Answer:
In part 1, the value for D is given. Putting D as 1 gives us the answer 17/20
In part 2, the value of E is given as 1, putting E as 1 gives us D = 20/17
what is empowerment and radication please that is not from google
Answer:
In MATH:
Empowerment - Gaining the skills required in language and practices to fully understand math.
Radication - The process of extracting a number's root.
In ENGLISH:
Empowerment - The process of gaining more power over anything, including yourself, others, society, government, and corporations.
Ex - In the spirit of empowerment, the company has implemented a new system that asks employees to nominate one another for bonuses.
Radication - The process of establishing, fixing, or creating.
Ex - The high prestige of the premier is radicated in the hearts of the people.
1 A. All master photographers are artists.
2. Ansel Adams is a master photographer.
Therefore, Ansel Adams is an artist.
B. 1. All master photographers are artists.
2. Ansel Adams is an artist.
Therefore, Ansel Adams is a master photographer.
Answer:
A is the appropriate option.
Step-by-step explanation:
The question given is a conditional statement.
With the condition that all master photographers are artist. This implies that any person who is a master photographer is automatically an artist.
A. Comparing the statement here, since Ansel Adam's is a master photographer, he is an artist.
B. Ansel Adams is an artist, but it is possible that not all artists are master photographer.
A is the correct option.
1. All master photographers are artists.
2. Ansel Adams is a master photographer.
Therefore, Ansel Adams is an artist.
Answer:
The correct answer is A.
Step-by-step explanation:
Find xAssume that segments that appear tangent are tangent
Step-by-step explanation:
I assume the length that got cut off is 18.
Use Pythagorean theorem:
x² + 36² = (x + 18)²
x² + 1296 = x² + 36x + 324
972 = 36x
x = 27
Can someone explain and tell me how to go about solving this? Will mark brainliest
Answer:
58 cm
Step-by-step explanation:
Assuming that the squares’s sides are whole numbers, we can find the size of the squares by looking at numbers squared. We find three that equal 153.
10²=10x10=100
7²=7x7=49
2²=2x2=4
100+49+4=153
Now we look at how they are put together to find the perimeter.
The 2x2 has 3 exposed sides totaling 6.
The 7x7 has a top and bottom of 7, and part of a third side of 7-2=5. 7+7+5=19
The 10x10 has 3 exposed sides of 10, and part of a third side of 10-7=3. 10+10+10+3=33
TOTAL Perimeter = 6+19+33=58 cm
What is the name of a geometric figure that looks an orange
A. Cube
B. Sphere
C. Cylinder
D. Cone
Answer:
b . sphere
Step-by-step explanation:
the length of a triangle is x and its width is 2x. what is the area if the length and width are each increased by 1?
A. 2x^2+ 3x+ 1
B. 2x^2+ 1
C. 2x^2+ 2x+ 1
D. 2x^2+ 3x+ 2
Answer:
Hey there!
(2x+1)(x+1)
2x^2+1x+2x+1
2x^2+3x+1
The answer would be A.
Let me know if this helps :)
What is f ( 1/3)? When the function is f(x) =-3x+7
Answer:
f(1/3) = 6
Step-by-step explanation:
f(x) =-3x+7
Let x = 1/3
f(1/3) =-3*1/3+7
= -1 +7
= 6
Answer:
f(1/3) = 6
Step-by-step explanation:
The function is:
● f(x) = -3x+7
Replace x by 1/3 to khow the value of f(1/3)
● f(1/3) = -3×(1/3) +7 = -1 +7 = 6
Please answer this correctly without making mistakes
Answer:
151 9/19
Step-by-step explanation:
Step-by-step explanation:
Option A is the correct answer because it is equal to 151.47
omplete the following multiplication problems.
a. 0.34 × 6
b. 0.11 × 4
c. 17 × 0.07
d. 28 × 0.003
e. 3.8 × 5
f. 5.931 × 7
g. 14.07 × 13
h. 3.005 × 32
i. 0.8 × 0.3
j. 0.45 × 0.05
k. 0.09 × 0.02
l. 0.074 × 0.08
m. 2.3 × 0.9
n. 7.25 × 0.3
o. 4.53 × .003
p. 53.67 × 0.056
q. 1.1 × 3.7
r. 3.76 × 18.9
s. 4.57 × 6.1
t. 24.13 × 1.48
B(n)=2^n A binary code word of length n is a string of 0's and 1's with n digits. For example, 1001 is a binary code word of length 4. The number of binary code words, B(n), of length n, is shown above. If the length is increased from n to n+1, how many more binary code words will there be? The answer is 2^n, but I don't get how they got that answer. I would think 2^n+1 minus 2^n would be 2. Please help me! Thank you!
Answer:
More number of words that can be made: [tex]\bold{2^n}[/tex]
Please refer to below proof.
Step-by-step explanation:
Given that:
The number of binary code words that can be made:
[tex]B(n) =2^n[/tex]
where n is the length of binary numbers.
Binary numbers means 2 possibilities either 0 or 1.
Here, suppose if we have 5 as the length of binary number.
And there are 2 possibilities for each digit.
So, total number of possibilities will be [tex]2\times 2\times 2\times 2\times 2 = 2^5[/tex]
If the length of binary number is 2.
The total words possible are [tex]2^2[/tex].
These numbers are:
{00, 01, 10, 11}
If the length of binary number is 3. (increasing the 'n' by 1)
The total words possible are [tex]2^3[/tex].
These words are:
{000, 001, 010, 100, 011, 101, 110, 111}
So, number of More binary words = 8 - 4 = 4 or [tex]2^2[/tex] or [tex]2^n[/tex].
So, the answer is [tex]2^n[/tex].
Let us try to prove in generic terms:
[tex]B(n) = 2^n[/tex]
Increasing the n by 1:
[tex]B(n+1) = 2^{n+1}[/tex]
Number of more words made by increasing n by 1:
[tex]B(n+1) -B(n)= 2^{n+1} -2^n\\\Rightarrow 2\times 2^{n} -2^n\\\Rightarrow 2^n(2-1)\\\Rightarrow \bold{2^n}[/tex]
Hence, proved that:
More number of words that can be made: [tex]\bold{2^n}[/tex]
You missed your payment due date and now have $300 on your card that has a 24% APR. You are able to pay $100 in one month and then every month after that. How many months will it take you to pay this credit card off?
Find the value of the test statistic to test for a difference in the areas. Round your answer to two decimal places, if necessary.
Answer:
hello your question has some missing parts attached below is a picture of the complete question
Answer : 3.59
Step-by-step explanation:
Calculating the standard deviation, mean and standard error of the hourly wages
Area 1 : mean = 12.75 , std = 4.9497 , std error = 1.75
Area 2 : mean = 18.25, std = 4.3671, std error = 1.54399
Area 3 : mean = 16.25, std = 2.8660, std error = 1.01330
mean = sum of terms / number of terms
std = [tex]\sqrt{}[/tex] (X − μ)2 / n
std error = std / [tex]\sqrt{n}[/tex]
The value of the test statistic to test for a difference in the areas is
3.59 ( using anova table attached below )
Consider the polynomial 2x5 + 4x3 - 3x8
Part A The polynomial in standard form is:
Part B: The degree of the polynomial is:
Part C: The number of terms in the polynomial is:
Part D: The leading term of the polynomials:
Part E: The leading coefficient of the polynomial is:
Answer:
Step-by-step explanation:
Considering the polynomial 2x⁵ + 4x³ - 3x⁸. The polynomial is not yet in standard form. For a polynomial to be in standard form, the power of the variables must decrease as we progress to the right of the expression.
A) The polynomial in standard form is therefore - 3x⁸ + 2x⁵ + 4x³. We can see that the power are reducing as we move through each terms i.e from 8 to 5 then to 3.
B) The degree of a polynomial is the maximum degree among all the terms of the polynomial. The term that has the maximum degree is -3x⁸. Hence, the degree of the polynomial is 8
C) There are only 3 terms in the polynomial given. The terms are separated by mathematical signs. The terms if the polynomial are 2x⁵, 4x³ and - 3x⁸.
D) The leading term of the polynomial is the term that comes first after rewriting the polynomial in standard format. Given the standard from of the polynomial given as -3x⁸ + 2x⁵ + 4x³, the leading term will be - 3x⁸
E) Given the leading term to be - 3x⁸, the leading coefficient of the polynomial will be the coefficient of the leading term. The coefficient of -3x⁸ is -3
Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis
The area is given by the integral
[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]
where C is the curve and [tex]dS[/tex] is the line element,
[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]
[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]
[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]
So the area is
[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]
Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:
[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
How far from the base of the house do you need to place a 13-foot ladder so that it exactly reaches the top of a 10-feet wall?
Answer:
√69 or 8.3 feets
Step-by-step explanation:
Hypotenuse=13
Therefore
13²=x²+10²
x²=169-100
x²=69
x=√69 feets
The distance from the base of the house is 8.3 feet.
What is the pythagoras theorem?The pythagoras theorem is used to obtain the sides of a right angled triangle.
Given that;
The hypotenues of the triangle is 13-foot
The length of the opposite side is 10 feet
Thus;
13^2 = 10^2 + a^2
a^2 = 13^2 - 10^2
a = √13^2 - 10^2
a = 8.3 feet
Learn more about pythagoras theorem:https://brainly.com/question/343682
#SPJ1
The local resale store buys used designer jeans for $15. The
store increases their purchase price by 400%. What is the
sale price of the designer jeans?
the answer to your question is $75
find the area of this figure to the nearest hundredth. Use 3.14 to approximate pi.
Answer:
86.28 ft²
Step-by-step explanation:
The figure given consists of a rectangle and a semicircle.
The area of the figure = area of rectangle + area of semicircle
Area of rectangle = [tex] l*w [/tex]
Where,
l = 10 ft
w = 8 ft
[tex] area = l*w = 10*8 = 80 ft^2 [/tex]
Area of semicircle:
Area of semicircle = ½ of area of a circle = ½(πr²)
Where,
π = 3.14
r = ½ of 8 = 4 ft
Area of semi-circle = ½(3.14*4) = 6.28 ft²
Area of the figure = area of rectangle + area of semi-circle = 80 + 6.28 = 86.28 ft² (nearest hundredth)
Answer:
the area of the figrue is 105.12
Step-by-step explanation:
area of rectangle A= l · w10 x 8= 80area of simi-circle= 1/2(3.14 x r²)1/2 x 3.14 x 4²=25.1280+25.12=105.12 (nearest Hundredth)Please help. I’ll mark you as brainliest if correct
Answer:
32 20 17 -57 13
-24 15 -31 31 -28
27 10 -7 18 22
Step-by-step explanation:
5* (?)-8= 77
Please help me!!!
Answer:
work is shown and pictured
Multiply: (x−5)(x−7) A x2−12x+35 B x2+2x+35 C x2+35 D x2+35x−12
Answer:
x^2 -12x+35
Step-by-step explanation:
(x−5)(x−7)
FOIL
first x*x = x^2
outer -7x
inner -5x
last -7*-5 = 35
Add them together
x^2 -7x-5x +35
x^2 -12x+35
Answer:
Step-by-step explanation:
x*x=2x
x*-7=-7x
-5*x=-5x
-5*-7=+35
2x-12x+35
A
6 people consists of 3 married couples. Each couple wants to sit with older partner on the left.
Required:
a. How many ways can they be seated together in the row?
b. Suppose one of the six is a doctor who must sit on the aisle in case she is paged. How many ways can the people be seated together in the row with the doctor in an aisle seat?
c. Suppose the six people consist of three married couples and each couple wants to sit together with the husband on the left. How many ways can the six be seated together in the row?
a. The first part asks for how many ways they can be seated together in a row. Therefore we want the permutations of the set of 6 people, or 6 factorial,
6! = 6 [tex]*[/tex] 5
= 30 [tex]*[/tex] 4
= 360 [tex]*[/tex] 2 = 720 possible ways to order 6 people in a row
b. There are two cases to consider here. If the doctor were to sit in the left - most seat, or the right - most seat. In either case there would be 5 people remaining, and hence 5! possible ways to arrange themselves.
5! = 5 [tex]*[/tex] 4
= 20 [tex]*[/tex] 3
= 120 [tex]*[/tex] 1 = 120 possible ways to arrange themselves if the doctor were to sit in either the left - most or right - most seat.
In either case there are 120 ways, so 120 + 120 = Total of 240 arrangements among the 6 people if the doctor sits in the aisle seat ( leftmost or rightmost seat )
c. With each husband on the left, there are 3 people left, all women, that we have to consider here.
3! = 3 [tex]*[/tex] 2 6 ways to arrange 3 couples in a row, the husband always to the left
In a recent year, a sample of grade 8 Washington State public school students taking a mathematics assessment test had a mean score of 281 with a standard deviation of 34.4. Possible test scores could range from 0 to 500. Assume that the scores are normally distributed. Question 9 (2.5 points) If 2000 students are randomly selected, how many would you expect to have a score between 250 and 305?
Answer:
The number is [tex]N =1147[/tex] students
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 281[/tex]
The standard deviation is [tex]\sigma = 34.4[/tex]
The sample size is n = 2000
percentage of the would you expect to have a score between 250 and 305 is mathematically represented as
[tex]P(250 < X < 305 ) = P(\frac{ 250 - 281}{34.4 } < \frac{X - \mu }{\sigma } < \frac{ 305 - 281}{34.4 } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (Standardized \ value \ of \ X )[/tex]
So
[tex]P(250 < X < 305 ) = P(-0.9012< Z<0.698 )[/tex]
[tex]P(250 < X < 305 ) = P(z_2 < 0.698 ) - P(z_1 < -0.9012)[/tex]
From the z table the value of [tex]P( z_2 < 0.698) = 0.75741[/tex]
and [tex]P(z_1 < -0.9012) = 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.75741 - 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.57[/tex]
The percentage is [tex]P(250 < X < 305 ) = 57\%[/tex]
The number of students that will get this score is
[tex]N = 2000 * 0.57[/tex]
[tex]N =1147[/tex]
radical 16 * redical 12
[tex]\sqrt{16}\times\sqrt{12}[/tex]
$=\sqrt{4^2}\times\sqrt{2^2\cdot3}$
$=4\times2\sqrt3=8\sqrt3$
List three methods of assigning probabilities. (Select all that apply.)
a. histogram.
b. intuition .
c. guessing .
d. equally likely outcomes .
e. relative frequency.
f. cumulative frequency.
Answer:
a,b and d
Step-by-step explanation:
●You can assign a probality based on your judgement and intuition.
●You can also assigni it based on the data of an histogram, in wich you see the frequency of the event you are interested in.
● Then there is the classical method based on mathematical calculations of equaly likely outcomes.
The three methods of assigning probabilities are:
b. intuition
e. relative frequency
d. equally likely outcomes
What are probabilities?Probabilities may occasionally be determined by a person's subjective opinion or personal conviction. This approach depends on the individual's perception of an event's probability or intuition. It is crucial to remember that probabilities based on intuition may not always be precise or trustworthy.
With this approach, probabilities are calculated based on the relative frequencies of historical events that have been observed. Probabilities can be calculated based on the relative frequency of different outcomes by gathering data and calculating their frequencies.
This approach makes the supposition that each potential result has an equal likelihood of happening.
Learn more about probabilities:https://brainly.com/question/29381779
#SPJ6
LOOK AT CAPTURE AND ASNWER 100 POINTS
Answer:
132 degrees
Step-by-step explanation:
Looking at angle A and angle B, they are alternate interior angles. That means they are congruent to one another. Knowing that, we can set up an equation A=B
We can now fill A and B with their given equations
5x-18=3x+42
Now we solve
2x=60
x=30
Now that we know x is 30, we can replace it in the equation for A
5x-18
5(30)-18
150-18
132 degrees
Answer:
132
Step-by-step explanation:
ANGLE A = ANGLE B
(INTERIOR ALTERNATE ANGLES)
5x - 18 = 3x + 42
2x = 60
x = 30
angle a = 150 - 18
= 132
In the graph above, which of the following would most likely cause the line to shift from D1 to D2?
A - An increase in consumer expectations
B - An increase in price
C - A decrease in consumer expectations
D - A decrease in price
Answer:
A - An increase in consumer expectations
Step-by-step explanation:
Both the quantity and price increased, so the store most likely stocked more items and began charging more as a result of high demand.
Answer: A
Step-by-step explanation: i took the test
If h(x)=-2x-10 ,find h(-4)
Answer:
h(-4) = -2
Step-by-step explanation:
h(x)=-2x-10
Let x = -4
h(-4)=-2*-4-10
=8-10
= -2
Answer:
[tex]\huge \boxed{{-2}}[/tex]
Step-by-step explanation:
[tex]\sf The \ function \ is \ given:[/tex]
[tex]h(x)=-2x-10[/tex]
[tex]\sf To \ find \ h(-4), \ put \ x=-4.[/tex]
[tex]h(-4)=-2(-4)-10[/tex]
[tex]h(-4)=8-10[/tex]
[tex]h(-4)=-2[/tex]
h(x) = -x² + 3x + 10
Answer:
x = 5 or x = -2 or 3 - 2 x (derivative)
Step-by-step explanation:
Solve for x over the real numbers:
-x^2 + 3 x + 10 = 0
Multiply both sides by -1:
x^2 - 3 x - 10 = 0
x = (3 ± sqrt((-3)^2 - 4 (-10)))/2 = (3 ± sqrt(9 + 40))/2 = (3 ± sqrt(49))/2:
x = (3 + sqrt(49))/2 or x = (3 - sqrt(49))/2
sqrt(49) = sqrt(7^2) = 7:
x = (3 + 7)/2 or x = (3 - 7)/2
(3 + 7)/2 = 10/2 = 5:
x = 5 or x = (3 - 7)/2
(3 - 7)/2 = -4/2 = -2:
Answer: x = 5 or x = -2
____________________________________
Find the derivative of the following via implicit differentiation:
d/dx(H(x)) = d/dx(10 + 3 x - x^2)
Using the chain rule, d/dx(H(x)) = ( dH(u))/( du) ( du)/( dx), where u = x and d/( du)(H(u)) = H'(u):
(d/dx(x)) H'(x) = d/dx(10 + 3 x - x^2)
The derivative of x is 1:
1 H'(x) = d/dx(10 + 3 x - x^2)
Differentiate the sum term by term and factor out constants:
H'(x) = d/dx(10) + 3 (d/dx(x)) - d/dx(x^2)
The derivative of 10 is zero:
H'(x) = 3 (d/dx(x)) - d/dx(x^2) + 0
Simplify the expression:
H'(x) = 3 (d/dx(x)) - d/dx(x^2)
The derivative of x is 1:
H'(x) = -(d/dx(x^2)) + 1 3
Use the power rule, d/dx(x^n) = n x^(n - 1), where n = 2.
d/dx(x^2) = 2 x:
H'(x) = 3 - 2 x
Simplify the expression:
Answer: = 3 - 2 x
The graph below represents the function f.
f(x)
if g is a quadratic function with a positive leading coefficient and a vertex at (0,3), which statement is true?
А.
The function fintersects the x-axis at two points, and the function g never intersects the x-axis.
B
The function fintersects the x-axis at two points, and the function g intersects the x-axis at only one point.
c.
Both of the functions fand g intersect the x-axis at only one point.
D
Both of the functions fand g intersect the x-axis at exactly two points.
Answer: А.
The function f intersects the x-axis at two points, and the function g never intersects the x-axis.
Step-by-step explanation:
In the graph we can see f(x), first let's do some analysis of the graph.
First, f(x) is a quadratic equation: f(x) = a*x^2 + b*x + c.
The arms of the graph go up, so the leading coefficient of f(x) is positive.
The vertex of f(x) is near (-0.5, -2)
The roots are at x = -2 and x = 1. (intersects the x-axis at two points)
Now, we know that:
g(x) has a positive leading coefficient, and a vertex at (0, 3)
As the leading coefficient is positive, the arms go up, and the minimum value will be the value at the vertex, so the minimum value of g(x) is 3, when x = 0.
As the minimum value of y is 3, we can see that the graph never goes to the negative y-axis, so it never intersects the x-axis.
so:
f(x) intersects the x-axis at two points
g(x) does not intersect the x-axis.
The correct option is A.
Answer:
The answer is A.) The function f intersects the x-axis at two points, and the function g never intersects the x-axis.
Step-by-step explanation:
I took the test and got it right.