PE_initial = m ×g × h

= 0.0780 kg × 9.8 m/s² × 5.36 m

PE_initial ≈ 4.09 J

PE_final = m ×g × h'

= 0.0780 kg ×9.8 m/s² ×2.00 m

PE_final ≈ 1.53 J

The change in potential energy (ΔPE) is:

ΔPE = PE_final - PE_initial = 1.53 J - 4.09 J

ΔPE ≈ -2.56 J

Since the change in potential energy is equal to the kinetic energy, the kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).

To know more about kinetic energy

https://brainly.com/question/999862

#SPJ2

ou charge a piece of aluminum foil (mass = 4.99 g) by touching it to a charged rod. The charged rod gives the aluminum foil a charge of 13 µC. Your professor brings a charged plate over and tells you to put the aluminum foil on top of the plate. To your surprise the aluminum foil hovers motionless in the air above it! Calculate the value of the electric field from the charged plate (assume it is a uniform field and the aluminum foil is a point charge).

Answers

Answer:

The appropriate answer is "3761.69 N/C".

Explanation:

Given that:

Mass,

m = 4.99 g

or,

   = [tex]4.99\times 10^{-3} \ kg[/tex]

Charge,

q = 13 µC

or,

  = [tex]13\times 10^{-6} \ C[/tex]

As we know,

⇒ [tex]F=mg=Eq[/tex]

then,

⇒ [tex]E=\frac{mg}{q}[/tex]

By putting the values, we get

        [tex]=\frac{4.99\times 10^{-3}\times 9.8}{13\times 10^{-6}}[/tex]

        [tex]=3761.69 \ N/C[/tex]

1000 grams of water is heated from 0 degree to 200 degree . The specific heat of water is 4186 j/kg.°C. Estimate the change in entropy of the water.​

Answers

Answer:2

Explanation:

what change occurs to the mass of an object when a unbalanced

Answers

Answer:

The mass decreases

Explanation:

Just smart

turn this scentence to repirted speach.

i ate icecream
She said that..........​

Answers

Answer:

dhfhffuththt9tr8tujtngigjtjrjrjrurur

Fvhjgxvbbdfhj if Dan kf xdhgxzsf

A police car in hot pursuit goes speeding past you. While the siren is approaching, the frequency of the sound you hear is 5500 Hz. When the siren is receding away from you, the frequency of the sound is 4500 Hz. Use the Doppler formula to determine the velocity of the police car. Use vsound=330 m/s.
What is the velocity v of the police car ?

Answers

Vs = 34m/s
I don’t have an explanation my apologies.

When a police car in hot pursuit goes speeding past you, the velocity v of the police car is 33 m/s.

What is the Doppler formula?

The formula is used when there exists a Doppler shift. The Doppler shift is due to the relative motion of sound waves between the source and observer.

The frequency increase by the Doppler effect is represented by the formula

f' = [tex]\dfrac{v-v_{o} }{v-v_{s} }[/tex]× f

Given the frequency of source f' is 5500 Hz . Velocity of the observer v₀  is 0.

Substituting the value into the equation will give us the velocity of the police car.

[tex]5500 = \dfrac{330}{330-v} \times f[/tex]...........(1)

When the car is receding, the frequency of the receiving signal f = 4500 Hz.

[tex]4500 = \dfrac{330}{330+v} \times f[/tex]..........(2)

Solving both equation, we get the velocity of a police car.

v = 33 m/s

Therefore, the velocity v of the police car is 33 m/s.

Learn more about Doppler equation.

https://brainly.com/question/15318474

#SPJ2

A 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

Answers

Answer:

3.6 KJ

Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

The workdone = the energy.

There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )

P.E = mgh

P.E = 70 × 9.8 × 1.6

P.E = 1097.6 J

P.E = 1.098 KJ

K.E = 1/2mv^2

K.E = 1/2 × 70 × 8.5^2

K.E = 2528.75 J

K.E = 2.529 KJ

The non conservative workdone = K.E + P.E

Work done = 1.098 + 2.529

Work done = 3.63 KJ

Therefore, the non conservative workdone is 3.6 KJ approximately

which of the following is a correct statement. a. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are constant. b. In dc steady state conditions, the voltages across the capacitors are zero and the currents through the capacitance are constant. The current through the inductors are constant and the voltage across the inductances are zero. c. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are zero and the voltage across the inductances are constant. d. WIn dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

Answers

Answer:

d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

Explanation:

The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.

So, in dc steady state, the voltage across a capacitor is constant and the current zero.

The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.

So, in dc steady state, the voltage across an inductor is zero and the current constant.

So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.

The answer is d.

g you hang an object of mass m on a spring with spring constant k and find that it has a period of T. If you change the spring to one that has a spring constant of 2 k, the new period is

Answers

Answer:

a)   T = 2π [tex]\sqrt{\frac{m}{k} }[/tex],  b)  T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

Explanation:

a) A system formed by a mass and a spring has a simple harmonic motion with angular velocity

          w² = k / m

angular velocity and period are related

          w = 2π /T

     

we substitute

          4π²/ T² = k / m

           T = 2π [tex]\sqrt{\frac{m}{k} }[/tex]

b) We change the spring for another with k ’= 2 k, let's find the period

           T ’= 2π [tex]\sqrt{\frac{m}{k'} }[/tex]

           T ’= 2π [tex]\sqrt{ \frac{m}{2k} }[/tex]

           T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

can anyone answer this fast pls

Answers

i believe the answer would be 4.5. because it wouldnt be c or d. and 2 seems too small.

the 200 g baseball has a horizontal velocity of 30 m/s when it is struck by the bat, B, weighing 900 g, moving at 47 m/s. during the impact with the bat, how many impules of importance are used to find the final velocity of the bat

Answers

Solution :

Given :

Mass of the baseball, m = 200 g

Velocity of the baseball, u = -30 m/s

Mass of the baseball after struck by the bat, M = 900 g

Velocity of the baseball after struck by the bat, v = 47 m/s

According to the conservation of momentum,

[tex]Mv+mu=Mv_1+mv_2[/tex]

(900 x 47) + (200 x -30)  = (900 x [tex]v_1[/tex]) + (200 x [tex]v_2[/tex])

36300 =  (900 x [tex]v_1[/tex]) + (200 x [tex]v_2[/tex])

[tex]9v_1 + 2v_2 = 363[/tex] ..............(i)

[tex]9v_1 = 363 - 2v_2[/tex]

[tex]v_1=\frac{363 - 2v_2}{9}[/tex]

The mathematical expression for the conservation of kinetic energy is

[tex]\frac{1}{2}Mv^2+\frac{1}{2}mu^2 = \frac{1}{2}Mv_1^2+\frac{1}{2}mv_2^2[/tex]

[tex]\frac{1}{2}(900)(47)^2+\frac{1}{2}(200)(-30)^2 = \frac{1}{2}(900)v_1^2+\frac{1}{2}(200)v_2^2[/tex]    ................(ii)

[tex]$(9)(14)^2+(2)(-30)^2 = (9)v_1^2+2v_2^2$[/tex]  

[tex]21681 = 9v_1^2+2v_2^2[/tex]

Substituting (i) in (ii)

[tex]21681= 9\left( \frac{363-2v_2}{9}\right)^2+2v_2^2[/tex]

[tex](363-2v_2)^2+18v_2^2=195129[/tex]

[tex](363)^2+18v_2^2-2(363)(2v_2)+(363)^2-195129=0[/tex]

[tex]22v_2^2-145v_2-63360=0[/tex]

Solving the equation, we get

[tex]v_2=96 \ m/s, -30 \ m/s[/tex]

The negative velocity is neglected.

Therefore, substituting 96 m/s for [tex]v_2[/tex] in (i), we get

[tex]v_1=\frac{363-(2 \times 96)}{9}[/tex]

     = 19

Thus, only impulse of importance is used to find final velocity.

Human vision cuts off on the red side of the spectrum at about 675 nm. What is the energy of a photon (in J) of this wavelength?

Answers

Answer:

The energy of a photon is 2.94x10⁻¹⁹ J.

Explanation:

The energy of the photon is given by:

[tex] E = \frac{hc}{\lambda} [/tex]  

Where:

h: is Planck's constant = 6.62x10⁻³⁴ J.s

c: is the speed of light = 3.00x10⁸ m/s

λ: is the wavelength = 675 nm

Hence, the energy is:

[tex] E = \frac{hc}{\lambda} = \frac{6.62 \ccdot 10^{-34} J.s*3.00 \cdot 10^{8} m/s}{675 \cdot 10^{-9} m} = 2.94 \cdot 10^{-19} J [/tex]

Therefore, the energy of a photon is 2.94x10⁻¹⁹ J.

I hope it helps you!

A train starts from rest and accelerates uniformly until it has traveled 5.6 km and acquired a forward velocity of The train then moves at a constant velocity of for 420 s. The train then slows down uniformly at until it is brought to a halt. The acceleration during the first 5.6 km of travel is closest to which of the following?

a. 0.19 m/s^2
b. 0.14 m/s^2
c. 0.16 m/s^2
d. 0.20 m/s^2
e. 0.17 m/s^2

Answers

Answer:

The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

Explanation:

Given the data in the question;

since the train starts from rest,

Initial velocity; u = 0 m/s

final velocity; v = 42 m/s

distance covered S = 5.6 km = ( 5.6 × 1000 )m = 5600 m

acceleration a = ?

From the third equation of motion;

v² = u² + 2as

we substitute in our values

( 42 )² = ( 0 )² + [ 2 × a × 5600 ]

1764 = 0 + [ 11200 × a ]

1764 = 11200 × a

a = 1764 / 11200

a = 0.1575 ≈ 0.16 m/s²          { two decimal place }

Therefore, The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

Determine the magnitude of the minimum acceleration at which the thief can descend using the rope. Express your answer to two significant figures and include the appropriate units.

Answers

Answer: hello your question is incomplete below is the missing part

A 69-kg petty thief wants to escape from a third-story jail window. Unfortunately, a makeshift rope made of sheets tied together can support a mass of only 58 kg.

answer:

To 2 significant Figures = 1.6 m/s^2

Explanation:

Calculate the magnitude of minimum acceleration at which the thief can descend

we apply the relation below

Mg - T = Ma  --- ( 1 )

M = 69kg

g = 9.81

T = 58 * 9.81

a = ? ( magnitude of minimum acceleration)

From equation 1

a = [ ( 69 * 9.81 ) - ( 58 * 9.81 ) ] / 69

  = 1.5639 m/s^2

To 2 significant Figures = 1.6 m/s^2

Other Questions
Which measure of central tendency best describes the data set below?{0, 80, 85, 88, 90, 95} A. the mean, 73 B. the mode, none C. the range, 95 D. the median, 86.5 Pick ALL the options below that make g > 21 trueg = 21 1.g = 17 2.g = 12 3.g = 34 4.g = 25 5. A school chorus has 90 sixth-grade students and 75 seventh-grade students. The music director wants to make groups of performers, with the same combination of sixth- and seventh-grade students in each group. She wants to form as many groups as possible. What is the largest number of groups that could be formed? A cylinder has length "L" and area of cross-section "A" what is its volume Pleas help this is due today!! "Better let it burn," said the soldier solemnly."If you don't want it Morris," said the other, "give it to me.""I won't." said his friend doggedly. "I threw it on the fire. If you keep it, don't blame me for what happens. Pitch it on the fire like a sensible man."a. The soldier is grateful for the wishes that have been granted.b. The soldier wants to warm up the paw.c. The soldier is terrified of the power the paw has.d. White doesn't want anything to do with the paw. A new pair of Air Jordan's that sells for $150 decreases at a rate of 14% each year. Find the value of the shoes after 5 years (round to the nearest cent). If the pH = 6.5, what is the [H+]? *3.16 x 10-73.16 x 10-6O3.16 x 10-5 Please help quadratic equation!! 20 points 2 1/3 - (-5) = what does it equal Describe how the lizard population is changing Which of the following correctly ranks the following bonds in order from most to least polar?C-H, N-H, O-H, F-H a) O-H > F-H > N-H > C-H b) F-H > N-H > O-H > C-H c) C-H > N-H > O-H > F-H d) F-H > O-H > N-H > C-H (Will mark brainlest ) help me to find the value of x or theta (step by step) You have 3 five dollar bills and 4 ten dollar bills in your pocket. If you pull out 2 bills, what is the probability they are both tens? PLZ HELP! ASAP! This is an ixl so hopefully u wont go down Please help its urgent quick fast Lighting McQueen! Solve the system of equation y = -2+5 y = x^2 + 3x + 9 A car moving in a straight line uniformly accelerated speed increased from 3 m / s to 9 m / s in 6 seconds. With what acceleration did the car move?a.2 m/s2b.1 m/s2c.0 m/s2d.3 m/s2 i need someone to do my 7th grade summer school work i will pay it's math and ela add me on discord if going to help me Kalani#5906 Identify the statement that describes the imperfection of natural selection. Identify the statement that describes the imperfection of natural selection. Natural selection has not had sufficient time to create the optimal design in each case but will do so given enough time. Natural selection is generally limited to modifying structures that were present in previous generations and in previous species. In many cases, phenotype is not merely determined by genotype but by the environment as well. Though we may not consider the fit between the current skeletal arrangements and their functions excellent, we should not doubt that natural selection ultimately produces the best design.